Fully Convolutional Siamese Networks for Change Detection
This is an unofficial implementation of the paper
Rodrigo Caye Daudt, Bertrand Le Saux, Alexandre Boulch. (2018, October). Fully convolutional siamese networks for change detection. In 2018 25th IEEE International Conference on Image Processing (ICIP) (pp. 4063-4067). IEEE.
as the official repo does not provide the training code.
Prerequisites
opencv-python==4.1.1
pytorch==1.2.0
pyyaml==5.1.2
scikit-image==0.15.0
scikit-learn==0.21.3
scipy==1.3.1
tqdm==4.35.0
Tested on Python 3.7.4, Ubuntu 16.04 and Python 3.6.8, Windows 10.
Basic usage
# The network definition scripts are from the original repo
git clone --recurse-submodules git@github.com:Bobholamovic/FCN-CD-PyTorch.git
cd FCN-CD-PyTorch
mkdir exp
cd src
In src/constants.py
, change the dataset directories to your own. In config_base.yaml
, feel free to change the configurations.
For training, try
python train.py train --exp-config ../config_base.yaml
For evaluation, try
python train.py val --exp-config ../config_base.yaml --resume path_to_checkpoint --save-on
You can find the checkpoints in exp/base/weights/
, the log files in exp/base/logs
, and the output change maps in exp/base/outs
.
Train on Air Change dataset and OSCD dataset
To carry out a full training on these two datasets and with all three architectures, run the train9.sh
script under the root folder of this repo.
. ./train9.sh
And check the results in different subdirectories of ./exp/
.
Create your own configuration file
During scientific research, it is common case that we have to do a lot of experiments with different settings, and that's why we need the configuration files to better manage those settings. In this repo, you can create a yaml
file under the naming convention below:
config_TAG{_SUFFIX}.yaml
Those in the curly braces can be omitted. TAG
usually stands for an experiment group. For example, a set of experiments for an architecture, a dataset, etc. It will be the name of the subdirectory that holds all the checkpoints, log files, and output images. SUFFIX
can be used to distinguish different experiments in an experiment group. If it is specified, the generated files of this experiment will be tagged with SUFFIX
in their file names. In plain English, TAG1
and TAG2
have major differences, while SUFFIX1
and SUFFIX2
of the same TAG
share most of the configurations. By combining TAG
and SUFFIX
, it is convenient for both coarse-grained and find-grained control of experimental configurations.
Here is an example to help you understand. Suppose I'm going to finish my experiments on two datasets, OSCD and Lebedev, and I'm not sure which batch size achieves best performance. So I create these 5 config files.
config_OSCD_bs4.yaml
config_OSCD_bs8.yaml
config_OSCD_bs16.yaml
config_Lebedev_bs16.yaml
config_Lebedev_bs32.yaml
After training, I get my exp/
folder like this:
-exp/
--OSCD/
---weights/
----model_best_bs4.pth
----model_best_bs8.pth
----model_best_bs16.pth
---outs/
---logs/
---config_OSCD_bs4.yaml
---config_OSCD_bs8.yaml
---config_OSCD_bs16.yaml
--Lebedev/
---weights/
----model_best_bs16.pth
----model_best_bs32.pth
---outs/
---logs/
---config_Lebedev_bs16.yaml
---config_Lebedev_bs32.yaml
Now the experiment results are organized in a more structured way, and I think it would be a little bit easier to collect the statistics. Also, since the historical experiments are arranged in neat order, you will soon remember what you'd done when you come back to these results, even after a long time.
Alternatively, you can configure from the command line. This can be useful when there is only minor change between two single runs, because the configuration items from the command line is set to overwrite those from the yaml
file. That is, the final value of each configuration item is evaluated and applied in the following order:
default_value -> value_from_config_file -> value_from_command_line
At least one of the above three values should be given. In this way, you don't have to include all of the config items in the yaml
file or in the command-line input. You can use either of them, or combine them. Make your choice according to preference and circumstances.
Changed
- 2020.3.14 Add the configuration files of my experiments.
- 2020.4.14 Detail README.md.