Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
S
Symptom clustering analysis
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Requirements
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Package Registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
mcoth
Symptom clustering analysis
Commits
d890b1a0
Commit
d890b1a0
authored
4 months ago
by
mcoth
Browse files
Options
Downloads
Patches
Plain Diff
Upload New File
parent
6f8ffe4d
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Pipeline
#38565
passed with warnings
4 months ago
Stage: test
Changes
1
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
Perform_clustering.py
+116
-0
116 additions, 0 deletions
Perform_clustering.py
with
116 additions
and
0 deletions
Perform_clustering.py
0 → 100644
+
116
−
0
View file @
d890b1a0
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Sun Sep 1 16:04:29 2024
@author: Maya Coulson Theodorsen (mcoth@dtu.dk)
This function performs clustering analysis using K-Means on standardized and PCA-transformed data.
It incorporates methods to determine the optimal number of clusters and evaluate cluster quality.
Includes:
- Elbow method (WCSS), Calinski-Harabasz, Silhouette methods for determining k
- Clustering with k-means++ initiation heuristic
- Adds clusters to DataFrames with variables
"""
import
pandas
as
pd
import
matplotlib.pyplot
as
plt
import
seaborn
as
sns
from
sklearn.cluster
import
KMeans
from
sklearn
import
metrics
from
yellowbrick.cluster
import
KElbowVisualizer
from
yellowbrick.cluster
import
SilhouetteVisualizer
def
perform_clustering
(
std_data
,
principleComponents
,
data_complete
,
questionnaireClusters
,
questionnaireClusters_std
):
# Elbow method to decide how many clusters
# Empty dictionary
wcss
=
{}
# Look through range of k
for
i
in
range
(
1
,
10
):
# Run kmeans
kmeans
=
KMeans
(
n_clusters
=
i
,
random_state
=
0
).
fit
(
std_data
)
# Sum of squared distances of samples to their closest cluster center.
wcss
[
i
]
=
(
kmeans
.
inertia_
)
# Elbow plot for determining k
sns
.
reset_defaults
()
plt
.
figure
(
figsize
=
(
8
,
8
))
g
=
sns
.
lineplot
(
data
=
wcss
,
x
=
wcss
.
keys
(),
y
=
wcss
.
values
())
plt
.
xlabel
(
'
Number of Clusters
'
)
plt
.
axvline
(
x
=
3
,
c
=
'
grey
'
,
lw
=
1
,
linestyle
=
'
dashed
'
)
plt
.
ylabel
(
'
Within Cluster Sum of Squares
'
)
plt
.
title
(
'
Sum of Squared Errors Across K Clusters
'
)
plt
.
show
()
# Calinski Harabasz method
kmeans_model
=
KMeans
(
n_clusters
=
5
,
random_state
=
1
).
fit
(
principleComponents
.
iloc
[:,[
0
,
4
]])
labels
=
kmeans_model
.
labels_
metrics
.
calinski_harabasz_score
(
principleComponents
.
iloc
[:,[
0
,
4
]],
labels
)
# Calinski-Harabasz for a range of k
for
k
in
range
(
2
,
5
):
kmeans_model
=
KMeans
(
n_clusters
=
k
,
random_state
=
1
).
fit
(
principleComponents
.
iloc
[:,[
0
,
4
]])
labels
=
kmeans_model
.
labels_
print
(
k
,
metrics
.
calinski_harabasz_score
(
principleComponents
.
iloc
[:,[
1
,
4
]],
labels
))
# Yellowbrick visualizer for k, Calinski-Harabasz
model
=
KMeans
()
# k is range of number of clusters.
visualizer
=
KElbowVisualizer
(
model
,
k
=
(
2
,
10
),
metric
=
'
calinski_harabasz
'
,
timings
=
True
,
locate_elbow
=
False
)
visualizer
.
fit
(
principleComponents
.
iloc
[:,[
0
,
4
]])
visualizer
.
show
()
#Silhouette visualizer
fig
,
ax
=
plt
.
subplots
(
2
,
2
,
figsize
=
(
15
,
6
))
for
i
in
[
2
,
3
,
4
,
5
]:
'''
Create KMeans instance for different number of clusters
'''
km
=
KMeans
(
n_clusters
=
i
,
init
=
'
k-means++
'
,
n_init
=
10
,
max_iter
=
100
,
random_state
=
42
)
q
,
mod
=
divmod
(
i
,
2
)
visualizer
=
SilhouetteVisualizer
(
km
,
colors
=
'
yellowbrick
'
,
ax
=
ax
[
q
-
1
][
mod
])
visualizer
.
fit
(
principleComponents
.
iloc
[:,[
1
,
4
]])
# Remove labels, reduce label size
ax
[
q
-
1
][
mod
].
set_ylabel
(
''
)
ax
[
q
-
1
][
mod
].
yaxis
.
set_tick_params
(
labelsize
=
10
)
if
i
==
5
:
visualizer
.
set_title
(
''
)
visualizer
.
show
()
# KMeans clustering
PC234
=
principleComponents
.
iloc
[:,
1
:
4
]
# Change 1 to 0 for severity clusters
kmeans
=
KMeans
(
init
=
'
k-means++
'
,
n_clusters
=
3
,
n_init
=
'
auto
'
,
max_iter
=
100
,
random_state
=
7
)
kmeans
.
fit
(
PC234
)
LABELS
=
kmeans
.
labels_
# Add clusters to data
data_complete
[
'
clusters
'
]
=
pd
.
DataFrame
(
LABELS
)
# Check amount and percentages of each clusters size
clusters_count
=
data_complete
.
clusters
.
value_counts
()
print
(
'
Total amount in each cluster:
'
,
clusters_count
)
clusters_percent
=
data_complete
.
clusters
.
value_counts
(
normalize
=
True
).
mul
(
100
)
print
(
'
Total percentage in each cluster
'
,
clusters_percent
)
# Add cluster labels for plotting
clusterNames
=
[
'
Tension
'
,
'
Intrusion/Avoidance
'
,
'
Anhedonia
'
]
# Add clusters to questionnaire subscales df
questionnaireClusters
[
'
clusters
'
]
=
pd
.
DataFrame
(
LABELS
)
questionnaireClusters_std
[
'
clusters
'
]
=
pd
.
DataFrame
(
LABELS
)
return
PC234
,
LABELS
,
clusterNames
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment