Newer
Older
qmodel <- R6::R6Class("qmodel", public = list(
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
####### Store Data and information for algorithm #####
info = list(),
####### Store Coefficients Data #######
beta = list(),
####### Fixed Parameters ######
## Weighted
W = NA,
n_in_bin = NA,
## Number of predictiors
K = NA,
## Quantiles
tau = NA,
## Cold start size
N1 = NA,
debug = NA,
####### Quantile Information ########
## Index of the columns of the X matrix of Xny
IX = NA,
## Index of the column of y
Iy = NA,
## The design matrix
X = list(),
####### debug Information ########
listIH = list(),
####### Forecast Information ########
inputs = list(),
kseq = NA,
output = NA,
prm = NA,
regprmexpr = NA,
regprm = NA,
## Offline parameters
prmbounds = as.matrix(data.frame(lower=NA, init =NA, upper=NA)),
datatr = NA,
qrFIT = NA,
maxlagAR = NA,
yAR = NA,
Ypred = NA,
## Initialise the model with the size of the cold start.
## We need some starting point for the iteration of the quantile fit, using simplex method.
initialize = function(N1 = NULL, debug = FALSE){
if(is.null(N1)) stop("The number of data points for the cold start needs to be defined")
self$N1 <- N1
self$debug <- debug
},
### Should be the same to forecastmodel.R.. maybe have an inheritance from that instead of rewrite.
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
#----------------------------------------------------------------
# Get the transformation parameters
get_prmbounds = function(nm){
if(nm == "init"){
if(is.null(dim(self$prmbounds))){
val <- self$prmbounds[nm]
}else{
val <- self$prmbounds[ ,nm]
if(is.null(nams(val))){
nams(val) <- rownames(self$prmbounds)
}
}
}
if(nm == "lower"){
if("lower" %in% nams(self$prmbounds)){
val <- self$prmbounds[,"lower"]
if(is.null(nams(val))){
nams(val) <- rownames(self$prmbounds)
}
}else{
val <- -Inf
}
}
if(nm == "upper"){
if("upper" %in% nams(self$prmbounds)){
val <- self$prmbounds[,"upper"]
if(is.null(nams(val))){
nams(val) <- rownames(self$prmbounds)
}
}else{
val <- Inf
}
}
names(val) <- row.names(self$prmbounds)
return(val)
},
#----------------------------------------------------------------
#----------------------------------------------------------------
# Add the transformation parameters and bounds for optimization
add_prmbounds = function(...) {
dots <- list(...)
for (i in 1:length(dots)) {
nm <- names(dots)[i]
if (nm %in% rownames(self$prmbounds)) {
self$prmbounds[nm, ] <- dots[[i]]
} else {
if(nrow(self$prmbounds) == 1 & is.na(self$prmbounds[1,2])){
self$prmbounds[1, ] <- dots[[i]]
}else{
self$prmbounds <- rbind(self$prmbounds, dots[[i]])
}
rownames(self$prmbounds)[nrow(self$prmbounds)] <- nm
}
}
},
#----------------------------------------------------------------
#----------------------------------------------------------------
# Resets the input states
reset_state = function(){
# Reset the inputs state
lapply(self$inputs, function(input){
input$state_reset()
})
# Reset stored data
self$datatr <- NA
#self$yAR <- NA
},
#----------------------------------------------------------------
#----------------------------------------------------------------
# Insert the transformation parameters prm in the input expressions and regression expressions, and keep them (simply string manipulation)
insert_prm = function(prm){
# If just NA or NULL given, then don't do anything
if(is.null(prm) | (is.na(prm)[1] & length(prm) == 1)){
return(NULL)
}
# MUST INCLUDE SOME checks here and print useful messages if something is not right
if(any(is.na(prm))){ stop(pst("None of the parameters (in prm) must be NA: prm=",prm)) }
# Keep the prm
self$prm <- prm
# Find if any opt parameters, first the one with "__" hence for the inputs
pinputs <- prm[grep("__",nams(prm))]
# If none found for inputs, then the rest must be for regression
if (length(pinputs) == 0 & length(prm) > 0) {
preg <- prm
} else {
preg <- prm[-grep("__",nams(prm))]
}
# ################
# For the inputs, insert from prm if any found
if (length(pinputs)) {
pnms <- unlist(getse(strsplit(nams(pinputs),"__"), 1))
pprm <- unlist(getse(strsplit(nams(pinputs),"__"), 2))
#
for(i in 1:length(self$inputs)){
for(ii in 1:length(pnms)){
# Find if the input i have prefix match with the opt. parameter ii
if(pnms[ii]==nams(self$inputs)[i]){
# if the opt. parameter is in the expr, then replace
self$inputs[[i]]$expr <- private$replace_value(name = pprm[ii],
value = pinputs[ii],
expr = self$inputs[[i]]$expr)
}
}
}
}
# ################
# For the fit parameters, insert from prm if any found
if (length(preg) & any(!is.na(self$regprmexpr))) {
nams(preg)
for(i in 1:length(preg)){
# if the opt. parameter is in the expr, then replace
self$regprmexpr <- private$replace_value(name = nams(preg)[i],
value = preg[i],
expr = self$regprmexpr)
}
}
self$regprm <- eval(parse(text = self$regprmexpr))
},
#----------------------------------------------------------------
#----------------------------------------------------------------
# Add inputs to the model
add_inputs = function(...){
dots <- list(...)
for (i in 1:length(dots)){
self$inputs[[ nams(dots)[i] ]] <- onlineforecast:::input_class$new(dots[[i]], model=self)
}
},
#----------------------------------------------------------------
# Add the expression (as character) which generates the regression parameters
add_regprm = function(regprmexpr){
self$regprmexpr <- regprmexpr
self$regprm <- eval(parse(text = self$regprmexpr))
},
#----------------------------------------------------------------
#----------------------------------------------------------------
# Function for transforming the input data to the regression data
transform_data = function(data){
# Evaluate for each input the expresssion to generate the model input data
L <- lapply(self$inputs, function(input){
# Evaluate the expression (input$expr)
L <- input$evaluate(data)
# Must return a list
if(class(L)[1]=="matrix"){ return(list(as.data.frame(L))) }
if(class(L)[1]=="data.frame"){ return(list(L)) }
if(class(L)[1]!="list"){ stop(pst("The value returned from evaluating: ",input$expr,", was not a matrix, data.frame or a list of them."))}
if(class(L[[1]])[1]=="matrix"){ return(lapply(L, function(mat){ return(as.data.frame(mat)) })) }
return(L)
})
# Put together in one data.list
L <- structure(do.call(c, L), class="data.list")
#
return(L)
}
),
# Private functions
private = list(
#----------------------------------------------------------------
#----------------------------------------------------------------
# Replace the value in "name=value" in expr
replace_value = function(name, value, expr){
# First make regex
pattern <- gsub("\\.", ".*", name)
# Try to find it in the input
pos <- regexpr(pattern, expr)
# Only replace if prm was found
if(pos>0){
pos <- c(pos+attr(pos,"match.length"))
# Find the substr to replace with the prm value
(tmp <- substr(expr, pos, nchar(expr)))
pos2 <- regexpr(",|)", tmp)
# Insert the prm value and return
expr <- pst(substr(expr,1,pos-1), "=", value, substr(expr,pos+pos2-1,nchar(expr)))
# Print? Not used now
#if(printout){ message(names(value),"=",value,", ",sep="")}
}
return(expr)
}
#----------------------------------------------------------------
))