Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
#' @export
forecastmodel <- R6::R6Class("forecastmodel", public = list(
##----------------------------------------------------------------
## Fields used for setting up the model
##
## The expression (as character) used for generating the regprm
regprmexpr = NA,
## Regression parameters for the function used for fitting (rls, ls, etc.)
regprm = list(),
## The off-line parameters
prmbounds = as.matrix(data.frame(lower=NA, init=NA, upper=NA)),
## List of inputs (which are R6 objects) (note the "cloning of list of reference objects" issue below in deep_clone function)
inputs = list(),
## Name of the output
output = "y",
## The range of the output to be used for cropping the output
outputrange = NA,
##----------------------------------------------------------------
##----------------------------------------------------------------
## Fields to be used when the model is fitted
##
## The horizons to fit for
kseq = NA,
## The (transformation stage) parameters used for the fit
prm = NA,
## Stores the maximum lag for AR terms
maxlagAR = NA,
## Stores the maxlagAR past values of y for the update when new obs becomes available
yAR = NA,
## The fits, one for each k in kseq (simply a list with the latest fit)
Lfits = list(),
## Transformed input data (data.list with all inputs; or local fitted models: ??data.frame with all data??)
datatr = NA,
##----------------------------------------------------------------
##----------------------------------------------------------------
## Contructor function
initialize = function(){},
##----------------------------------------------------------------
##----------------------------------------------------------------
## Add inputs to the model
add_inputs = function(...){
dots <- list(...)
for (i in 1:length(dots)){
self$inputs[[ nams(dots)[i] ]] <- input_class$new(dots[[i]], model=self)
}
},
##----------------------------------------------------------------
##----------------------------------------------------------------
## Add the expression (as character) which generates the regression parameters
add_regprm = function(regprmexpr){
self$regprmexpr <- regprmexpr
self$regprm <- eval(parse(text = self$regprmexpr))
},
##----------------------------------------------------------------
##----------------------------------------------------------------
## Add the transformation parameters and bounds for optimization
add_prmbounds = function(...) {
dots <- list(...)
for (i in 1:length(dots)) {
nm <- names(dots)[i]
if (nm %in% rownames(self$prmbounds)) {
self$prmbounds[nm, ] <- dots[[i]]
} else {
if(nrow(self$prmbounds) == 1 & is.na(self$prmbounds[1,2])){
self$prmbounds[1, ] <- dots[[i]]
}else{
self$prmbounds <- rbind(self$prmbounds, dots[[i]])
}
rownames(self$prmbounds)[nrow(self$prmbounds)] <- nm
}
}
},
##----------------------------------------------------------------
##----------------------------------------------------------------
## Get the transformation parameters
get_prmbounds = function(nm){
if(nm == "init"){
if(is.null(dim(self$prmbounds))){
val <- self$prmbounds[nm]
}else{
val <- self$prmbounds[ ,nm]
if(is.null(nams(val))){
nams(val) <- rownames(self$prmbounds)
}
}
}
if(nm == "lower"){
if("lower" %in% nams(self$prmbounds)){
val <- self$prmbounds[,"lower"]
if(is.null(nams(val))){
nams(val) <- rownames(self$prmbounds)
}
}else{
val <- -Inf
}
}
if(nm == "upper"){
if("upper" %in% nams(self$prmbounds)){
val <- self$prmbounds[,"upper"]
if(is.null(nams(val))){
nams(val) <- rownames(self$prmbounds)
}
}else{
val <- Inf
}
}
names(val) <- row.names(self$prmbounds)
return(val)
},
##----------------------------------------------------------------
##----------------------------------------------------------------
## Insert the transformation parameters prm in the input expressions and regression expressions, and keep them (simply string manipulation)
insert_prm = function(prm){
# If just NA or NULL given, then don't do anything
if(is.null(prm) | (is.na(prm)[1] & length(prm) == 1)){
return(NULL)
}
## MUST INCLUDE SOME checks here and print useful messages if something is not right
if(any(is.na(prm))){ stop(pst("None of the parameters (in prm) must be NA: prm=",prm)) }
## Keep the prm
self$prm <- prm
## Find if any opt parameters, first the ones with "__" hence for the inputs
pinputs <- prm[grep("__",nams(prm))]
## If none found for inputs, then the rest must be for regression
if (length(pinputs) == 0 & length(prm) > 0) {
preg <- prm
} else {
preg <- prm[-grep("__",nams(prm))]
}
## ################################
## For the inputs, insert from prm if any found
if (length(pinputs)) {
pnms <- unlist(getse(strsplit(nams(pinputs),"__"), 1))
pprm <- unlist(getse(strsplit(nams(pinputs),"__"), 2))
##
for(i in 1:length(self$inputs)){
for(ii in 1:length(pnms)){
## Find if the input i have prefix match with the opt. parameter ii
if(pnms[ii]==nams(self$inputs)[i]){
## if the opt. parameter is in the expr, then replace
self$inputs[[i]]$expr <- private$replace_value(name = pprm[ii],
value = pinputs[ii],
expr = self$inputs[[i]]$expr)
}
}
}
}
## ################################
## For the fit parameters, insert from prm if any found
if (length(preg) & any(!is.na(self$regprmexpr))) {
nams(preg)
for(i in 1:length(preg)){
## if the opt. parameter is in the expr, then replace
self$regprmexpr <- private$replace_value(name = nams(preg)[i],
value = preg[i],
expr = self$regprmexpr)
}
}
self$regprm <- eval(parse(text = self$regprmexpr))
},
##----------------------------------------------------------------
##----------------------------------------------------------------
## Function for transforming the input data to the regression data
transform_data = function(data){
## Evaluate for each input the expresssion to generate the model input data
L <- lapply(self$inputs, function(input){
## Evaluate the expression (input$expr)
L <- input$evaluate(data)
## Must return a list
if(class(L)=="matrix"){ return(list(as.data.frame(L))) }
if(class(L)=="data.frame"){ return(list(L)) }
if(class(L)!="list"){ stop(pst("The value returned from evaluating: ",input$expr,", was not a matrix, data.frame or a list of them."))}
if(class(L[[1]])=="matrix"){ return(lapply(L, function(mat){ return(as.data.frame(mat)) })) }
return(L)
})
## Put together in one data.list
L <- structure(do.call(c, L), class="data.list")
##
return(L)
},
##----------------------------------------------------------------
##----------------------------------------------------------------
## Resets the input states
reset_state = function(){
## Reset the inputs state
lapply(self$inputs, function(input){
input$state_reset()
})
## Reset stored data
self$datatr <- NA
self$yAR <- NA
},
##----------------------------------------------------------------
##----------------------------------------------------------------
## Check if the model and data is setup correctly
check = function(data = NA){
## some checks are done here, maybe more should be added (??also when transforming inputs, if something goes wrong its caught and message is printed)
##
## ################################################################
## First check if the output is set correctly
if( is.na(self$output) ){
stop("Model output is NA, it must be set to the name of a variable in the data.list used.")
}
if( !(self$output %in% names(data)) ){
stop("Model output '",self$output,"' is not in the data provided: It must be set to the name of a variable in the data.list used.")
}
if( !(is.numeric(data[[self$output]])) ){
stop("The model output '",self$output,"' is not a numeric. It has to be a vector of numbers.")
}
if( length(data[[self$output]]) != length(data$t) ){
stop("The length of the model output '",self$output,"' is ",length(data[[self$output]]),", which is not equal to the length of the time vector (t), which is ",length(data$t))
}
## ################################################################
## Check that the kseq is set in the model
if( !is.numeric(self$kseq) ){
stop("'model$kseq' is not set. Must be an integer (or numeric) vector.")
}
## ################################################################
## Check all input variables are correctly set data
for(i in 1:length(self$inputs)){
## Find all the variables in the expression
nms <- all.vars(parse(text=self$inputs[[i]]$expr[[1]]))
for(nm in nms){
if(class(data[[nm]]) %in% c("data.frame","matrix")){
## It's a forecast input, hence must have the k columns in kseq
if(!all(self$kseq %in% as.integer(gsub("k","",names(data[[nm]]))))){
missingk <- which(!self$kseq %in% as.integer(gsub("k","",names(data[[nm]]))))
stop("The input variable '",nm,"' doesn't have all needed horizons.\nIt has ",pst(names(data[[nm]]),collapse=","),"\nIt is missing ",pst("k",self$kseq[missingk],collapse=","))
}
## Check if the number of observations match
if( nrow(data[[nm]]) != length(data$t) ){
stop(pst("The input variable '",nm,"' doesn't have the same number of observations as time vector 't' in the data. It has ",nrow(data[[nm]]),", but 't' has ",length(data$t)))
}
}else if(class(data[[nm]]) == "numeric"){
## Observation input, check the length
if( length(data[[nm]]) != length(data$t) ){
stop("The input variable '",nm,"' doesn't have the same number of observations as time vector 't' in the data. It has ",length(data[[nm]]),", but 't' has ",length(data$t))
}
}else{
stop("The variable '",nm,"' is missing in data, or it has the wrong class.\nIt must be class: data.frame, matrix or vector.\nIt is needed for the input expression '",self$inputs[[i]]$expr[[1]],"'")
}
}
}
},
##----------------------------------------------------------------
clone_deep = function(){
## First clone with deep=TRUE. Now also the inputes get cloned.
newmodel <- self$clone(deep=TRUE)
## The inputs are cloned now, however the model fields in the inputs have not been updated, so do that
if(length(newmodel$inputs) > 0){
for(i in 1:length(newmodel$inputs)){
newmodel$inputs[[i]]$model <- newmodel
}
}
return(newmodel)
}
##----------------------------------------------------------------
),
##----------------------------------------------------------------
##----------------------------------------------------------------
## Private functions
private = list(
##----------------------------------------------------------------
##----------------------------------------------------------------
## Replace the value in "name=value" in expr
replace_value = function(name, value, expr){
## First make regex
pattern <- gsub("\\.", ".*", name)
## Try to find it in the input
pos <- regexpr(pattern, expr)
## Only replace if prm was found
if(pos>0){
pos <- c(pos+attr(pos,"match.length"))
## Find the substr to replace with the prm value
(tmp <- substr(expr, pos, nchar(expr)))
pos2 <- regexpr(",|)", tmp)
## Insert the prm value and return
expr <- pst(substr(expr,1,pos-1), "=", value, substr(expr,pos+pos2-1,nchar(expr)))
# Print? Not used now
#if(printout){ cat(names(value),"=",value,", ",sep="")}
}
return(expr)
},
##----------------------------------------------------------------
##----------------------------------------------------------------
## For deep cloning, in order to get the inputs list of R6 objects copied
deep_clone = function(name, value) {
## With x$clone(deep=TRUE) is called, the deep_clone gets invoked once for
## each field, with the name and value.
if (name == "inputs") {
## Don't clone the inputs deep, since they have the model as a field and then it gets in an infinitie loop!
## But have to update the model references, so therefore the function above "clone_deep" must be used
return(lapply(value, function(x){ x$clone(deep=FALSE) }))
## ## `a` is an environment, so use this quick way of copying
## list2env(as.list.environment(value, all.names = TRUE),
## parent = emptyenv())
}
## For all other fields, just return the value
return(value)
}
##----------------------------------------------------------------
)
)
#' Prints a forecast model
#'
#' A simple print out of the model output and inputs
#'
#' @title Print forecast model
#' @param object forecastmodel
#' @export
print.forecastmodel <- function(object){
model <- object
# cat("\nObject of class forecastmodel (R6::class)\n\n")
cat("\nOutput:",model$output,"\n")
cat("Inputs: ")
cat(names(model$inputs)[1],"=",model$inputs[[1]]$expr,"\n")
for(i in 2:length(model$inputs)){
cat(" ",names(model$inputs)[i],"=",model$inputs[[i]]$expr,"\n")
}
cat("\n")
}