Skip to content
Snippets Groups Projects
lm_predict.Rd 1.38 KiB
Newer Older
  • Learn to ignore specific revisions
  • % Generated by roxygen2: do not edit by hand
    % Please edit documentation in R/lm_predict.R
    \name{lm_predict}
    \alias{lm_predict}
    \title{Prediction with an lm forecast model.}
    \usage{
    lm_predict(model, datatr)
    }
    \arguments{
    \item{model}{Onlineforecast model object which has been fitted.}
    
    \item{datatr}{Transformed data.}
    }
    \value{
    The Yhat forecast matrix with a forecast for each model$kseq and for each time point in \code{datatr$t}.
    }
    \description{
    Use a fitted forecast model to predict its output variable with transformed data.
    }
    \details{
    See the ??ref(recursive updating vignette, not yet available).
    }
    \examples{
    
    
    # Take data
    D <- subset(Dbuilding, c("2010-12-15", "2011-01-01"))
    D$y <- D$heatload
    # Define a model 
    model <- forecastmodel$new()
    model$add_inputs(Ta = "lp(Ta, a1=0.7)", mu = "one()")
    
    # Before fitting the model, define which points to include in the evaluation of the score function
    D$scoreperiod <- in_range("2010-12-20", D$t)
    # And the sequence of horizons to fit for
    model$kseq <- 1:6
    
    # Transform using the mdoel
    datatr <- model$transform_data(D)
    
    # See the transformed data
    str(datatr)
    
    # The model has not been fitted
    model$Lfits
    
    # To fit
    lm_fit(model=model, data=D)
    
    # Now the fits for each horizon are there (the latest update)
    # For example 
    summary(model$Lfits$k1)
    
    # Use the fit for prediction
    D$Yhat <- lm_predict(model, datatr)
    
    # Plot it
    plot_ts(D, c("y|Yhat"), kseq=1)
    
    }