Newer
Older
# Do this in a separate file to see the generated help:
#library(devtools)
#document()
#load_all(as.package("../../onlineforecast"))
#?lm_optim
#' Optimize parameters (transformation stage) of LM model
#'
#' This is a wrapper for \code{\link{optim}} to enable easy use of bounds and caching in the optimization.
#'
#' @title Optimize parameters for onlineforecast model fitted with LM
#' @param model The onlineforecast model, including inputs, output, kseq, p
#' @param data The data.list including the variables used in the model.
#' @param kseq The horizons to fit for (if not set, then model$kseq is used)
#' @param scorefun The function to be score used for calculating the score to be optimized.
#' @param cachedir A character specifying the path (and prefix) of the cache file name. If set to \code{""}, then no cache will be loaded or written. See \url{https://onlineforecasting.org/vignettes/nice-tricks.html} for examples.
#' @param cachererun A logical controlling whether to run the optimization even if the cache exists.
#' @param printout A logical determining if the score function is printed out in each iteration of the optimization.
#' @param method The method argument for \code{\link{optim}}.
#' @param ... Additional parameters to \code{\link{optim}}
#' @return Result object of optim().
#' Parameters resulting from the optimization can be found from \code{result$par}
#' @seealso \code{link{optim}} for how to control the optimization and \code{\link{rls_optim}} which works very similarly.
#' @examples
#'
#' D <- subset(Dbuilding, c("2010-12-15", "2011-01-01"))
#' model <- forecastmodel$new()
#' model$add_inputs(Ta = "lp(Ta, a1=0.9)",
#' # Before fitting the model, define which points to include in the evaluation of the score function
#' D$scoreperiod <- in_range("2010-12-20", D$t)
#' # And the sequence of horizons to fit for
#' model$kseq <- 1:6
#' # Now we can fit the model and get the score, as it is
#' lm_fit(model=model, data=D, scorefun=rmse, returnanalysis=FALSE)
#' # Or we can change the low-pass filter coefficient
#' lm_fit(c(Ta__a1=0.99), model, D, rmse, returnanalysis=FALSE)
#'
#' # This could be passed to optim() (or any optimizer).
#' # See \code{forecastmodel$insert_prm()} for more details.
#' optim(c(Ta__a1=0.98), lm_fit, model=model, data=D, scorefun=rmse, returnanalysis=FALSE,
#' lower=c(Ta__a1=0.4), upper=c(Ta__a1=0.999), method="L-BFGS-B")
#' # lm_optim is simply a helper it makes using bounds easiere and enables caching of the results
#' # First add bounds for lambda (lower, init, upper)
#' model$add_prmbounds(Ta__a1 = c(0.4, 0.98, 0.999))
#'
#' # Now the same optimization as above can be done by
#' val <- lm_optim(model, D)
#' val
#'
#'
#' @importFrom stats optim
lm_optim <- function(model, data, kseq = NA, scorefun = rmse, cachedir="", cachererun=FALSE, printout=TRUE, method="L-BFGS-B", ...){
## Take the parameters bounds from the parameter bounds set in the model
init <- model$get_prmbounds("init")
lower <- model$get_prmbounds("lower")
upper <- model$get_prmbounds("upper")
# If bounds are NA, then set
if(any(is.na(lower))){ lower[is.na(lower)] <- -Inf}
if(any(is.na(upper))){ lower[is.na(upper)] <- Inf}
# Clone the model no matter what (at least model$kseq should not be changed no matter if optimization is stopped)
m <- model$clone_deep()
if(!is.na(kseq[1])){
m$kseq <- kseq
## Caching the results based on some of the function arguments
if(cachedir != ""){
# Have to insert the parameters in the expressions to get the right state of the model for unique checksum
m$insert_prm(init)
# Have to reset the state first to remove dependency of previous calls
m$reset_state()
cnm <- cache_name(lm_fit, lm_optim, m$outputrange, m$regprm, m$transform_data(data),
data[[m$output]], scorefun, init, lower, upper, cachedir = cachedir)
# Load the cached result if it exists
res <- readRDS(cnm)
# Set the optimized parameters into the model
model$insert_prm(res$par)
return(res)
}
data = data,
scorefun = scorefun,
printout = printout,
returnanalysis = FALSE,
lower = lower,
upper = upper,
method = method,
...)
# Set the optimized parameters into the model
model$insert_prm(res$par)