Select Git revision
Code owners
Assign users and groups as approvers for specific file changes. Learn more.
lm_fit.R 7.90 KiB
# Do this in a separate file to see the generated help:
#library(devtools)
#document()
#load_all(as.package("../../onlineforecast"))
#?lm_fit
#' Fit a linear regression model given a onlineforecast model, seperately for each prediction horizon
#'
#' @title Fit an onlineforecast model with \code{\link{lm}}
#' @param prm as numeric with the parameters to be used when fitting.
#' @param model object of class forecastmodel with the model to be fitted.
#' @param data as data.list with the data to fit the model on.
#' @param scorefun Optional. If scorefun is given, e.g. \code{\link{rmse}}, then the value of this is also returned.
#' @param returnanalysis as logical determining if the analysis should be returned. See below.
#' @param printout Defaults to TRUE. Prints the parameters for model.
#' @return Depends on:
#'
#' - If \code{returnanalysis} is TRUE a list containing:
#'
#' * \code{Yhat}: data.frame with forecasts for \code{model$kseq} horizons.
#'
#' * \code{model}: The forecastmodel object cloned deep, so can be modified without changing the original object.
#'
#' * \code{data}: data.list with the data used, see examples on how to obtain the transformed data.
#'
#' * \code{Lfitval}: a character "Find the fits in model$Lfits", it's a list with the lm fits for each horizon.
#'
#' * \code{scoreval}: data.frame with the scorefun result on each horizon (only scoreperiod is included).
#'
#' - If \code{returnanalysis} is FALSE (and \code{scorefun} is given): The sum of the score function on all horizons (specified with model$kseq).
#'
#' @examples
#'
#' # Take data
#' D <- subset(Dbuilding, c("2010-12-15", "2011-01-01"))
#' D$y <- D$heatload
#' # Define a simple model
#' model <- forecastmodel$new()
#' model$output <- "y"
#' model$add_inputs(Ta = "Ta",
#' mu = "one()")
#' model$add_regprm("rls_prm(lambda=0.99)")
#'
#' # Before fitting the model, define which points to include in the evaluation of the score function
#' D$scoreperiod <- in_range("2010-12-20", D$t)
#' # And the sequence of horizons to fit for
#' model$kseq <- 1:6
#'
#' # Now we can fit the model with RLS and get the model validation analysis data
#' fit <- lm_fit(prm=NA, model=model, data=D)
#' # What did we get back?
#' names(fit)
#' class(fit)
#' # The one-step forecast
#' plot(D$y, type="l")
#' lines(fit$Yhat$k1, col=2)
#' # Get the residuals
#' plot(residuals(fit)$h1)
#' # Score for each horizon
#' score_fit(fit)
#'
#' # The lm_fit don't put anything in
#' fit$Lfitval
#' # Find the lm fits here
#' model$Lfits
#' # See result for k=1 horizon
#' summary(model$Lfits$k1)
#' # Some diurnal pattern is present
#' acf(residuals(fit)$h1, na.action=na.pass, lag.max=96)
#'