Select Git revision
pbac authored
Code owners
Assign users and groups as approvers for specific file changes. Learn more.
rls_fit.R 9.04 KiB
# Do this in a separate file to see the generated help:
#library(devtools)
#document()
#load_all(as.package("../../onlineforecast"))
#?rls_fit
#' This function fits the onlineforecast model to the data and returns either: model validation data or just the score value.
#'
#'
#' This function has three main purposes (in the examples these three are demonstrated in the examples):
#'
#' - Returning model validation data, such as residuals and recursive estimated parameters.
#'
#' - For optimizing the parameters using an R optimizer function. The parameters to optimize for is given in \code{prm}
#'
#' - Fitting a model to data and saving the final state in the model object (such that from that point the model can be updated recursively as new data is received).
#'
#' Note, if the \code{scorefun} is given the \code{data$scoreperiod} must be set to (int or logical) define which points to be evaluated in the scorefun.
#'
#' @title Fit an onlineforecast model with Recursive Least Squares (RLS).
#' @param prm vector with the parameters for fitting. Deliberately as the first element to be able to use \code{\link{optim}} or other optimizer. If NA then the model will be fitted with the current values in the input expressions, see examples.
#' @param model as an object of class forecastmodel: The model to be fitted.
#' @param data as a data.list with the data to fit the model on.
#' @param scorefun as a function (optional), default is \code{\link{rmse}}. If the score function is given it will be applied to the residuals of each horizon (only data$scoreperiod is included).
#' @param returnanalysis as a logical. If FALSE then the sum of the scoreval on all horizons are returned, if TRUE a list with values for analysis.
#' @param runcpp logical: If true the c++ implementation of RLS is run, if false the R implementation is run (slower).
#' @param printout logical: If TRUE the offline parameters and the score function value are printed.
#' @return Depends on:
#'
#' - If \code{returnanalysis} is TRUE a list containing:
#'
#' * \code{Yhat}: data.frame with forecasts for \code{model$kseq} horizons.
#'
#' * \code{model}: The forecastmodel object cloned deep, so can be modified without changing the original object.
#'
#' * \code{data}: data.list with the data used, see examples on how to obtain the transformed data.
#'
#' * \code{Lfitval}: list with RLS coefficients in a data.frame for each horizon, use \code{\link{plot_ts.rls_fit}} to plot them and to obtain them as a data.frame for each coefficient.
#'
#' * \code{scoreval}: data.frame with the scorefun result on each horizon (only scoreperiod is included).
#'
#' - If \code{returnanalysis} is FALSE (and \code{scorefun} is given): The sum of the score function on all horizons (specified with model$kseq).
#'
#' @seealso
#' For optimizing parameters \code{\link{rls_optim}()}, for summary \code{summary.rls_fit}, for plotting \code{\link{plot_ts.rls_fit}()}, and the other functions starting with 'rls_'.
#'
#' @examples
#'
#'
#' # Take data (See vignette ??(ref) for better model and more details)
#' D <- subset(Dbuilding, c("2010-12-15", "2011-01-01"))
#' D$y <- D$heatload
#' # Define a model
#' model <- forecastmodel$new()
#' model$output <- "y"
#' model$add_inputs(Ta = "Ta",
#' mu = "ones()")
#' model$add_regprm("rls_prm(lambda=0.99)")
#'
#' # Before fitting the model, define which points to include in the evaluation of the score function
#' D$scoreperiod <- in_range("2010-12-20", D$t)
#' # And the sequence of horizons to fit for
#' model$kseq <- 1:6
#'
#' # Now we can fit the model with RLS and get the model validation analysis data
#' fit <- rls_fit(model = model, data = D)
#' # What did we get back?
#' names(fit)
#' # The one-step forecast
#' plot(D$y, type="l")
#' lines(fit$Yhat$k1, col=2)
#' # The one-step RLS coefficients over time (Lfitval is a list of the fits for each horizon)
#' plot(fit$Lfitval$k1$Ta, type="l")
#'
#' # A summary
#' summary(fit)
#' # Plot the fit
#' plot_ts(fit, kseq=1)
#'
#' # Fitting with lower lambda makes the RLS coefficients change faster
#' fit2 <- rls_fit(prm = c(lambda=0.9), model, D)
#' plot_ts(fit2, kseq=1)
#'
#'
#' # It can return a score
#' rls_fit(c(lambda=0.9), model, D, scorefun=rmse, returnanalysis=FALSE)
#'
#' # Such that it can be passed to an optimzer (see ?rls_optim for a nice wrapper of optim)
#' val <- optim(c(lambda=0.99), rls_fit, model = model, data = D, scorefun = rmse, returnanalysis=FALSE)
#' val$par
#' # Which can then simply be applied
#' rls_fit(val$par, model, D, scorefun=rmse, returnanalysis=FALSE)
#' # see ?rls_optim, how optim is wrapped for a little easiere use
#'
#' # See rmse as a function of horizon
#' fit <- rls_fit(val$par, model, D, scorefun = rmse)
#' plot(fit$scoreval, xlab="Horizon k", ylab="RMSE")
#' # See ?score_fit for a little more consistent way of calculating this
#'
#'
#' # Try adding a low-pass filter to Ta
#' model$add_inputs(Ta = "lp(Ta, a1=0.92)")
#' # To obtain the transformed data, i.e. the data which is used as input to the RLS
#' model$reset_state()
#' # Generate the the transformed data
#' datatr <- model$transform_data(D)
#' # What did we get?
#' str(datatr)
#' # See the effect of low-pass filtering
#' plot(D$Ta$k1, type="l")
#' lines(datatr$Ta$k1, col=2)
#' # Try changing the 'a1' coefficient and rerun
#' # ?rls_optim for how to optimize also this coefficient
#'
#'
#' @export
rls_fit <- function(prm=NA, model, data, scorefun = NA, returnanalysis = TRUE,
runcpp = TRUE, printout = TRUE){
# Check that the model is setup correctly, it will stop and print a message if not
model$check(data)
# Function for initializing an rls fit:
# - it will change the "model" input (since it an R6 class and thus passed by reference
# - If scorefun is given, e.g. rmse() then the value of this is returned
#
if(printout){
# Should here actually only print the ones that were found and changed?
cat("----------------\n")
if(is.na(prm[1])){
cat("prm=NA, so current parameters are used.\n")
}else{
print(prm)
}
}
# First insert the prm into the model input expressions
model$insert_prm(prm)
# Since rls_fit is run from scratch, the init the stored inputs data (only needed when running iteratively)
model$datatr <- NA
model$yAR <- NA
# Reset the model state (e.g. inputs state, stored iterative data, ...)
model$reset_state()
# Generate the 2nd stage inputs (i.e. the transformed data)
datatr <- model$transform_data(data)
# Initialize the fit for each horizon
# Need to know how many inputs to be fitted with?
np <- length(datatr)
#
model$Lfits <- lapply(model$kseq, function(k){
fit <- list(k = k,
# Init values for the parameter vector
theta = matrix(rep(0,np), ncol = 1))
if(runcpp){
# cpp rls version use covariance P
fit$P <- diag(10000,np)
}else{
# rls version use inverse covariance R
fit$R <- diag(1/10000,np)
}
#
return(fit)
})
names(model$Lfits) <- pst("k", model$kseq)
# Calculate the parameter estimates for each time point
Lresult <- rls_update(model, datatr, data[[model$output]], runcpp)
Yhat <- lapply_cbind_df(Lresult, function(x){
x$yhat
})
nams(Yhat) <- pst("k",model$kseq)
# Maybe crop the output
if(!is.na(model$outputrange[1])){ Yhat[Yhat < model$outputrange[1]] <- model$outputrange[1] }
if(!is.na(model$outputrange[2])){ Yhat[Yhat > model$outputrange[2]] <- model$outputrange[2] }
#----------------------------------------------------------------
# Calculate the result to return
# If the objective function (scorefun) is given
if(class(scorefun) == "function"){
# Do some checks
if( !("scoreperiod" %in% names(data)) ){ stop("data$scoreperiod is not set: Must have it set to an index (int or logical) defining which points to be evaluated in the scorefun().") }
if( all(is.na(data$scoreperiod)) ){ stop("data$scoreperiod is not set correctly: It must be set to an index (int or logical) defining which points to be evaluated in the scorefun().") }
# Calculate the objective function for each horizon
Residuals <- residuals(Yhat, data[[model$output]])
scoreval <- sapply(1:ncol(Yhat), function(i){
scorefun(Residuals[data$scoreperiod,i])
})
nams(scoreval) <- nams(Yhat)
}else{
scoreval <- NA
}
#
if(returnanalysis){
# The estimated coefficients
Lfitval <- getse(Lresult, "Theta", fun=as.data.frame)
# Return the model validation data
invisible(structure(list(Yhat = Yhat, model = model$clone_deep(), data = data, Lfitval = Lfitval, scoreval = scoreval), class = c("forecastmodel_fit","rls_fit")))
}else{
# Only the summed score returned
val <- sum(scoreval, na.rm = TRUE)
if(is.na(val)){ stop("Cannot calculate the scorefunction for any horizon") }
if(printout){ print(c(scoreval,sum=val))}
return(val)
}
}