Skip to content
Snippets Groups Projects
Commit 08ae69e7 authored by pbac's avatar pbac
Browse files

made periodic function

parent 378fe5c1
No related branches found
No related tags found
No related merge requests found
## Do this in a separate tmp.R file to check the documentation
#library(devtools)
#document()
#load_all(as.package("../../onlineforecast"))
#?make_periodic
#' Make an forecast matrix with a periodic time signal.
#'
#' This function creates a data.frame with k-steps-ahead values of a periodic time signal,
#' such that it can be added to a data.list and used inputs to a forecast model.
#'
#' @param time vector of times of class "POSIXct" "POSIXt".
#' @param kseq vector of integers, representing the desired "k-steps ahead".
#' @param period a numeric setting the length of the period in seconds.
#' @param offset a numeric setting an offset in the period start in seconds.
#' @param tstep step time of k in seconds.
#' @return Returns a forecast matrix (data.frame) with rownames = times, colnames = k1, k2, k3, ...
#' The content of the data frame is the hour of day.
#' @keywords periodic lags data.frame
#' @seealso make_tday
#' @examples
#' # Create a time sequence of 30 min sample period
#' tseq <- seq(ct("2019-01-01"), ct("2019-02-01 12:00"), by=1800)
#'
#' # Make the three hourly periodic sequence
#' make_periodic(tseq, 1:10, 3*3600)
#'
#' # With an offset of one hour
#' make_periodic(tseq, 1:10, 3*3600, 3600)
#'
#' @export
make_periodic <- function(time, kseq, period, offset=0, tstep=NA){
# If tstep not given, then take it from time assuming same k-step is the sampling period
if(is.na(tstep)){
tstep <- as.numeric(time[2] - time[1], units="secs")
}
# The time of day (in the specified units)
tday <- sapply(kseq, function(k){
tk <- time + k * tstep - offset
as.numeric(tk,units="secs") %% period
})
# set row and column names
nams(tday) <- paste0('k', kseq)
return( as.data.frame(tday) )
}
...@@ -4,38 +4,42 @@ ...@@ -4,38 +4,42 @@
#load_all(as.package("../../onlineforecast")) #load_all(as.package("../../onlineforecast"))
#?make_tday #?make_tday
#' Make an hour-of-day data.frame with k-step ahead columns. #' Make an hour-of-day forecast matrix
#' #'
#' This function creates a data.frame with k-steps-ahead values of hour of day, #' This function creates a data.frame with k-steps-ahead values of hour of day,
#' such that it can be added to a data.list and used inputs to a forecast model. #' such that it can be added to a data.list and used inputs to a forecast model.
#' #'
#' @param time vector of times of class "POSIXct" "POSIXt". #' @param time vector of times of class "POSIXct" "POSIXt".
#' @param kseq vector of integers, respresenting the desired "k-steps ahead". #' @param kseq vector of integers, representing the desired "k-steps ahead".
#' @param tstep step time of k in seconds. #' @param tstep step time of k in seconds.
#' @param units to return in, e.g. "hours" or "mins" #' @return Returns a forecast matrix (data.frame) with rownames = times, colnames = k1, k2, k3, ...
#' @return Returns a data.frame with rownames = times, colnames = k1, k2, k5, ... #' The content of the data frame is the hour of day.
#' The content of the data frame is the hour of day, following the setup in "onlineforecast" setup.
#' @keywords hourofday lags data.frame #' @keywords hourofday lags data.frame
#' @seealso make_periodic
#' @examples #' @examples
#' # Create a time sequence #' # Create a time sequence of 30 min sample period
#' tseq <- seq(ct("2019-01-01"), ct("2019-02-01 12:00"), by=1800) #' tseq <- seq(ct("2019-01-01"), ct("2019-02-01 12:00"), by=1800)
#' #'
#' # Make the time of day sequence #' # Make the time of day sequence (assuming time between k steps is same as for tseq)
#' make_tday(tseq, 1:10) #' make_tday(tseq, 1:10)
#' #'
#' # With 0.5 hour steps and in minutes #' # With 0.5 hour steps, kstep in hours
#' make_tday(tseq, 1:10, tstep=1800, units="mins") #' make_tday(tseq, 1:10, tstep=3600)
#' #'
#' #'
#' @export #' @export
make_tday <- function(time, kseq, tstep=3600, units="hours"){ make_tday <- function(time, kseq, tstep=NA){
## The time of day (in the specified units) # If tstep not given, then take it from time assuming same k-step is the sampling period
if(is.na(tstep)){
tstep <- as.numeric(time[2] - time[1], units="secs")
}
# The time of day (in the specified units)
tday <- sapply(kseq, function(k){ tday <- sapply(kseq, function(k){
tk <- time + k * tstep tk <- time + k * tstep
as.numeric( tk - trunc(tk, units="days"), units=units) as.numeric( tk - trunc(tk, units="days"), units="hours")
}) })
## set row and column names # set row and column names
nams(tday) <- paste0('k', kseq) nams(tday) <- paste0('k', kseq)
return( as.data.frame(tday) ) return( as.data.frame(tday) )
} }
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment