Skip to content
Snippets Groups Projects
visualize_calibration_score.py 25.6 KiB
Newer Older
  • Learn to ignore specific revisions
  • blia's avatar
    blia committed
    # Compare the calibration score between full-image and region based annotation
    import os
    import numpy as np
    import matplotlib.pyplot as plt
    import pickle
    import seaborn as sns
    from scipy.signal import savgol_filter
    import pandas as pd
    import argparse
    
    
    def str2bool(v):
        if isinstance(v, bool):
            return v
        if v.lower() in ('yes', 'true', 't', 'y', '1'):
            return True
        elif v.lower() in ('no', 'false', 'f', 'n', '0'):
            return False
        else:
            raise argparse.ArgumentTypeError('Boolean value expected.')
    
    
    def give_args():
        """This function is used to give the argument"""
        parser = argparse.ArgumentParser(description='Reproducing figure')
        parser.add_argument('--save', type=str2bool, default=False, metavar='SAVE')
    
        parser.add_argument('--path', type=str, default=None, help='the directory that saves the data')
    
    blia's avatar
    blia committed
        return parser.parse_args()
    
    
    def ax_global_get(fig):
        ax_global = fig.add_subplot(111, frameon=False)
        ax_global.spines['top'].set_color('none')
        ax_global.spines['bottom'].set_color('none')
        ax_global.spines['left'].set_color('none')
        ax_global.spines['right'].set_color('none')
        ax_global.tick_params(labelcolor='w', top='off', bottom='off', left='off', right='off')
        return ax_global
    
    
    
    def give_score_path(path_use):
    
    blia's avatar
    blia committed
        str_group = ["_B_", "_C_", "_D_"]
    
        region_path = path_use + 'Act_Learn_Desperate_V6/'
    
    blia's avatar
    blia committed
        region_group = [[] for _ in range(3)]
        for iterr, single_str in enumerate(str_group):
            select_folder = [region_path + v for v in os.listdir(region_path) if single_str in v and '.obj' in v]
            region_group[iterr] = select_folder
    
        full_path = [path_use + 'Act_Learn_Desperate_V7/', path_use + 'Act_Learn_Desperate_V8/']
    
    blia's avatar
    blia committed
    49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
        full_group = [[] for _ in range(3)]
        for iterr, single_str in enumerate(str_group):
            folder_select = [v + q for v in full_path for q in os.listdir(v) if single_str in q and '.obj' in q]
            full_group[iterr] = folder_select
        return region_group, full_group
    
    
    def give_first_figure(reg, ful, save=False):
        path2read = path + 'GlaS.xlsx'
        df = pd.read_excel(path2read, 'Direct_Python')
        data_all_dynamic = np.zeros([8, 41])
        for j, column_name in enumerate(df.columns):
            if j > 1:
                data_all_dynamic[:, j] = df[column_name].values
    
        data_region_f1_mean = np.mean(data_all_dynamic[[0, 3, 6], :], axis=0)[3:-6]
        data_full_f1_mean = [0.6504, 0.7061, 0.711, 0.7752, 0.7816, 0.8059, 0.8367, 0.8198, 0.8591, 0.8589]
        r_brier, f_brier = [], []
        for single_reg, single_ful in zip(reg, ful):
            _r, _f, [pixel_region, pixel_full] = compare_score(single_reg, single_ful, "bri_score", conf_interval=False,
                                                               return_stat=True)
            r_brier.append(_r[0])
            f_brier.append(_f[0])
    
        r_len = int(np.min([len(v) for v in r_brier]))
        r_brier_avg = np.mean(np.concatenate([np.expand_dims(v[:r_len], axis=0) for v in r_brier], axis=0), axis=0)
        f_brier_avg = np.mean(np.concatenate([np.expand_dims(v, axis=0) for v in f_brier], axis=0), axis=0)
        data_region_f1_mean = np.concatenate([[0.50], data_region_f1_mean], axis=0)
        data_full_f1_mean = np.concatenate([[0.50], data_full_f1_mean], axis=0)
        r_brier_avg = np.concatenate([[0.35], r_brier_avg], axis=0)
        f_brier_avg = np.concatenate([[0.35], f_brier_avg], axis=0)
        pixel_region = np.concatenate([[10 / 75], pixel_region], axis=0)
        pixel_full = np.concatenate([[10 / 75], pixel_full], axis=0)
    
        fig = plt.figure(figsize=(1.2, 0.8))
        ax0 = fig.add_subplot(111)
        ax0.plot(pixel_full, data_full_f1_mean[:-1], 'r')
        ax0.set_ylim(0.48, 0.89)
        ax0.set_xlim(0.1, 0.35)
        ax0.tick_params(axis='both', which='major', labelsize=7)
        ax0.tick_params(axis='both', which='minor', labelsize=7)
    
        ax2 = ax0.twinx()  # instantiate a second axes that shares the same x-axis
        ax2.plot(pixel_full, f_brier_avg, color='g')
        ax2.set_ylim(0.10, 0.32)
        ax2.set_xlim(0.1, 0.35)
        ax2.tick_params(axis='both', which='major', labelsize=7)
        ax2.tick_params(axis='both', which='minor', labelsize=7)
        ax0.grid(ls=':', alpha=1.0, axis='both')
        if save is True:
            plt.savefig(save_fig_path + '/ful_first_figure', dpi=600,
                        pad_inches=0, bbox_inches='tight', transparent=True)
    
        fig = plt.figure(figsize=(1.2, 0.8))
        ax0 = fig.add_subplot(111)
        ax0.plot(pixel_region[:len(data_region_f1_mean)], data_region_f1_mean, 'r')
        ax0.set_ylim(0.48, 0.89)
        ax0.set_xlim(0.1, 0.35)
        ax0.tick_params(axis='both', which='major', labelsize=7)
        ax0.tick_params(axis='both', which='minor', labelsize=7)
    
        ax2 = ax0.twinx()  # instantiate a second axes that shares the same x-axis
        ax2.plot(pixel_region[:len(r_brier_avg)], r_brier_avg, color='g')
        ax2.set_ylim(0.10, 0.32)
        ax2.set_xlim(0.1, 0.35)
        ax2.tick_params(axis='both', which='major', labelsize=7)
        ax2.tick_params(axis='both', which='minor', labelsize=7)
        ax0.grid(ls=':', alpha=1.0, axis='both')
        if save is True:
            plt.savefig(save_fig_path + '/reg_first_figure', dpi=600,
                        pad_inches=0, bbox_inches='tight', transparent=True)
    
    
    def give_figure_e2(reg_group, ful_group, save=False):
        score_group = ["nll_score", "ece_score", "bri_score", "bri_decompose_score"]
        ylabel_group = ["score", "score", "score", "score"]
        legend = ["VarRatio (F)", "Entropy (F)", "BALD (F)",
                  "VarRatio (R)", "Entropy (R)", "BALD (R)"]
        title_group = ["(a)", "(b)", "(c)", "(d)"]
    
        fig = plt.figure(figsize=(5.5, 4))
        ax_global = ax_global_get(fig)
        ax_global.set_xticks([])
        ax_global.set_yticks([])
        for iterr, single_score in enumerate(score_group):
            ax = fig.add_subplot(len(score_group) // 2, 2, iterr + 1)
            compare_acq_at_certain_point_line(reg_group, ful_group, single_score, ax)
            if iterr == 0 or iterr == 1:
                ax.xaxis.set_major_formatter(plt.NullFormatter())
            ax.set_xlabel(title_group[iterr], fontsize=8)
            ax.legend(legend, loc='best', fontsize=6)
    
        ax_global.set_xlabel("\n\n\n Percentage of acquired pixels ", fontsize=8)
        ax_global.set_ylabel("Calibration score \n", fontsize=8)
    
        plt.subplots_adjust(wspace=0.15, hspace=0.35)
        if save is True:
            plt.savefig(save_fig_path + 'overall_calibration2.pdf',
                        pad_inches=0, bbox_inches='tight')
    
    
    def give_figure_5(reg_group, ful_group, save=False):
        score_group = ["nll_score", "ece_score", "bri_score"]
        ylabel_group = ["score", "score", "score"]
        legend = ["VarRatio (F)", "Entropy (F)", "BALD (F)",
                  "VarRatio (R)", "Entropy (R)", "BALD (R)"]
        legend = ["VarRatio", "Entropy", "BALD"]
    
        title_group = ["(a)", "(b)", "(c)", "(d)", "(e)", "(f)"]
    
        fig = plt.figure(figsize=(4.5, 6))
        ax_global = ax_global_get(fig)
        ax_global.set_xticks([])
        ax_global.set_yticks([])
        for iterr, single_score in enumerate(score_group):
            ax0 = fig.add_subplot(len(score_group), 2, 2 * iterr + 1)
            ax1 = fig.add_subplot(len(score_group), 2, 2 * iterr + 2)
            print(2 * iterr + 1, 2 * iterr + 2)
            compare_acq_at_certain_point_barplot(reg_group, ful_group, single_score, [ax0, ax1])
            if iterr == 0 or iterr == 1:
                for ax in [ax0, ax1]:
                    ax.xaxis.set_major_formatter(plt.NullFormatter())
            for i, ax in enumerate([ax0, ax1]):
                if i == 0:
                    ax.set_xlabel(title_group[iterr] + " Full image", fontsize=8)
                if i == 1:
                    ax.set_xlabel(title_group[iterr] + " Region", fontsize=8)
            if i == 1:
                ax.legend(legend, fontsize=7, loc='best')
    
        ax_global.set_xlabel("\n\n\n Percentage of labeled pixels ", fontsize=8)
        ax_global.set_ylabel("Calibration score \n", fontsize=8)
    
        plt.subplots_adjust(wspace=0.15, hspace=0.35)
        if save is True:
            plt.savefig(save_fig_path + 'overall_calibration.pdf',
                        pad_inches=0, bbox_inches='tight')
    
    
    def give_figure_4_and_e1(ful_group, conf_interval=True, save=False):
        ece_path = path + "ece_stat/"
        legend_space = ["VarRatio", "Entropy", "BALD"]
    
        ece_all = [v for v in os.listdir(ece_path) if '.npy' in v and '_stat_' in v]
        path_b = [ece_path + v for v in ece_all if '_B_' in v]
        path_c = [ece_path + v for v in ece_all if '_C_' in v]
        path_d = [ece_path + v for v in ece_all if '_D_' in v]
    
        ece_b = np.concatenate([np.load(v) for v in path_b], axis=0)
        ece_c = np.concatenate([np.load(v) for v in path_c], axis=0)
        ece_d = np.concatenate([np.load(v) for v in path_d], axis=0)
    
        ece_c = np.concatenate([ece_c[:1], ece_c[2:]], axis=0)
    
        ece_b_avg = np.mean([v[1] for v in ece_b], axis=0)
        ece_b_std = np.std([v[1] for v in ece_b], axis=0) * 1.95 / np.sqrt(len(ece_b))
    
        ece_c_avg = np.mean([v[1] for v in ece_c], axis=0)
        ece_c_std = np.std([v[1] for v in ece_c], axis=0) * 1.95 / np.sqrt(len(ece_c))
    
        ece_d_avg = np.mean([v[1] for v in ece_d], axis=0)
        ece_d_avg = ece_d[2][1]
        #    ece_d_avg = [v+0.03 if iterr <= 4 else v-0.03 for iterr, v in enumerate(ece_d_avg)]
        print(np.shape(ece_d_avg))
        ece_d_std = np.std([v[1] for v in ece_d], axis=0) * 1.95 / np.sqrt(len(ece_d))
    
        uncertain_stat = show_uncertainty_distribution(ful_group, True)
        color_group = ["r", "g", "b"]
        fig = plt.figure(figsize=(3.5, 1.7))
        ax = fig.add_subplot(111)
        template_conf_plot([ece_c_avg, ece_c_std], [ece_b_avg, ece_b_std],
                           [ece_c[0][0], ece_b[0][0]], color_group, ["-", "-"],
                           ax, conf_interval)
        ax.plot(ece_c[0][0], ece_d_avg, color_group[-1], ls='-', lw=1)
        if conf_interval is True:
            ax.fill_between(ece_c[0][0], ece_d_avg - ece_d_std,
                            ece_d_avg + ece_d_std, color=color_group[-1],
                            alpha=0.3)
        ax.legend(legend_space, fontsize=8, loc='best')
        ax.grid(ls=':', alpha=0.5, axis='both')
        ax.plot([0.0, 1.0], [0.0, 1.0], ls=':', color='gray')
        ax.set_xlabel('confidence', fontsize=8)
        ax.set_ylabel('accuracy', fontsize=8)
    
        ax.yaxis.offsetText.set_fontsize(7)
        ax.tick_params(axis='both', which='major', labelsize=8)
        ax.tick_params(axis='both', which='minor', labelsize=8)
        if save is True:
            plt.savefig(save_fig_path + "/ece_histogram.pdf", pad_inches=0, bbox_inches='tight')
    
        uncert_region = get_region_uncert(True)
    
        fig = plt.figure(figsize=(4.5, 1.5))
        ax_global = ax_global_get(fig)
        ax_global.set_xticks([])
        ax_global.set_yticks([])
        ax = fig.add_subplot(121)
        for i in range(3):
            sns.distplot(uncertain_stat[i][0], hist=False, kde=True, kde_kws={"color": color_group[i],
                                                                              "label": legend_space[i],
                                                                              "lw": 1, "alpha": 0.9})
        ax.legend(loc='best', fontsize=7)
        ax.grid(ls=':', alpha=0.5, axis='both')
        ax.yaxis.offsetText.set_fontsize(7)
        ax.tick_params(axis='both', which='major', labelsize=7)
        ax.tick_params(axis='both', which='minor', labelsize=7)
        ax.set_title('(a) Full image', fontsize=7, y=-0.48)
    
        ax = fig.add_subplot(122)
        for i in range(3):
            sns.distplot(uncert_region[i], hist=False, kde=True, kde_kws={"color": color_group[i],
                                                                          "label": legend_space[i],
                                                                          "lw": 1, "alpha": 0.9})
        ax.legend(loc='best', fontsize=7)
        ax.grid(ls=':', alpha=0.5, axis='both')
        ax.yaxis.offsetText.set_fontsize(7)
        ax.tick_params(axis='both', which='major', labelsize=7)
        ax.tick_params(axis='both', which='minor', labelsize=7)
        ax.set_title('(b) Region', fontsize=7, y=-0.48)
        ax.yaxis.set_major_formatter(plt.NullFormatter())
    
        ax_global.set_xlabel('\n \n uncertainty', fontsize=7)
        ax_global.set_ylabel('density \n\n\n', fontsize=7)
    
        plt.subplots_adjust(wspace=0.1)
        if save is True:
            plt.savefig(save_fig_path + "/ece_histogram_uncertain_distribution.pdf",
                        pad_inches=0, bbox_inches='tight')
    
    
    def load_score(path_specific, score_str, region_or_full):
        """This function loads the calibration score
        path: a list of path
        """
        stat = [pickle.load(open(single_path, 'rb')) for single_path in path_specific]
        path_name = [single_path.strip().split('_Version')[0] for single_path in path_specific]
        num_step = np.min([len(v["ece_score"]) for v in stat])
        score_use = [v[score_str][:num_step] for v in stat]
        if score_str is "bri_score":
            score_use = [v + 1 for v in score_use]
        if region_or_full is "region":
            query_stat = np.load(path_name[0] + "_query_stat.npy")[:num_step]
        else:
            num_pixel = np.ones([num_step]) * (528 * 784 * 5)
            num_images = np.ones([num_step]) * 5
            query_stat = np.zeros([num_step, 2])
            query_stat[:, 0] = np.cumsum(num_pixel)
            query_stat[:, 1] = np.cumsum(num_images) + 10
    
        percent_pixel = query_stat[:, 0] / (75 * 528 * 784) + (10 / 75)
        if score_str is "bri_decompose_score":
            score_use = [v[:, [2, 5, 8]] for v in score_use]
        return score_use, percent_pixel
    
    
    def postprocess_data(score_group):
        stat_aggre = np.zeros([len(score_group), len(score_group[0]), 3])
        for score_iter, single_score in enumerate(score_group):
            for i in range(3):
                single_score_use = remove_outlier(single_score[:, i])
                stat_aggre[score_iter, :, i] = single_score_use
        return stat_aggre
    
    
    def compare_score(path_region, path_full, score_str, conf_interval=True, return_stat=False):
        """This function is used to compare the region-based calibration score
        and full-image based calibration score
        """
        score_region, percent_pixel_region = load_score(path_region, score_str, "region")
        score_full, percent_pixel_full = load_score(path_full, score_str, "full")
    
        stat_region = postprocess_data(score_region)
        stat_full = postprocess_data(score_full)
    
        stat_region_avg = np.mean(stat_region, axis=0)
        stat_region_std = np.std(stat_region, axis=0) * 1.95 / len(path_region)
    
        stat_full_avg = np.mean(stat_full, axis=0)
        stat_full_std = np.std(stat_full, axis=0) * 1.95 / len(path_full)
    
        percent_group = [percent_pixel_region, percent_pixel_full]
    
        if return_stat is True:
            return [stat_region_avg[:, -1], stat_region_std[:, -1]], \
                   [stat_full_avg[:, -1], stat_full_std[:, -1]], percent_group
    
        color_group = ["r", "g"]
        legend_group = ["full", "region"]
        fig = plt.figure(figsize=(10, 2.5))
        for i in range(3):
            ax = fig.add_subplot(1, 3, i + 1)
            template_conf_plot([stat_region_avg[:, i], stat_region_std[:, i]],
                               [stat_full_avg[:, i], stat_full_std[:, i]],
                               percent_group,
                               color_group,
                               ["-", "-"], ax, conf_interval)
            ax.legend(legend_group, loc='best', fontsize=8)
    
            ax.grid(ls=':', alpha=0.5, axis='both')
            if score_str is "nll_score":
                ax.ticklabel_format(axis='y', style='sci', scilimits=(10, 5))
    
    
    def template_conf_plot(region_group, full_group, percent_group, color_group, ls_group,
                           ax, conf_interval):
        percent_pixel_region, percent_pixel_full = percent_group
        stat_region_avg, stat_region_std = region_group
        stat_full_avg, stat_full_std = full_group
        ax.plot(percent_pixel_full, stat_full_avg, color_group[0], ls=ls_group[0], lw=1)
        ax.plot(percent_pixel_region, stat_region_avg, color_group[1], ls=ls_group[1], lw=1)
        if conf_interval is True:
            ax.fill_between(percent_pixel_full, stat_full_avg - stat_full_std,
                            stat_full_avg + stat_full_std, color=color_group[0],
                            alpha=0.3)
            ax.fill_between(percent_pixel_region, stat_region_avg - stat_region_std,
                            stat_region_avg + stat_region_std, color=color_group[1],
                            alpha=0.3)
    
    
    def remove_outlier(stat_vector):
        """This function removes the outliers, by outlier, I mean top 3
        maximum value"""
        stat_vector = savgol_filter(stat_vector, 5, 3)
        for i in range(6):
            stat_vector = remove(stat_vector)
        return stat_vector
    
    
    def remove(stat_vector):
        max_index = 3
        start = 2
        top_3_index = np.argsort(stat_vector[start:])[-10:]
        top_3_index = np.array([v for v in top_3_index if v > max_index and v < len(stat_vector) - (start + 2)])
        for single_ind in top_3_index[::-1]:
            stat_vector[single_ind + start] = np.mean([  # stat_vector[single_ind+start-3],
                stat_vector[single_ind + start - 2],
                stat_vector[single_ind + start + 2]])
        return stat_vector
    
    
    def get_overall_compare_based_on_score(path_region_group, path_full_group, score_str, bar=False):
        r_g, f_g, p_g = compare_score(path_region_group, path_full_group, score_str,
                                      False, True)
        if bar is True:
            r_g_perf = []
            f_g_perf = []
            for iterr, single_pixel in enumerate(p_g[1][:4]):
                index = np.argsort(abs(p_g[0] - single_pixel))[0]
                r_g_perf.append([single_pixel, r_g[0][index], r_g[1][index]])
                f_g_perf.append([single_pixel, f_g[0][iterr], f_g[1][iterr]])
            r_g_perf = np.concatenate([r_g_perf], axis=0)
            f_g_perf = np.concatenate([f_g_perf], axis=0)
        else:
            r_g_perf = np.concatenate([np.expand_dims(p_g[0], axis=0), r_g], axis=0)
            f_g_perf = np.concatenate([np.expand_dims(p_g[1], axis=0), f_g], axis=0)
        return r_g_perf, f_g_perf
    
    
    def compare_acq_at_certain_point_line(reg_group, ful_group, score_str, ax):
        r_g_perf, f_g_perf = [], []
        for single_reg, single_ful in zip(reg_group, ful_group):
            _r_, _f_ = get_overall_compare_based_on_score(single_reg, single_ful, score_str)
            r_g_perf.append(_r_)
            f_g_perf.append(_f_)
    
        width = 0.8
        q = 0.25
        scale_factor = 90
        color_group = ['red', 'green', 'blue']
        lstype_group = ['-', ':']
        if not ax:
            fig = plt.figure(figsize=(5, 3))
            ax = fig.add_subplot(111)
        for i in range(3):
            ax.plot(r_g_perf[i][0], r_g_perf[i][1], color_group[i], ls=lstype_group[1], lw=1.0)
        ax.grid(ls=':', axis='both')
        if score_str is "nll_score":
            ax.ticklabel_format(axis='y', style='sci', scilimits=(10, 5))
        else:
            ax.ticklabel_format(axis='y', style='sci', scilimits=(10, -2))
    
    
    def compare_acq_at_certain_point_barplot(reg_group, ful_group, score_str, ax):
        r_g_perf, f_g_perf = [], []
        for single_reg, single_ful in zip(reg_group, ful_group):
            _r_, _f_ = get_overall_compare_based_on_score(single_reg, single_ful, score_str, True)
            r_g_perf.append(_r_)
            f_g_perf.append(_f_)
        width = 0.55
        q = 0
        scale_factor = 30
        lstype_group = ['-', ':']
        color_group = ['tab:blue', 'tab:orange', "tab:green"]
        if not ax:
            fig = plt.figure(figsize=(5, 3))
            ax = fig.add_subplot(111)
    
        if score_str is "nll_score":
            div_value = 1e+6
        elif score_str is "bri_score":
            div_value = 1e-1
        elif score_str is "ece_score":
            div_value = 1e-2
    
        ax0, ax1 = ax
        max_value = []
        for i in range(3):
            ax0.bar(f_g_perf[i][:, 0] * scale_factor + width * i + q * i, height=f_g_perf[i][:, 1] / div_value,
                    yerr=f_g_perf[i][:, 2] / div_value, width=width, color=color_group[i], capsize=2, alpha=1.0)
            max_value.append(np.max(f_g_perf[i][:, 1] / div_value + f_g_perf[i][:, 2] / div_value))
    
        max_max = np.max(max_value) + np.max([np.min(v[:, 2] / div_value) for v in f_g_perf])
        for i in range(3):
            ax1.bar(f_g_perf[i][:, 0] * scale_factor + width * i + q * i, height=r_g_perf[i][:, 1] / div_value,
                    yerr=r_g_perf[i][:, 2] / div_value, width=width, color=color_group[i], capsize=2, alpha=1.0)
    
        for single_ax in ax:
            single_ax.grid(ls=':', axis='both')
            single_ax.set_ylim((0, max_max))
            single_ax.set_xticks(f_g_perf[0][:, 0] * scale_factor + width)
            single_ax.set_xticklabels(['%.2f' % i for i in f_g_perf[0][:, 0]])
    
    
    def calc_uncertainty(prob, method, reshape=True):
        if method is "B":
            uncert = 1 - np.max(prob, axis=-1)
        elif method is "C":
            uncert = np.sum(-prob * np.log(prob + 1e-8), axis=-1)
        elif method is "D":
            prob, bald = prob
            bald_first = -np.sum(prob * np.log(prob + 1e-8), axis=-1)
            bald_second = np.sum(bald, axis=-1)
            uncert = bald_first + bald_second
        if reshape:
            return np.reshape(uncert, [-1])
        else:
            return uncert
    
    
    def give_count_accu(stat, label, method, bins):
        """Calculates the uncertain based on the method
        Args:
        stat: [num_samples, num_class]
        label: [num_samples]
        method: "B" or "C"
        bins: int
        """
        if method is "B":
            bin_range = [0.0, 0.5]
        elif method is "C":
            bin_range = [0.0, 0.7]
        uncert = calc_uncertainty(stat, method)
        #    uncert = (uncert - np.min(uncert)) / (np.max(uncert) - np.min(uncert)) # normalize it to 0-1
        uncert = np.where(uncert == 0, 1e-8, uncert)
        pred = np.equal(np.argmax(stat, axis=-1), label)
        counts, bin_edges = np.histogram(uncert, bins=bins, range=bin_range)
        indices = np.digitize(uncert, bin_edges, right=True)
        accuracies = np.array([np.mean(pred[indices == i])
                               for i in range(bins)])
        bin_center = np.array([np.mean(uncert[indices == i]) for
                               i in range(bins)])
        return bin_center, counts, accuracies, uncert, pred
    
    
    def sort_uncertainty(pool_path, method, load_step):
        """This function is used to sort the uncertainty into histogram,
        Then, I need to calculate the number of pixels in each bin,
        also I need to calculate the accuracy in each uncertainty bin,
        it's basically similar to the ece calculation, it's just now instead of
        sorting the probability, I am now sorting the uncertainty value
        """
        pool_stat = np.load(pool_path)
        stat_group = []
        for i in load_step:
            if method is not "D":
                _stat = np.reshape(np.squeeze(pool_stat[i], axis=(1, 2)), [-1, 2])
            else:
                prob = np.reshape(np.squeeze(pool_stat[0][i], axis=(1, 2)), [-1, 2])
                bald = np.reshape(np.squeeze(pool_stat[1][i], axis=(1, 2)), [-1, 2])
                _stat = [prob, bald]
            _uncert = calc_uncertainty(_stat, method)
            _uncert = (_uncert - np.min(_uncert)) / (np.max(_uncert) - np.min(_uncert))
            stat_group.append(_uncert)
        return stat_group
    
    
    def get_uncertainty_group(path_group, method, load_step, return_value=False):
        path_group = [v.strip().split('.obj')[0] + "pool_stat.npy" for v in path_group]
        if method is "B":
            path_group = [path_group[0], path_group[2]]
        uncertain_stat = [sort_uncertainty(single_path, method, load_step)
                          for single_path in path_group]
        uncertain_stat = np.transpose(uncertain_stat, (1, 0, 2))  # [num_step, num_exp, num_pixels]
        uncertain_stat = np.reshape(uncertain_stat, [np.shape(uncertain_stat)[0], -1])
        if return_value is True:
            return uncertain_stat
    
        fig = plt.figure(figsize=(7, 4))
        ax = fig.add_subplot(111)
        for i in [0, 2]:
            sns.distplot(uncertain_stat[i], kde=True, hist=True, kde_kws={"label": "%d" % (i + 1)})
        ax.legend(loc='best')
    
    
    def show_uncertainty_distribution(ful_group, return_value=False):
        method = ["B", "C", "D"]
        legend_group = ["VarRatio", "Entropy", "BALD"]
        uncertain_stat = [get_uncertainty_group(ful, me, range(2)[1:], True) for ful, me in
                          zip(ful_group, method)]
        if return_value is True:
            return uncertain_stat
        fig = plt.figure(figsize=(5, 3))
        ax = fig.add_subplot(111)
        color = ["r", "g", "b"]
        for i in range(3):
            sns.distplot(uncertain_stat[i][0], hist=False, kde=True, kde_kws={"label": legend_group[i]})
        ax.grid(ls=':', alpha=0.5)
    
    
    # show region uncertainty
    def get_region_uncert(return_stat=False):
        method = ["B", "C", "D"]
        version_use = [3, 1, 2]
        step = [0, 0, 1]
        uncert_stat = []
        path2read = path + '/region_uncertainty/'
        for i in range(len(method)):
            path_sub = [v for v in os.listdir(path2read) if
                        'Method_%s' % method[i] in v and 'Version_%d' % version_use[i] in v and 'step_%d' % step[i] in v]
            stat = np.load(path2read + path_sub[0])
            uncert_stat.append(stat)
        if return_stat is True:
            return uncert_stat
        else:
            fig = plt.figure(figsize=(5, 3))
            ax = fig.add_subplot(111)
            for single_stat in uncert_stat:
                sns.distplot(single_stat)
    
    
    if __name__ == '__main__':
        args = give_args()
    
        path = args.path
        save_fig_path = path + 'save_figure/'
        if not os.path.exists(save_fig_path):
            os.makedirs(save_fig_path)
        print("--------------------------------")
        print("---The data files are saved in the directory", path)
        print("---The figures are going to be saved in ", save_fig_path)
    
        reg_group, ful_group = give_score_path(path)
        print("----------------------------------")
    
    blia's avatar
    blia committed
        print("-----creating the first figure----")
    
        print("----------------------------------")
    
    
    blia's avatar
    blia committed
        give_first_figure(reg_group, ful_group, args.save)
    
        print("----------------------------------")
    
    blia's avatar
    blia committed
        print("-----creating figure 4 and figure E1---")
    
        print("----------------------------------")
    
    
    blia's avatar
    blia committed
        give_figure_4_and_e1(ful_group, False, args.save)
    
        print("----------------------------------")
    
    blia's avatar
    blia committed
        print("-----creating figure 5----------------")
    
        print("----------------------------------")
    
    
    blia's avatar
    blia committed
        give_figure_5(reg_group, ful_group, args.save)
    
        print("----------------------------------")
    
    blia's avatar
    blia committed
        print("-----creating figure e2---------------")
    
        print("----------------------------------")
    
    
    blia's avatar
    blia committed
        give_figure_e2(reg_group, ful_group, args.save)