Skip to content
Snippets Groups Projects
Train_Active_Region_Im.py 25.6 KiB
Newer Older
  • Learn to ignore specific revisions
  • blia's avatar
    blia committed
    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
    # -*- coding: utf-8 -*-
    """
    Created on Wed Mar  7 16:42:15 2018
    This file is used to train the active learning framework with region specific annotation
    @author: s161488
    """
    import numpy as np
    import os
    import tensorflow as tf
    from data_utils.prepare_data import aug_train_data, generate_batch
    from data_utils.update_data import give_init_train_and_val_data, update_training_data, prepare_the_new_uncertain_input
    from models.inference import ResNet_V2_DMNN
    from optimization.loss_region_specific import Loss, train_op_batchnorm
    from sklearn.utils import shuffle
    from select_regions import selection as SPR_Region_Im
    import pickle
    
    training_data_path = "/home/blia/Region_Active_Learning/DATA/Data/glanddata.npy"  # NOTE, NEED TO BE MANUALLY DEFINED
    test_data_path = "/home/blia/Region_Active_Learning/DATA/Data/glanddata_testb.npy"  # NOTE, NEED TO BE MANUALLY DEFINED
    resnet_dir = "/home/blia/Region_Active_Learning/pretrain_model/"
    exp_dir = "/scratch/Act_Learn_Desperate_V8/"  # USER_DEFINE
    ckpt_dir_init = "/home/blia/Exp_Data/initial_model/"  # USER_DEFINE
    
    
    def run_loop_active_learning_region(stage, round_number=[0, 1, 2, 3]):
        """This function is used to train the active learning framework with region specific annotation.
        Args:
            stage: int, 0--> random selection, 1--> VarRatio, 2--> entropy, 3--> BALD
            round_number: [int], repeat experiments in order to get confidence interval
        Ops:
            1. this script can only be run given the model that is trained with the initial training data (10)!!!
            2. in each acquisition step, the experiment is repeated # times to avoid bad local optimal
            3. Then after we get the updated model, the function SPR_Region_Im is used to evaluate all the regions
            in the pool data. It selects the most #num_most_uncertain_patch from the pool set. And the selections
            are added into the training data.
            4. Again, a new model will be trained as described in step 2 with the updated data from step 3
            5. step 2 to 4 is repeated for #total_active_step times
        """
        for single_round_number in round_number:
            logs_path = exp_dir
            flag_arch_name = "resnet_v2_50"
            resnet_ckpt = os.path.join(resnet_dir, flag_arch_name) + '.ckpt'
            total_active_step = 10
            num_repeat_per_exp = 4
            acq_method_total = ["A", "B", "C", "D"]
            acq_selec_method = acq_method_total[stage]
            kernel_window = np.ones([150, 150])
            stride_size = 30
            num_most_uncert_patch = 20
            logs_path = os.path.join(logs_path,
                                     'Method_%s_Stage_%d_Version_%d' % (acq_selec_method, stage, single_round_number))
            most_init_train_data, all_the_time_val_data = give_init_train_and_val_data(training_data_path)
            num_of_pixels_need_to_be_annotate = np.zeros([total_active_step])
            total_folder_info = []
            total_num_im = np.zeros([total_active_step])
    
            for single_acq_step in range(total_active_step):
                if single_acq_step == 0:
                    tds = os.path.join(ckpt_dir_init, 'pool_data')
                    most_uncertain_data = SPR_Region_Im(tds, ckpt_dir_init, acq_selec_method, None, None, kernel_window,
                                                        stride_size, num_most_uncert_patch=20, data_path=training_data_path,
                                                        check_overconfident=False)
                    updated_training_data = update_training_data(most_init_train_data[:4], [], most_uncertain_data[:4])
                    already_selected_imindex = most_uncertain_data[-1]
                    already_selected_binary_mask = most_uncertain_data[-2]
                    most_uncert_old = most_uncertain_data
                num_of_pixels_need_to_be_annotate[single_acq_step] = np.sum(np.reshape(most_uncert_old[-2], [
                    -1]))  # this is the binary mask, the number of pixels that needs to be annotate
                # equal to the number of pixels which are assigned to be 1
                num_im = np.shape(updated_training_data[0])[0]
                total_num_im[single_acq_step] = num_im
                epsilon_opt = 0.001
                batch_size = 5
                epoch_size = 1300
                model_dir = os.path.join(logs_path, 'FE_step_%d_version_%d' % (single_acq_step, single_round_number))
                tot_train_val_stat_for_diff_exp_same_step = np.zeros(
                    [num_repeat_per_exp, 4])  # fb loss, ed loss, fb f1 score, fb auc score
                if single_acq_step == 5:
                    regu_par = 0.0005
                else:
                    regu_par = 0.001
                if single_acq_step >= 10:
                    decay_steps = np.ceil(num_im / 5) * 600
                else:
                    decay_steps = (num_im // 5) * 600
                for repeat_time in range(num_repeat_per_exp):
                    print("=====================Start Experiment No.%d===========================" % repeat_time)
                    model_dir_sub = os.path.join(model_dir, 'rep_%d' % repeat_time)
                    signal = False
                    while signal is False:
                        signal_for_bad_optimal = False
                        while signal_for_bad_optimal is False:
                            train(resnet_ckpt=resnet_ckpt,
                                  ckpt_dir=None,
                                  model_dir=model_dir_sub,
                                  epoch_size=20,
                                  decay_steps=decay_steps,
                                  epsilon_opt=epsilon_opt,
                                  regu_par=regu_par,
                                  batch_size=batch_size,
                                  training_data=updated_training_data,
                                  val_data=all_the_time_val_data,
                                  FLAG_PRETRAIN=False)
                            train_stat = np.load(os.path.join(model_dir_sub, 'trainstat.npy'))
                            val_stat = np.load(os.path.join(model_dir_sub, 'valstat.npy'))
                            sec_cri = [np.mean(train_stat[-10:, 1]), np.mean(val_stat[-1, 1])]  # fb f1 score
                            thir_cri = [np.mean(train_stat[-10:, 2]), np.mean(val_stat[-1, 2])]  # fb auc score
                            if np.mean(sec_cri) == 0.0 or np.mean(thir_cri) == 0.5:
                                signal_for_bad_optimal = False
                                all_the_files = os.listdir(model_dir_sub)
                                for single_file in all_the_files:
                                    os.remove(os.path.join(model_dir_sub, single_file))
                                print("--------------------The model start from a really bad optimal----------------")
                            else:
                                signal_for_bad_optimal = True
                        train(resnet_ckpt=resnet_ckpt,
                              ckpt_dir=model_dir_sub,
                              model_dir=model_dir_sub,
                              epoch_size=epoch_size,
                              decay_steps=decay_steps,
                              epsilon_opt=epsilon_opt,
                              regu_par=regu_par,
                              batch_size=batch_size,
                              training_data=updated_training_data,
                              val_data=all_the_time_val_data,
                              FLAG_PRETRAIN=True)
                        train_stat = np.load(os.path.join(model_dir_sub, 'trainstat.npy'))
                        val_stat = np.load(os.path.join(model_dir_sub, 'valstat.npy'))
                        first_cri = [np.mean(train_stat[-20:, -1]), np.mean(val_stat[-10:, -1])]  # ed loss
                        sec_cri = [np.mean(train_stat[-20:, 1]), np.mean(val_stat[-10:, 1])]  # fb f1 score
                        thir_cri = [np.mean(train_stat[-20:, 2]), np.mean(val_stat[-10:, 2])]  # fb auc score
                        fourth_cri = [np.mean(train_stat[-20:, 0]), np.mean(val_stat[-10:, 0])]  # fb loss
                        if np.mean(first_cri) >= 0.30 or np.mean(sec_cri) <= 0.80 or np.mean(thir_cri) <= 0.80 or np.mean(
                                fourth_cri) > 0.50:
                            signal = False
                        else:
                            signal = True
                        if signal is False:
                            all_the_files = os.listdir(model_dir_sub)
                            for single_file in all_the_files:
                                os.remove(os.path.join(model_dir_sub, single_file))
                            print("mmm The trained model doesn't work, I need to retrain it...")
                        if signal is True:
                            tot_train_val_stat_for_diff_exp_same_step[repeat_time, :] = [np.mean(fourth_cri),
                                                                                         np.mean(first_cri),
                                                                                         np.mean(sec_cri),
                                                                                         np.mean(thir_cri)]
                    print("=============================Finish Experiment No.%d============================" % repeat_time)
                # ---------Below is for selecting the best experiment based on the training and validation statistics-----#
                fb_loss_index = np.argmin(tot_train_val_stat_for_diff_exp_same_step[:, 0])
                ed_loss_index = np.argmin(tot_train_val_stat_for_diff_exp_same_step[:, 1])
                fb_f1_index = np.argmax(tot_train_val_stat_for_diff_exp_same_step[:, 2])
                fb_auc_index = np.argmax(tot_train_val_stat_for_diff_exp_same_step[:, 3])
                perf_comp = [fb_loss_index, ed_loss_index, fb_f1_index, fb_auc_index]
                best_per_index = max(set(perf_comp), key=perf_comp.count)
                model_dir_goes_into_act_stage = os.path.join(model_dir, 'rep_%d' % best_per_index)
                print("The selected folder", model_dir_goes_into_act_stage)
                total_folder_info.append(model_dir_goes_into_act_stage)
                tds_select = os.path.join(model_dir_goes_into_act_stage, 'pool_data')
                most_uncertain = SPR_Region_Im(tds_select, model_dir_goes_into_act_stage, acq_selec_method,
                                               already_selected_imindex,
                                               already_selected_binary_mask,
                                               kernel_window,
                                               stride_size,
                                               num_most_uncert_patch, data_path=training_data_path,
                                               check_overconfident=False)
                updated_most_uncertain = prepare_the_new_uncertain_input(most_uncert_old, most_uncertain)
                updated_training_data = update_training_data(most_init_train_data[:4], [], updated_most_uncertain[:4])
                already_selected_imindex = updated_most_uncertain[-1]
                already_selected_binary_mask = updated_most_uncertain[-2]
                most_uncert_old = updated_most_uncertain
                print("The numeric image index for the most uncertain image:\n", already_selected_imindex)
                # np.save(os.path.join(logs_path, 'total_acqu_index'), Already_Selected_Imindex)
                np.save(os.path.join(logs_path, 'num_of_pixel'), num_of_pixels_need_to_be_annotate)
                np.save(os.path.join(logs_path, 'total_select_folder'), total_folder_info)
                np.save(os.path.join(logs_path, 'num_of_image'), total_num_im)
                uncertain_data = os.path.join(logs_path, 'updated_uncertain.txt')
                with open(uncertain_data, 'wb') as f:
                    pickle.dump(most_uncert_old, f)
    
    
    def train(resnet_ckpt, ckpt_dir, model_dir, epoch_size, decay_steps, epsilon_opt, regu_par, batch_size, training_data,
              val_data, FLAG_PRETRAIN=False):
        # --------Here lots of parameters need to be set------Or maybe we could set it in the configuration file-----#
        # batch_size = 5
        if not os.path.exists(model_dir):
            os.makedirs(model_dir)
        image_w, image_h, image_c = [480, 480, 3]
        IMAGE_SHAPE = np.array([image_w, image_h, image_c])
        targ_height_npy = 528  # this is for padding images
        targ_width_npy = 784  # this is for padding images
        FLAG_DECAY = True
        #    if (Acq_Method == "F") and (Acq_Index_Old is None):
        #        learning_rate = 0.0009
        #    else:
        learning_rate = 0.001
        decay_rate = 0.1
        save_checkpoint_period = 200
        # epsilon_opt = 0.001
        FLAG_L2_REGU = True
        # FLAG_PRETRAIN = False
        ckpt_dir = ckpt_dir
        MOVING_AVERAGE_DECAY = 0.999
        auxi_weight_num = 1
        auxi_decay_step = 300
        val_step_size = 10
    
        checkpoint_path = os.path.join(model_dir, 'model.ckpt')
        if not os.path.exists(model_dir):
            os.makedirs(model_dir)
        # ----The part below is for extracting the initial Training Data and Initial Val Data-------------------#
        with tf.Graph().as_default():
            #  This three placeholder is for extracting the augmented training data##
            image_aug_placeholder = tf.placeholder(tf.float32, [batch_size, targ_height_npy, targ_width_npy, 3])
            label_aug_placeholder = tf.placeholder(tf.int64, [batch_size, targ_height_npy, targ_width_npy, 1])
            edge_aug_placeholder = tf.placeholder(tf.int64, [batch_size, targ_height_npy, targ_width_npy, 1])
            binary_mask_aug_placeholder = tf.placeholder(tf.int64, [batch_size, targ_height_npy, targ_width_npy, 1])
            #  The placeholder below is for extracting the input for the network #####
            images_train = tf.placeholder(tf.float32, [batch_size, image_w, image_h, image_c])
            instance_labels_train = tf.placeholder(tf.int64, [batch_size, image_w, image_h, 1])
            edges_labels_train = tf.placeholder(tf.int64, [batch_size, image_w, image_h, 1])
            binary_mask_train = tf.placeholder(tf.int64, [batch_size, image_w, image_h, 1])
            phase_train = tf.placeholder(tf.bool, shape=None, name="training_state")
            dropout_phase = tf.placeholder(tf.bool, shape=None, name="dropout_state")
            auxi_weight = tf.placeholder(tf.float32, shape=None, name="auxiliary_weight")
            global_step = tf.train.get_or_create_global_step()
            #  ----------------------Here is for preparing the dataset for training, pooling and validation---#
    
            x_image_tr, y_label_tr, y_edge_tr, y_binary_mask_tr = training_data
            x_image_val, y_label_val, y_edge_val, y_binary_mask_val = val_data
    
            print("-----training data shape----")
            [print(np.shape(v)) for v in training_data]
            print("-----validation data shape---")
            [print(np.shape(v)) for v in val_data]
    
            iteration = np.shape(x_image_tr)[0] // batch_size
    
            # ----------Perform data augmentation only on training data------------------------------------------------#
            x_image_aug, y_label_aug, y_edge_aug, y_binary_mask_aug = aug_train_data(image_aug_placeholder,
                                                                                     label_aug_placeholder,
                                                                                     edge_aug_placeholder,
                                                                                     binary_mask_aug_placeholder,
                                                                                     batch_size, True, IMAGE_SHAPE)
            x_image_aug_val, y_label_aug_val, y_edge_aug_val, \
                y_binary_mask_aug_val = aug_train_data(image_aug_placeholder, label_aug_placeholder,
                                                       edge_aug_placeholder, binary_mask_aug_placeholder,
                                                       batch_size, False, IMAGE_SHAPE)
    
            # ------------------------------Here is for build up the network-------------------------------------------#
            fb_logits, ed_logits = ResNet_V2_DMNN(images=images_train, training_state=phase_train,
                                                  dropout_state=dropout_phase, Num_Classes=2)
    
            edge_loss, edge_f1_score, edge_auc_score = Loss(logits=ed_logits, labels=edges_labels_train,
                                                            binary_mask=binary_mask_train,
                                                            auxi_weight=auxi_weight, loss_name="ed")
            fb_loss, fb_f1_score, fb_auc_score = Loss(logits=fb_logits, labels=instance_labels_train,
                                                      binary_mask=binary_mask_train,
                                                      auxi_weight=auxi_weight, loss_name="fb")
    
            var_train = tf.trainable_variables()
            total_loss = edge_loss + fb_loss
            if FLAG_L2_REGU is True:
                var_l2 = [v for v in var_train if (('kernel' in v.name) or ('weights' in v.name))]
                total_loss = tf.add_n(
                    [total_loss, tf.add_n([tf.nn.l2_loss(v) for v in var_l2 if 'logits' not in v.name]) * regu_par],
                    name="Total_Loss")
            # var_opt = [v for v in var_train if ('resnet' not in v.name)]
            # -------------COnduct BackPropagation------------------------------------------------------------#
    
            train = train_op_batchnorm(total_loss=total_loss, global_step=global_step, initial_learning_rate=learning_rate,
                                       lr_decay_rate=decay_rate, decay_steps=decay_steps,
                                       epsilon_opt=epsilon_opt, var_opt=tf.trainable_variables(),
                                       MOVING_AVERAGE_DECAY=MOVING_AVERAGE_DECAY)
    
            # summary_op = tf.summary.merge_all()
            if FLAG_PRETRAIN is False:
                set_resnet_var = [v for v in var_train if (v.name.startswith('resnet_v2') & ('logits' not in v.name))]
                saver_set_resnet = tf.train.Saver(set_resnet_var, max_to_keep=3)
                saver_set_all = tf.train.Saver(tf.global_variables(), max_to_keep=1)
    
            else:
                saver_set_all = tf.train.Saver(max_to_keep=1)
    
            print("\n =====================================================")
            print("The shape of new training data", np.shape(x_image_tr)[0])
            print("The final validation data size %d" % np.shape(x_image_val)[0])
            print("There are %d iteratioins in each epoch" % iteration)
            print("ckpt files are saved to: ", model_dir)
            print("Epsilon used in Adam optimizer: ", epsilon_opt)
            print("Initial learning rate", learning_rate)
            print("Use the Learning rate weight decay", FLAG_DECAY)
            print("The learning is decayed every %d steps by %.3f " % (decay_steps, decay_rate))
            print("The moving average parameter is ", MOVING_AVERAGE_DECAY)
            print("Batch Size:", batch_size)
            print("Max epochs: ", epoch_size)
            print("Use pretrained model:", FLAG_PRETRAIN)
            print("The checkpoing file is saved every %d steps" % save_checkpoint_period)
            print("The L2 regularization is turned on:", FLAG_L2_REGU)
            print(" =====================================================")
            with tf.Session() as sess:
                if FLAG_PRETRAIN is False:
                    sess.run(tf.global_variables_initializer())
                    sess.run(tf.local_variables_initializer())
                    saver_set_resnet.restore(sess, resnet_ckpt)
                else:
                    ckpt = tf.train.get_checkpoint_state(ckpt_dir)
                    if ckpt and ckpt.model_checkpoint_path:
                        saver_set_all.restore(sess, ckpt.model_checkpoint_path)
                        print("restore parameter from ", ckpt.model_checkpoint_path)
                all_file = os.listdir(model_dir)
                for v in all_file:
                    os.remove(os.path.join(model_dir, v))
                    print("-------remove the initial trained model-----")
    
                # train_writer = tf.summary.FileWriter(model_dir, sess.graph)
                train_tot_stat = np.zeros([epoch_size, 4])
                val_tot_stat = np.zeros([epoch_size // val_step_size, 4])
                print(
                    "Epoch, foreground-background loss,  "
                    "foreground-background accu, contour loss, contour accuracy, total loss")
                for single_epoch in range(epoch_size):
                    if auxi_weight_num > 0.001:
                        auxi_weight_num = np.power(0.1, np.floor(single_epoch / auxi_decay_step))
                    else:
                        auxi_weight_num = 0
                    x_image_sh, y_label_sh, y_edge_sh, y_binary_mask_sh = shuffle(x_image_tr, y_label_tr, y_edge_tr,
                                                                                  y_binary_mask_tr)
    
                    batch_index = 0
    
                    train_stat_per_epoch = np.zeros([iteration, 4])
                    for single_batch in range(iteration):
                        x_image_batch, y_label_batch, y_edge_batch, y_binary_mask_batch, batch_index = generate_batch(
                            x_image_sh,
                            y_label_sh,
                            y_edge_sh,
                            y_binary_mask_sh,
                            batch_index, batch_size)
                        feed_dict_aug = {image_aug_placeholder: x_image_batch,
                                         label_aug_placeholder: y_label_batch,
                                         edge_aug_placeholder: y_edge_batch,
                                         binary_mask_aug_placeholder: y_binary_mask_batch}
                        x_image_npy, y_label_npy, y_edge_npy, y_binary_mask_npy = sess.run(
                            [x_image_aug, y_label_aug, y_edge_aug, y_binary_mask_aug], feed_dict=feed_dict_aug)
    
                        feed_dict_op = {images_train: x_image_npy,
                                        instance_labels_train: y_label_npy,
                                        edges_labels_train: y_edge_npy,
                                        binary_mask_train: y_binary_mask_npy,
                                        auxi_weight: auxi_weight_num,
                                        phase_train: True,
                                        dropout_phase: True}
                        fetches_train = [train, fb_loss, fb_f1_score, fb_auc_score, edge_loss]
                        # fetches_train = [train, fb_loss, fb_auc_score, edge_loss]
                        _, _fb_loss, _fb_f1, _fb_auc, _ed_loss = sess.run(fetches=fetches_train, feed_dict=feed_dict_op)
                        # _, _fb_loss, _fb_auc, _ed_loss = sess.run(fetches = fetches_train, feed_dict = feed_dict_op)
                        # _fb_f1 = 0.9
                        # _fb_auc = 0.9
                        train_stat_per_epoch[single_batch, 0] = _fb_loss
                        train_stat_per_epoch[single_batch, 1] = _fb_f1
                        train_stat_per_epoch[single_batch, 2] = _fb_auc
                        train_stat_per_epoch[single_batch, 3] = _ed_loss
                    train_tot_stat[single_epoch, :] = np.mean(train_stat_per_epoch, axis=0)
                    print(single_epoch, train_tot_stat[single_epoch, :])
    
                    if single_epoch % val_step_size == 0:
                        val_iteration = np.shape(x_image_val)[0] // batch_size
                        print("start validating .......with %d images and %d iterations" % (
                            np.shape(x_image_val)[0], val_iteration))
    
                        val_batch_index = 0
                        val_stat_per_epoch = np.zeros([val_iteration, 4])
                        for single_batch_val in range(val_iteration):
                            x_image_batch_val, y_label_batch_val, y_edge_batch_val, \
                                y_binary_mask_batch_val, val_batch_index = generate_batch(x_image_val, y_label_val,
                                                                                          y_edge_val, y_binary_mask_val,
                                                                                          val_batch_index, batch_size)
                            feed_dict_aug_val = {image_aug_placeholder: x_image_batch_val,
                                                 label_aug_placeholder: y_label_batch_val,
                                                 edge_aug_placeholder: y_edge_batch_val,
                                                 binary_mask_aug_placeholder: y_binary_mask_batch_val}
                            x_image_npy_val, y_label_npy_val, y_edge_npy_val, y_binary_mask_npy_val = sess.run(
                                [x_image_aug_val,
                                 y_label_aug_val,
                                 y_edge_aug_val,
                                 y_binary_mask_aug_val], feed_dict=feed_dict_aug_val)
    
                            fetches_valid = [fb_loss, fb_f1_score, fb_auc_score, edge_loss]
                            # fetches_valid = [fb_loss, fb_auc_score, edge_loss]
                            feed_dict_valid = {images_train: x_image_npy_val,
                                               instance_labels_train: y_label_npy_val,
                                               edges_labels_train: y_edge_npy_val,
                                               binary_mask_train: y_binary_mask_npy_val,
                                               auxi_weight: 0,
                                               phase_train: False,
                                               dropout_phase: False}
                            _fbloss_val, _fb_f1_val, _fb_auc_val, _edloss_val = sess.run(fetches=fetches_valid,
                                                                                         feed_dict=feed_dict_valid)
                            # _fb_f1_val = 0.9
                            val_stat_per_epoch[single_batch_val, 0] = _fbloss_val
                            val_stat_per_epoch[single_batch_val, 1] = _fb_f1_val
                            val_stat_per_epoch[single_batch_val, 2] = _fb_auc_val
                            val_stat_per_epoch[single_batch_val, 3] = _edloss_val
    
                        val_tot_stat[single_epoch // val_step_size, :] = np.mean(val_stat_per_epoch, axis=0)
                        print("validation", single_epoch, val_tot_stat[single_epoch // val_step_size, :])
    
                    if single_epoch % save_checkpoint_period == 0 or single_epoch == (epoch_size - 1):
                        saver_set_all.save(sess, checkpoint_path, global_step=single_epoch)
                    if single_epoch == (epoch_size - 1):
                        np.save(os.path.join(model_dir, 'trainstat'), train_tot_stat)
                        np.save(os.path.join(model_dir, 'valstat'), val_tot_stat)
    
    #