Skip to content
Snippets Groups Projects
Train_Active_Full_Im.py 29.6 KiB
Newer Older
blia's avatar
blia committed
# -*- coding: utf-8 -*-
"""
Created on Wed Mar  7 16:42:15 2018
Full image based active learning on GlaS dataset
@author: s161488
"""
import tensorflow as tf
from data_utils.prepare_data import prepare_train_data, padding_training_data, aug_train_data, generate_batch
from models.inference import ResNet_V2_DMNN
from optimization.loss_region_specific import Loss, train_op_batchnorm
from select_images import selection
from sklearn.utils import shuffle
import numpy as np
import os


print("--------------------------------------------------------------")
print("---------------DEFINE YOUR TRAINING DATA PATH-----------------")
print("--------------------------------------------------------------")
training_data_path = "DATA/Data/glanddata.npy"  # NOTE, NEED TO BE MANUALLY DEFINED
test_data_path = "DATA/Data/glanddata_testb.npy"  # NOTE, NEED TO BE MANUALLY DEFINED
resnet_dir = "pretrain_model/"
exp_dir = "Exp_Stat/"  # NOTE, NEED TO BE MANUALLY DEFINED
print("--------------------------------------------------------------")
print("---------------DEFINE YOUR TRAINING DATA PATH-----------------")
print("--------------------------------------------------------------")
blia's avatar
blia committed
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492


def running_train_use_all_data(version_space):
    """Train an model with all the training data (85)
    This is used to benchmark the full image acquisition and region acquisition strategy
    """
    flag_arch_name = "resnet_v2_50"
    resnet_ckpt = os.path.join(resnet_dir, flag_arch_name) + '.ckpt'
    acq_method = "B"
    epoch_size = 1300
    batch_size = 5
    num_im = 85
    decay_steps = (600 * num_im) // batch_size
    epsilon_opt = 0.001
    using_full_training_data = True
    for single_version in version_space:
        model_dir = os.path.join(exp_dir, 'Version_%d' % single_version)
        train_full(resnet_ckpt, acq_method, None, None, None, model_dir, epoch_size, decay_steps, epsilon_opt,
                   batch_size,
                   using_full_training_data)


def running_initial_model(version_space):
    """Train an model with the initial training set (num_training_image = 10),
    This model doesn't influence the full image acquisition, but it's needed for the region acquisition
    repeat several times and use the best one to find the initial acquired regions
    """
    flag_arch_name = "resnet_v2_50"
    resnet_ckpt = os.path.join(resnet_dir, flag_arch_name) + '.ckpt'
    acq_method = "A"
    epoch_size = 1300
    batch_size = 5
    num_im = 10
    decay_steps = (600 * num_im) // batch_size
    epsilon_opt = 0.001
    using_full_training_data = False
    for single_version in version_space:
        model_dir = os.path.join(exp_dir, 'Version_%d' % single_version)
        train_full(resnet_ckpt, acq_method, None, None, None, model_dir, epoch_size, decay_steps, epsilon_opt,
                   batch_size, using_full_training_data)


def running_loop_active_learning_full_image(stage, round_number=[0, 1, 2]):
    """Perform all the acquisition steps using a single uncertainty estimation methods
    Args:
        stage: int, 0 means random selection 1 means VarRatio, 2 means Entropy, 3 means BALD
        round_number: int, defines how many times do we want to repeat the experiments.

    Note:
        In order to run this function, you will need to download the resnet_ckpt from tensorflow repo
        wget http://download.tensorflow.org/models/resnet_v2_50_2017_04_14.tar.gz
        tar -xvf resnet_v2_50_2017_04_14.tar.gz
        rm resnet_v2_50_2017_04_14.tar.gz
        rm train.graph
        rm eval.graph

    """
    agg_method = "Simple_Sum"
    agg_quantile_cri = 0
    if agg_method == "Simple_Sum":
        acqu_index_all = np.zeros([3, 5])
        acqu_index_all[0, :] = [36, 34, 32, 57, 20]  # stage for B is 1, for D is 2, for F is 3
        acqu_index_all[1, :] = [36, 33, 34, 32, 57]
        acqu_index_all[2, :] = [45, 57, 33, 9, 30]
    else:
        print("This acquisition method is on its way :) ")
    for single_round_number in round_number:
        total_folder_info = []
        acqu_index_init_total = acqu_index_all
        print("The initial selected image index from starting point", acqu_index_init_total)
        flag_arch_name = "resnet_v2_50"
        resnet_ckpt = os.path.join(resnet_dir, flag_arch_name) + '.ckpt'
        total_active_step = 10
        num_selec_point_from_pool = 5
        acq_index_old = np.zeros([total_active_step, num_selec_point_from_pool])
        acq_method_total = ["A", "B", "C", "D"]
        acq_selec_method = acq_method_total[stage]

        if acq_selec_method == "A":
            acq_index_update = np.random.choice(range(65), num_selec_point_from_pool, replace=False)
        else:
            acq_index_update = acqu_index_init_total[stage - 1, -num_selec_point_from_pool:]

        logs_path = os.path.join(exp_dir, 'Method_%s_Stage_%d_Version_%d' % (acq_selec_method, stage,
                                                                             single_round_number))
        for acquire_single_step in range(total_active_step):
            if acq_index_old is not None:
                acq_index_old = np.array(acq_index_old).astype('int64')
            if acq_index_update is not None:
                acq_index_update = np.array(acq_index_update).astype('int64')

            epsilon_opt = 0.001
            batch_size_spec = 5
            max_epoch_single = 1300
            if acquire_single_step < 7:
                decay_steps_single = 1800 + acquire_single_step * 600
            else:
                decay_steps_single = 1800 + acquire_single_step * 500
            model_dir = os.path.join(logs_path, 'FE_step_%d_version_%d' % (acquire_single_step, single_round_number))

            if acquire_single_step == 0:
                acq_index_old_sele = None
            else:
                acq_index_old_sele = acq_index_old[:acquire_single_step, :]
            print("The selected index", acq_index_old_sele)
            print("===================================================================================")
            num_repeat_per_exp = 3
            tot_train_val_stat_for_diff_exp_same_step = np.zeros(
                [num_repeat_per_exp, 4])  # fb loss, ed loss, fb f1 score, fb auc score

            for repeat_time in range(num_repeat_per_exp):
                print("==============Start Experiment No.%d============================================" % repeat_time)
                model_dir_sub = os.path.join(model_dir, 'rep_%d' % repeat_time)
                signal = False
                while signal is False:
                    signal_for_bad_optimal = False
                    while signal_for_bad_optimal is False:
                        train_full(resnet_ckpt=resnet_ckpt,
                                   acq_method=acq_selec_method,
                                   acq_index_old=acq_index_old_sele,
                                   acq_index_update=acq_index_update,
                                   ckpt_dir=None,
                                   model_dir=model_dir_sub,
                                   epoch_size=20,
                                   decay_steps=decay_steps_single,
                                   epsilon_opt=epsilon_opt,
                                   batch_size=batch_size_spec,
                                   using_full_training_data=False,
                                   flag_pretrain=False)
                        train_stat = np.load(os.path.join(model_dir_sub, 'trainstat.npy'))
                        val_stat = np.load(os.path.join(model_dir_sub, 'valstat.npy'))
                        sec_cri = [np.mean(train_stat[-10:, 1]), np.mean(val_stat[-1, 1])]  # fb f1 score
                        thir_cri = [np.mean(train_stat[-10:, 2]), np.mean(val_stat[-1, 2])]  # fb auc score
                        if np.mean(sec_cri) == 0.0 or np.mean(thir_cri) == 0.5:
                            signal_for_bad_optimal = False
                            all_the_files = os.listdir(model_dir_sub)
                            for single_file in all_the_files:
                                os.remove(os.path.join(model_dir_sub, single_file))
                            print("--------------------The model start from a really bad optimal----------------")
                        else:
                            signal_for_bad_optimal = True
                    train_full(resnet_ckpt=resnet_ckpt,
                               acq_method=acq_selec_method,
                               acq_index_old=acq_index_old_sele,
                               acq_index_update=acq_index_update,
                               ckpt_dir=model_dir_sub,
                               model_dir=model_dir_sub,
                               epoch_size=max_epoch_single,
                               decay_steps=decay_steps_single,
                               epsilon_opt=epsilon_opt,
                               batch_size=batch_size_spec,
                               using_full_training_data=False,
                               flag_pretrain=True)
                    train_stat = np.load(os.path.join(model_dir_sub, 'trainstat.npy'))
                    val_stat = np.load(os.path.join(model_dir_sub, 'valstat.npy'))
                    first_cri = [np.mean(train_stat[-20:, -1]), np.mean(val_stat[-10:, -1])]  # ed loss
                    sec_cri = [np.mean(train_stat[-20:, 1]), np.mean(val_stat[-10:, 1])]  # fb f1 score
                    thir_cri = [np.mean(train_stat[-20:, 2]), np.mean(val_stat[-10:, 2])]  # fb auc score
                    fourth_cri = [np.mean(train_stat[-20:, 0]), np.mean(val_stat[-10:, 0])]  # fb loss
                    if np.mean(first_cri) >= 0.50 or np.mean(sec_cri) <= 0.80 or np.mean(thir_cri) <= 0.80 or np.mean(
                            fourth_cri) > 0.50:
                        signal = False
                    else:
                        signal = True
                    if signal is False:
                        all_the_files = os.listdir(model_dir_sub)
                        for single_file in all_the_files:
                            os.remove(os.path.join(model_dir_sub, single_file))
                        print("mmm The trained model doesn't work, I need to retrain it...")
                    if signal is True:
                        tot_train_val_stat_for_diff_exp_same_step[repeat_time, :] = [np.mean(fourth_cri),
                                                                                     np.mean(first_cri),
                                                                                     np.mean(sec_cri),
                                                                                     np.mean(thir_cri)]
                print("=============Finish Experiment No.%d===================" % repeat_time)
            # ------Below is for selecting the best experiment based on the training and validation statistics-----#
            fb_loss_index = np.argmin(tot_train_val_stat_for_diff_exp_same_step[:, 0])
            ed_loss_index = np.argmin(tot_train_val_stat_for_diff_exp_same_step[:, 1])
            fb_f1_index = np.argmax(tot_train_val_stat_for_diff_exp_same_step[:, 2])
            fb_auc_index = np.argmax(tot_train_val_stat_for_diff_exp_same_step[:, 3])
            perf_comp = [fb_loss_index, ed_loss_index, fb_f1_index, fb_auc_index]
            best_per_index = max(set(perf_comp), key=perf_comp.count)
            model_dir_goes_into_act_stage = os.path.join(model_dir, 'rep_%d' % best_per_index)
            print("The selected folder", model_dir_goes_into_act_stage)
            total_folder_info.append(model_dir_goes_into_act_stage)
            tds_select = os.path.join(model_dir_goes_into_act_stage, 'pool_data')

            acq_index_old[acquire_single_step, :] = acq_index_update
            acq_index_rm = np.array(acq_index_old[:acquire_single_step + 1, :]).astype('int64')
            if acq_selec_method == "A":
                selec_index = np.random.choice(range(65 - (acquire_single_step + 1) * num_selec_point_from_pool),
                                               num_selec_point_from_pool, replace=False)
                acq_index_update = selec_index
            else:
                selec_index = selection(tds_select, model_dir_goes_into_act_stage,
                                        [acq_selec_method], acq_index_rm,
                                        num_selec_point_from_pool, agg_method, agg_quantile_cri,
                                        data_path=training_data_path)
                acq_index_update = selec_index[:, 0]
            print(acquire_single_step, acq_index_update, np.shape(acq_index_update))
            # np.save(os.path.join(model_dir, 'acqu_index'), Acq_Index_Update)
            np.save(os.path.join(logs_path, 'total_select_folder'), total_folder_info)
            np.save(os.path.join(logs_path, 'total_acqu_index'), acq_index_old)


def train_full(resnet_ckpt, acq_method, acq_index_old, acq_index_update, ckpt_dir, model_dir, epoch_size, decay_steps,
               epsilon_opt, batch_size, using_full_training_data=False, flag_pretrain=False):
    # --------Here lots of parameters need to be set------Or maybe we could set it in the configuration file-----#
    # batch_size = 5
    if not os.path.exists(model_dir):
        os.makedirs(model_dir)
    image_w, image_h, image_c = [480, 480, 3]
    image_shape = np.array([image_w, image_h, image_c])
    targ_height_npy = 528  # this is for padding images
    targ_width_npy = 784  # this is for padding images
    flag_decay = True
    if (acq_method == "F") and (acq_index_old is None):
        learning_rate = 0.0009
    else:
        learning_rate = 0.001
    decay_rate = 0.1
    save_checkpoint_period = 200
    # epsilon_opt = 0.001
    flag_l2_regu = True
    ckpt_dir = ckpt_dir
    moving_average_decay = 0.999

    auxi_weight_num = 1
    auxi_decay_step = 300
    val_step_size = 10
    selec_training_index = np.zeros([2, 5])
    selec_training_index[0, :] = [0, 1, 2, 3, 4]  # this is the index for the initial benign images
    selec_training_index[1, :] = [2, 4, 5, 6, 7]  # this is the index for the initial malignant images
    selec_training_index = selec_training_index.astype('int64')

    checkpoint_path = os.path.join(model_dir, 'model.ckpt')

    with tf.Graph().as_default():
        #  This three placeholder is for extracting the augmented training data##
        image_aug_placeholder = tf.placeholder(tf.float32, [batch_size, targ_height_npy, targ_width_npy, 3])
        label_aug_placeholder = tf.placeholder(tf.int64, [batch_size, targ_height_npy, targ_width_npy, 1])
        edge_aug_placeholder = tf.placeholder(tf.int64, [batch_size, targ_height_npy, targ_width_npy, 1])
        # The placeholder below is for extracting the input for the network #####
        images_train = tf.placeholder(tf.float32, [batch_size, image_w, image_h, image_c])
        instance_labels_train = tf.placeholder(tf.int64, [batch_size, image_w, image_h, 1])
        edges_labels_train = tf.placeholder(tf.int64, [batch_size, image_w, image_h, 1])
        phase_train = tf.placeholder(tf.bool, shape=None, name="training_state")
        dropout_phase = tf.placeholder(tf.bool, shape=None, name="dropout_state")
        auxi_weight = tf.placeholder(tf.float32, shape=None, name="auxiliary_weight")
        global_step = tf.train.get_or_create_global_step()
        #  -----------------Here is for preparing the dataset for training, pooling and validation---------#
        data_train, data_pool, data_val = prepare_train_data(training_data_path, selec_training_index[0, :],
                                                             selec_training_index[1, :])
        x_image_tr, y_label_tr, y_edge_tr, y_imindex_tr, y_clsindex_tr = data_train
        x_image_pl, y_label_pl, y_edge_pl, y_imindex_pl, y_clsindex_pl = data_pool
        x_image_val, y_label_val, y_edge_val, y_imindex_val, y_clsindex_val = data_val
        y_imindex_pl = np.array(y_imindex_pl)
        y_clsindex_pl = np.array(y_clsindex_pl)

        im_group = [[x_image_tr, y_label_tr, y_edge_tr],
                    [x_image_pl, y_label_pl, y_edge_pl],
                    [x_image_val, y_label_val, y_edge_val]]

        for iterr, single_im_group in enumerate(im_group):
            single_group_new = padding_training_data(single_im_group[0], single_im_group[1], single_im_group[2],
                                                     targ_height_npy, targ_width_npy)
            im_group[iterr] = single_group_new
        x_tr_group = [im_group[0][0], im_group[0][1], im_group[0][2], y_imindex_tr, y_clsindex_tr]
        x_pl_group = [im_group[1][0], im_group[1][1], im_group[1][2], y_imindex_pl, y_clsindex_pl]
        x_image_val, y_label_val, y_edge_val = im_group[2][0], im_group[2][1], im_group[2][2]
        print("-----Before updating, the shape for the training data and pool data-----")
        [print(np.shape(v), np.shape(q)) for v, q in zip(x_tr_group, x_pl_group)]
        if acq_index_old is not None:
            for remove_data in range(np.shape(acq_index_old)[0]):
                num_images_in_pool = range(np.shape(x_pl_group[0])[0])
                images_index_left = np.delete(num_images_in_pool, acq_index_old[remove_data, :])
                image_index_add_to_tr = acq_index_old[remove_data, :]
                print("At step %d" % remove_data, "the index that needs remove", image_index_add_to_tr,
                      "the images that are left in the pool set", images_index_left)
                for i in range(5):
                    x_tr_group[i] = np.concatenate([x_tr_group[i], x_pl_group[i][image_index_add_to_tr]],
                                                   axis=0)
                    x_pl_group[i] = x_pl_group[i][images_index_left]
                print("the removed images' index", acq_index_old[remove_data, :])
                print("there are %d training images and %d pool images after %d step" % (np.shape(x_tr_group[0])[0],
                                                                                         np.shape(x_pl_group[0])[0],
                                                                                         remove_data + 1))
        if acq_index_update is not None:
            for i in range(5):
                x_tr_group[i] = np.concatenate([x_tr_group[i], x_pl_group[i][acq_index_update]],
                                               axis=0)
            print("there are %d training images " % np.shape(x_tr_group[0])[0])
            print([np.shape(v) for v in x_tr_group])
        if using_full_training_data is True:
            for i in range(5):
                x_tr_group[i] = np.concatenate([x_tr_group[i], x_pl_group[i]], axis=0)
        print("---After updating, the shape for the training data and pool data-------")
        [print(np.shape(v), np.shape(q)) for v, q in zip(x_tr_group, x_pl_group)]
        x_image_tr, y_label_tr, y_edge_tr, y_imindex_tr, y_clsindex_tr = x_tr_group

        iteration = np.shape(x_image_tr)[0] // batch_size
        bi_mask_tr = tf.constant(0, shape=[batch_size, targ_height_npy, targ_width_npy, 1],
                                 dtype=tf.int64)
        bi_mask_val = tf.constant(0, shape=[batch_size, targ_height_npy, targ_width_npy, 1],
                                  dtype=tf.int64)

        # ----------Perform data augmentation only on training data-----------------------------------------#
        x_image_aug, y_label_aug, y_edge_aug, _ = aug_train_data(image_aug_placeholder, label_aug_placeholder,
                                                                 edge_aug_placeholder, bi_mask_tr,
                                                                 batch_size, True, image_shape)
        x_image_aug_val, y_label_aug_val, y_edge_aug_val, _ = aug_train_data(image_aug_placeholder,
                                                                             label_aug_placeholder,
                                                                             edge_aug_placeholder, bi_mask_val,
                                                                             batch_size, True,
                                                                             image_shape)

        # ------------------------------Here is for build up the network----------------------------------#
        fb_logits, ed_logits = ResNet_V2_DMNN(images=images_train, training_state=phase_train,
                                              dropout_state=dropout_phase, Num_Classes=2)

        edge_loss, ed_accu, ed_auc_score = Loss(logits=ed_logits, labels=edges_labels_train,
                                                binary_mask=tf.ones([batch_size, image_h, image_w,
                                                                     1], dtype=tf.float32),
                                                auxi_weight=auxi_weight, loss_name="ed")
        fb_loss, fb_accu, fb_auc_score = Loss(logits=fb_logits, labels=instance_labels_train,
                                              binary_mask=tf.ones([batch_size, image_h, image_w,
                                                                   1], dtype=tf.float32),
                                              auxi_weight=auxi_weight, loss_name="fg")

        var_train = tf.trainable_variables()
        total_loss = edge_loss + fb_loss
        if flag_l2_regu is True:
            var_l2 = [v for v in var_train if (('kernel' in v.name) or ('weights' in v.name))]
            total_loss = tf.add_n(
                [total_loss, tf.add_n([tf.nn.l2_loss(v) for v in var_l2 if 'logits' not in v.name]) * 0.001],
                name="Total_Loss")
        # var_opt = [v for v in var_train if ('resnet' not in v.name)]

        train = train_op_batchnorm(total_loss=total_loss, global_step=global_step, initial_learning_rate=learning_rate,
                                   lr_decay_rate=decay_rate, decay_steps=decay_steps,
                                   epsilon_opt=epsilon_opt, var_opt=tf.trainable_variables(),
                                   MOVING_AVERAGE_DECAY=moving_average_decay)

        # summary_op = tf.summary.merge_all()
        if flag_pretrain is False:
            set_resnet_var = [v for v in var_train if (v.name.startswith('resnet_v2') & ('logits' not in v.name))]
            saver_set_resnet = tf.train.Saver(set_resnet_var, max_to_keep=3)
            saver_set_all = tf.train.Saver(tf.global_variables(), max_to_keep=1)

        else:
            saver_set_all = tf.train.Saver(max_to_keep=1)

        print("\n =====================================================")
        print("The shape of new training data", np.shape(x_image_tr)[0])
        print("The final validation data size %d" % np.shape(x_image_val)[0])
        print("There are %d iteratioins in each epoch" % iteration)
        print("ckpt files are saved to: ", model_dir)
        print("Epsilon used in Adam optimizer: ", epsilon_opt)
        print("Initial learning rate", learning_rate)
        print("Use the Learning rate weight decay", flag_decay)
        print("The learning is decayed every %d steps by %.3f " % (decay_steps, decay_rate))
        print("The moving average parameter is ", moving_average_decay)
        print("Batch Size:", batch_size)
        print("Max epochs: ", epoch_size)
        print("Use pretrained model:", flag_pretrain)
        print("The checkpoing file is saved every %d steps" % save_checkpoint_period)
        print("The L2 regularization is turned on:", flag_l2_regu)
        print(" =====================================================")
        with tf.Session() as sess:
            if flag_pretrain is False:
                sess.run(tf.global_variables_initializer())
                sess.run(tf.local_variables_initializer())
                saver_set_resnet.restore(sess, resnet_ckpt)
            else:
                ckpt = tf.train.get_checkpoint_state(ckpt_dir)
                if ckpt and ckpt.model_checkpoint_path:
                    saver_set_all.restore(sess, ckpt.model_checkpoint_path)
                    print("restore parameter from ", ckpt.model_checkpoint_path)
            all_files = os.listdir(model_dir)
            for v in all_files:
                os.remove(os.path.join(model_dir, v))
                print("----------removing initial trained files-------------------", v)
            # train_writer = tf.summary.FileWriter(model_dir, sess.graph)
            train_tot_stat = np.zeros([epoch_size, 4])
            val_tot_stat = np.zeros([epoch_size // val_step_size, 4])
            print(
                "Epoch, foreground-background loss,  "
                "foreground-background accu, contour loss, contour accuracy, total loss")
            for single_epoch in range(epoch_size):
                if auxi_weight_num > 0.001:
                    auxi_weight_num = np.power(0.1, np.floor(single_epoch / auxi_decay_step))
                else:
                    auxi_weight_num = 0
                x_image_sh, y_label_sh, y_edge_sh, y_imindex_sh, y_clsindex_sh = shuffle(x_image_tr, y_label_tr,
                                                                                         y_edge_tr, y_imindex_tr,
                                                                                         y_clsindex_tr)

                batch_index = 0

                train_stat_per_epoch = np.zeros([iteration, 4])
                for single_batch in range(iteration):
                    x_image_batch, y_label_batch, y_edge_batch, \
                    _, batch_index = generate_batch(x_image_sh, y_label_sh, y_edge_sh,
                                                    np.ones([len(x_image_tr), targ_height_npy,
                                                             targ_width_npy, 1]), batch_index, batch_size)
                    feed_dict_aug = {image_aug_placeholder: x_image_batch, label_aug_placeholder: y_label_batch,
                                     edge_aug_placeholder: y_edge_batch}
                    x_image_npy, y_label_npy, y_edge_npy = sess.run([x_image_aug, y_label_aug, y_edge_aug],
                                                                    feed_dict=feed_dict_aug)

                    feed_dict_op = {images_train: x_image_npy,
                                    instance_labels_train: y_label_npy,
                                    edges_labels_train: y_edge_npy,
                                    auxi_weight: auxi_weight_num,
                                    phase_train: True,
                                    dropout_phase: True}
                    fetches_train = [train, fb_loss, fb_accu, fb_auc_score, edge_loss]
                    _, _fb_loss, _fb_f1, _fb_auc, _ed_loss = sess.run(fetches=fetches_train, feed_dict=feed_dict_op)
                    train_stat_per_epoch[single_batch, 0] = _fb_loss
                    train_stat_per_epoch[single_batch, 1] = _fb_f1
                    train_stat_per_epoch[single_batch, 2] = _fb_auc
                    train_stat_per_epoch[single_batch, 3] = _ed_loss
                train_tot_stat[single_epoch, :] = np.mean(train_stat_per_epoch, axis=0)
                print(single_epoch, train_tot_stat[single_epoch, :])

                if single_epoch % val_step_size == 0:
                    val_iteration = np.shape(x_image_val)[0] // batch_size
                    print("start validating .......with %d images and %d iterations" % (np.shape(x_image_val)[0],
                                                                                        val_iteration))

                    val_batch_index = 0
                    val_stat_per_epoch = np.zeros([val_iteration, 4])
                    for single_batch_val in range(val_iteration):
                        x_image_batch_val, y_label_batch_val, y_edge_batch_val, _, val_batch_index = generate_batch(
                            x_image_val, y_label_val, y_edge_val,
                            np.ones([len(x_image_val), targ_height_npy, targ_width_npy, 1]),
                            val_batch_index, batch_size)
                        feed_dict_aug_val = {image_aug_placeholder: x_image_batch_val,
                                             label_aug_placeholder: y_label_batch_val,
                                             edge_aug_placeholder: y_edge_batch_val}
                        x_image_npy_val, y_label_npy_val, y_edge_npy_val = sess.run(
                            [x_image_aug_val, y_label_aug_val, y_edge_aug_val], feed_dict=feed_dict_aug_val)

                        fetches_valid = [fb_loss, fb_accu, fb_auc_score, edge_loss]
                        feed_dict_valid = {images_train: x_image_npy_val,
                                           instance_labels_train: y_label_npy_val,
                                           edges_labels_train: y_edge_npy_val,
                                           auxi_weight: 0,
                                           phase_train: False,
                                           dropout_phase: False}
                        _fbloss_val, _fb_f1_val, _fb_auc_val, _edloss_val = sess.run(fetches=fetches_valid,
                                                                                     feed_dict=feed_dict_valid)
                        val_stat_per_epoch[single_batch_val, 0] = _fbloss_val
                        val_stat_per_epoch[single_batch_val, 1] = _fb_f1_val
                        val_stat_per_epoch[single_batch_val, 2] = _fb_auc_val
                        val_stat_per_epoch[single_batch_val, 3] = _edloss_val

                    val_tot_stat[single_epoch // val_step_size, :] = np.mean(val_stat_per_epoch, axis=0)
                    print("validation", single_epoch, val_tot_stat[single_epoch // val_step_size, :])

                if single_epoch % save_checkpoint_period == 0 or single_epoch == (epoch_size - 1):
                    saver_set_all.save(sess, checkpoint_path, global_step=single_epoch)
                if single_epoch == (epoch_size - 1):
                    print("Acq Index Update", acq_index_update)
                    np.save(os.path.join(model_dir, 'trainstat'), train_tot_stat)
                    np.save(os.path.join(model_dir, 'valstat'), val_tot_stat)