Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
# coding=utf-8
# Copyright 2020 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python2, python3
"""Library of calibration metrics."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import scipy.special
import six
from six.moves import range
from sklearn.metrics import confusion_matrix as sklearn_cm
# import tensorflow as tf
# import tensorflow.compat.v2 as tf
def bin_predictions_and_accuracies(probabilities, ground_truth, bins=10):
"""A helper function which histograms a vector of probabilities into bins.
Args:
probabilities: A numpy vector of N probabilities assigned to each prediction
ground_truth: A numpy vector of N ground truth labels in {0,1}
bins: Number of equal width bins to bin predictions into in [0, 1], or an
array representing bin edges.
Returns:
bin_edges: Numpy vector of floats containing the edges of the bins
(including leftmost and rightmost).
accuracies: Numpy vector of floats for the average accuracy of the
predictions in each bin.
counts: Numpy vector of ints containing the number of examples per bin.
"""
_validate_probabilities(probabilities)
_check_rank_nonempty(rank=1,
probabilities=probabilities,
ground_truth=ground_truth)
if len(probabilities) != len(ground_truth):
raise ValueError(
'Probabilies and ground truth must have the same number of elements.')
if [v for v in ground_truth if v not in [0., 1., True, False]]:
raise ValueError(
'Ground truth must contain binary labels {0,1} or {False, True}.')
if isinstance(bins, int):
num_bins = bins
else:
num_bins = bins.size - 1
# Ensure probabilities are never 0, since the bins in np.digitize are open on
# one side.
probabilities = np.where(probabilities == 0, 1e-8, probabilities)
counts, bin_edges = np.histogram(probabilities, bins=bins, range=[0., 1.])
indices = np.digitize(probabilities, bin_edges, right=True)
accuracies = np.array([np.mean(ground_truth[indices == i])
for i in range(1, num_bins + 1)])
return bin_edges, accuracies, counts
def bin_centers_of_mass(probabilities, bin_edges):
probabilities = np.where(probabilities == 0, 1e-8, probabilities)
indices = np.digitize(probabilities, bin_edges, right=True)
return np.array([np.mean(probabilities[indices == i])
for i in range(1, len(bin_edges))])
def expected_calibration_error(probabilities, ground_truth, bins=15):
"""Compute the expected calibration error of a set of preditions in [0, 1].
Args:
probabilities: A numpy vector of N probabilities assigned to each prediction
ground_truth: A numpy vector of N ground truth labels in {0,1, True, False}
bins: Number of equal width bins to bin predictions into in [0, 1], or
an array representing bin edges.
Returns:
Float: the expected calibration error.
"""
bin_edges, accuracies, counts = bin_predictions_and_accuracies(
probabilities, ground_truth, bins)
bin_centers = bin_centers_of_mass(probabilities, bin_edges)
num_examples = np.sum(counts)
ece = np.sum([(counts[i] / float(num_examples)) * np.sum(
np.abs(bin_centers[i] - accuracies[i]))
for i in range(bin_centers.size) if counts[i] > 0])
return ece
def accuracy_top_k(probabilities, labels, top_k):
"""Computes the top-k accuracy of predictions.
A prediction is considered correct if the ground-truth class is among the k
classes with the highest predicted probabilities.
Args:
probabilities: Array of probabilities of shape [num_samples, num_classes].
labels: Integer array labels of shape [num_samples].
top_k: Integer. Number of highest-probability classes to consider.
Returns:
float: Top-k accuracy of predictions.
"""
_, ground_truth = _filter_top_k(probabilities, labels, top_k)
return ground_truth.any(axis=-1).mean()
def _filter_top_k(probabilities, labels, top_k):
"""Extract top k predicted probabilities and corresponding ground truths."""
labels_one_hot = np.zeros(probabilities.shape)
labels_one_hot[np.arange(probabilities.shape[0]), labels] = 1
if top_k is None:
return probabilities, labels_one_hot
# Negate probabilities for easier use with argpartition (which sorts from
# lowest)
negative_prob = -1. * probabilities
ind = np.argpartition(negative_prob, top_k - 1, axis=-1)
top_k_ind = ind[:, :top_k]
rows = np.expand_dims(np.arange(probabilities.shape[0]), axis=1)
lowest_k_negative_probs = negative_prob[rows, top_k_ind]
output_probs = -1. * lowest_k_negative_probs
labels_one_hot_k = labels_one_hot[rows, top_k_ind]
return output_probs, labels_one_hot_k
def get_multiclass_predictions_and_correctness(probabilities, labels, top_k=1):
"""Returns predicted class, correctness boolean vector."""
_validate_probabilities(probabilities, multiclass=True)
_check_rank_nonempty(rank=1, labels=labels)
_check_rank_nonempty(rank=2, probabilities=probabilities)
if top_k == 1:
class_predictions = np.argmax(probabilities, -1)
top_k_probs = probabilities[np.arange(len(labels)), class_predictions]
is_correct = np.equal(class_predictions, labels)
else:
top_k_probs, is_correct = _filter_top_k(probabilities, labels, top_k)
return top_k_probs, is_correct
def expected_calibration_error_multiclass(probabilities, labels, bins=15,
top_k=1):
"""Computes expected calibration error from Guo et al. 2017.
For details, see https://arxiv.org/abs/1706.04599.
Note: If top_k is None, this only measures calibration of the argmax
prediction.
Args:
probabilities: Array of probabilities of shape [num_samples, num_classes].
labels: Integer array labels of shape [num_samples].
bins: Number of equal width bins to bin predictions into in [0, 1], or
an array representing bin edges.
top_k: Integer or None. If integer, use the top k predicted
probabilities in ECE calculation (can be informative for problems with
many classes and lower top-1 accuracy). If None, use all classes.
Returns:
float: Expected calibration error.
"""
top_k_probs, is_correct = get_multiclass_predictions_and_correctness(
probabilities, labels, top_k)
top_k_probs = top_k_probs.flatten()
is_correct = is_correct.flatten()
return expected_calibration_error(top_k_probs, is_correct, bins)
# TODO(yovadia): Write unit-tests.
def compute_accuracies_at_confidences(labels, probs, thresholds):
"""Compute accuracy of samples above each confidence threshold.
Args:
labels: Array of integer categorical labels.
probs: Array of categorical probabilities.
thresholds: Array of floating point probability thresholds in [0, 1).
Returns:
accuracies: Array of accuracies over examples with confidence > T for each T
in thresholds.
counts: Count of examples with confidence > T for each T in thresholds.
"""
assert probs.shape[:-1] == labels.shape
predict_class = probs.argmax(-1)
predict_confidence = probs.max(-1)
shape = (len(thresholds),) + probs.shape[:-2]
accuracies = np.zeros(shape)
counts = np.zeros(shape)
eq = np.equal(predict_class, labels)
for i, thresh in enumerate(thresholds):
mask = predict_confidence >= thresh
counts[i] = mask.sum(-1)
accuracies[i] = np.ma.masked_array(eq, mask=~mask).mean(-1)
return accuracies, counts
def brier_scores(labels, probs=None, logits=None):
"""Compute elementwise Brier score.
Args:
labels: Tensor of integer labels shape [N1, N2, ...]
probs: Tensor of categorical probabilities of shape [N1, N2, ..., M].
logits: If `probs` is None, class probabilities are computed as a softmax
over these logits, otherwise, this argument is ignored.
Returns:
Tensor of shape [N1, N2, ...] consisting of Brier score contribution from
each element. The full-dataset Brier score is an average of these values.
I will let my labels shape to be [num_samples], and the probs shape should be
[num_samples, num_classes]
"""
assert (probs is None) != (logits is None)
if probs is None:
probs = scipy.special.softmax(logits, axis=-1)
nlabels = probs.shape[-1]
flat_probs = probs.reshape([-1, nlabels])
flat_labels = labels.reshape([len(flat_probs)])
plabel = flat_probs[np.arange(len(flat_labels)), flat_labels]
out = np.square(flat_probs).sum(axis=-1) - 2 * plabel
return out.reshape(labels.shape)
# def brier_decompositions(labels, probs):
# """Compute Brier decompositions for batches of datasets.
# Args:
# labels: Tensor of integer labels shape [S1, S2, ..., N]
# probs: Tensor of categorical probabilities of shape [S1, S2, ..., N, M].
# Returns:
# Tensor of shape [S1, S2, ..., 3] consisting of 3-component Brier
# decompositions for each series of probabilities and labels. The components
# are ordered as <uncertainty, resolution, reliability>.
# """
# labels = tf.cast(labels, tf.int32)
# probs = tf.cast(probs, tf.float32)
# batch_shape = labels.shape[:-1]
# flatten, unflatten = _make_flatten_unflatten_fns(batch_shape)
# labels = flatten(labels)
# probs = flatten(probs)
# out = []
# for labels_i, probs_i in zip(labels, probs):
# out_i = brier_decomposition(labels_i, probabilities=probs_i)
# out.append(tf.stack(out_i, axis=-1))
# out = tf.stack(out)
# return unflatten(out)
# def brier_decomposition(labels=None, logits=None, probabilities=None):
# r"""Decompose the Brier score into uncertainty, resolution, and reliability.
# [Proper scoring rules][1] measure the quality of probabilistic predictions;
# any proper scoring rule admits a [unique decomposition][2] as
# `Score = Uncertainty - Resolution + Reliability`, where:
# * `Uncertainty`, is a generalized entropy of the average predictive
# distribution; it can both be positive or negative.
# * `Resolution`, is a generalized variance of individual predictive
# distributions; it is always non-negative. Difference in predictions reveal
# information, that is why a larger resolution improves the predictive score.
# * `Reliability`, a measure of calibration of predictions against the true
# frequency of events. It is always non-negative and a lower value here
# indicates better calibration.
# This method estimates the above decomposition for the case of the Brier
# scoring rule for discrete outcomes. For this, we need to discretize the space
# of probability distributions; we choose a simple partition of the space into
# `nlabels` events: given a distribution `p` over `nlabels` outcomes, the index
# `k` for which `p_k > p_i` for all `i != k` determines the discretization
# outcome; that is, `p in M_k`, where `M_k` is the set of all distributions for
# which `p_k` is the largest value among all probabilities.
# The estimation error of each component is O(k/n), where n is the number
# of instances and k is the number of labels. There may be an error of this
# order when compared to `brier_score`.
# #### References
# [1]: Tilmann Gneiting, Adrian E. Raftery.
# Strictly Proper Scoring Rules, Prediction, and Estimation.
# Journal of the American Statistical Association, Vol. 102, 2007.
# https://www.stat.washington.edu/raftery/Research/PDF/Gneiting2007jasa.pdf
# [2]: Jochen Broecker. Reliability, sufficiency, and the decomposition of
# proper scores.
# Quarterly Journal of the Royal Meteorological Society, Vol. 135, 2009.
# https://rmets.onlinelibrary.wiley.com/doi/epdf/10.1002/qj.456
# Args:
# labels: Tensor, (n,), with tf.int32 or tf.int64 elements containing ground
# truth class labels in the range [0,nlabels].
# logits: Tensor, (n, nlabels), with logits for n instances and nlabels.
# probabilities: Tensor, (n, nlabels), with predictive probability
# distribution (alternative to logits argument).
# Returns:
# uncertainty: Tensor, scalar, the uncertainty component of the
# decomposition.
# resolution: Tensor, scalar, the resolution component of the decomposition.
# reliability: Tensor, scalar, the reliability component of the
# decomposition.
# """
# if (logits is None) == (probabilities is None):
# raise ValueError(
# 'brier_decomposition expects exactly one of logits or probabilities.')
# if probabilities is None:
# probabilities = scipy.special.softmax(logits, axis=1)
# _, nlabels = probabilities.shape # Implicit rank check.
# # Compute pbar, the average distribution
# pred_class = tf.argmax(probabilities, axis=1, output_type=tf.int32)
# confusion_matrix = tf.math.confusion_matrix(pred_class, labels, nlabels,
# dtype=tf.float32)
# dist_weights = tf.reduce_sum(confusion_matrix, axis=1)
# dist_weights /= tf.reduce_sum(dist_weights)
# pbar = tf.reduce_sum(confusion_matrix, axis=0)
# pbar /= tf.reduce_sum(pbar)
# # dist_mean[k,:] contains the empirical distribution for the set M_k
# # Some outcomes may not realize, corresponding to dist_weights[k] = 0
# dist_mean = confusion_matrix / tf.expand_dims(
# tf.reduce_sum(confusion_matrix, axis=1) + 1.0e-7, 1)
# # Uncertainty: quadratic entropy of the average label distribution
# uncertainty = -tf.reduce_sum(tf.square(pbar))
# # Resolution: expected quadratic divergence of predictive to mean
# resolution = tf.square(tf.expand_dims(pbar, 1) - dist_mean)
# resolution = tf.reduce_sum(dist_weights * tf.reduce_sum(resolution, axis=1))
# # Reliability: expected quadratic divergence of predictive to true
# prob_true = tf.gather(dist_mean, pred_class, axis=0)
# reliability = tf.reduce_sum(tf.square(prob_true - probabilities), axis=1)
# reliability = tf.reduce_mean(reliability)
# return uncertainty, resolution, reliability
def brier_decomp_npy(labels=None, logits=None, probabilities=None):
if (logits is None) == (probabilities is None):
raise ValueError("brier decomposition expects either logits or probabilities")
if probabilities is None:
probabilities = scipy.special.softmax(logits, axis=1)
_, nlabels = probabilities.shape # [num_samples, num_class]
pred_class = np.argmax(probabilities, axis=1) # predicted label
confusion_matrix = sklearn_cm(y_pred=labels, y_true=pred_class,
labels=np.arange(nlabels))
dist_weights = np.sum(confusion_matrix, axis=1)
dist_weights = dist_weights / np.sum(dist_weights)
pbar = np.sum(confusion_matrix, axis=0)
pbar = pbar / np.sum(pbar)
dist_mean = confusion_matrix / np.expand_dims(np.sum(confusion_matrix, axis=1) + 1.0e-7, 1)
uncertainty = -np.sum(pbar ** 2)
resolution = (np.expand_dims(pbar, 1) - dist_mean) ** 2
resolution = np.sum(dist_weights * np.sum(resolution, axis=1))
prob_true = dist_mean[pred_class]
reliability = np.sum((prob_true - probabilities) ** 2, axis=1)
reliability = np.mean(reliability)
return uncertainty, resolution, reliability
def nll(probs):
"""Returns the negative loglikehood NLL calibration score
Args:
probs: [num_samples, num_class]
"""
pred_prob = np.max(probs, axis=-1)
nll_loss = np.log(pred_prob + 1e-8)
return -np.sum(nll_loss)
def soften_probabilities(probs, epsilon=1e-8):
"""Returns heavily weighted average of categorical distribution and uniform.
Args:
probs: Categorical probabilities of shape [num_samples, num_classes].
epsilon: Small positive value for weighted average.
Returns:
epsilon * uniform + (1-epsilon) * probs
"""
uniform = np.ones_like(probs) / probs.shape[-1]
return epsilon * uniform + (1 - epsilon) * probs
def get_quantile_bins(num_bins, probs, top_k=1):
"""Find quantile bin edges.
Args:
num_bins: int, number of bins desired.
probs: Categorical probabilities of shape [num_samples, num_classes].
top_k: int, number of highest-predicted classes to consider in binning.
Returns:
Numpy vector, quantile bin edges.
"""
edge_percentiles = np.linspace(0, 100, num_bins + 1)
if len(probs.shape) == 1:
probs = np.stack([probs, 1 - probs]).T
if top_k == 1:
max_probs = probs.max(-1)
else:
unused_labels = np.zeros(probs.shape[0]).astype(np.int32)
max_probs, _ = _filter_top_k(probs, unused_labels, top_k)
bins = np.percentile(max_probs, edge_percentiles)
bins[0], bins[-1] = 0., 1.
return bins
def _validate_probabilities(probabilities, multiclass=False):
if np.max(probabilities) > 1. or np.min(probabilities) < 0.:
raise ValueError('All probabilities must be in [0,1].')
if multiclass and not np.allclose(1, np.sum(probabilities, axis=-1),
atol=1e-5):
raise ValueError(
'Multiclass probabilities must sum to 1 along the last dimension.')
def _check_rank_nonempty(rank, **kwargs):
for key, array in six.iteritems(kwargs):
if len(array) <= 1 or array.ndim != rank:
raise ValueError(
'%s must be a rank-1 array of length > 1; actual shape is %s.' %
(key, array.shape))
# def _make_flatten_unflatten_fns(batch_shape):
# """Builds functions for flattening and unflattening batch dimensions."""
# batch_shape = tuple(batch_shape)
# batch_rank = len(batch_shape)
# ndims = np.prod(batch_shape)
# def flatten_fn(x):
# x_shape = tuple(x.shape)
# if x_shape[:batch_rank] != batch_shape:
# raise ValueError('Expected batch-shape=%s; received array of shape=%s' %
# (batch_shape, x_shape))
# flat_shape = (ndims,) + x_shape[batch_rank:]
# return tf.reshape(x, flat_shape)
# def unflatten_fn(x):
# x_shape = tuple(x.shape)
# if x_shape[0] != ndims:
# raise ValueError('Expected batch-size=%d; received shape=%s' %
# (ndims, x_shape))
# return tf.reshape(x, batch_shape + x_shape[1:])
# return flatten_fn, unflatten_fn