"Main_script.py" did not exist on "b26eb0679d13a31a433411cfe813ed58763ae8d2"
Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Wed Oct 10 18:03:32 2018
This file is the new version for calculating the uncertainty value in each patch
It's better because:
1. the way of choosing the most uncertain patch is automate
2. The weight ratio for each regions can be easily changed to any value
@author: s161488
"""
import numpy as np
from scipy import signal, ndimage
from skimage.morphology import dilation, disk
def select_most_uncertain_patch(x_image_pl, y_label_pl, fb_pred, ed_pred, fb_prob_mean_bald, kernel_window, stride_size,
already_select_image_index, previously_selected_binary_mask, num_most_uncert_patch,
method):
"""This function is used to acquire the #most uncertain patches in the pooling set.
Args:
x_image_pl: [Num_Im, Im_h, Im_w,3]
y_label_pl: [Num_Im, Im_h, Im_w,1]
fb_pred: [Num_Im, Im_h, Im_w, 2]
ed_pred: [Num_Im, Im_h, Im_w, 2]
fb_prob_mean_bald: [num_im, imw, imw]
kernel_window: [kh, kw] determine the size of the region
stride_size: int, determine the stride between every two regions
already_select_image_index: if it's None, then it means that's the first acquistion step,
otherwise it's the numeric image index for the previously selected patches
previously_selected_binary_mask: [num_already_selected_images, Im_h, Im_w,1]
num_most_uncert_patch: int, number of patches that are selected in each acquisition step
method: acquisition method: 'B', 'C', 'D'
Returns:
Most_Uncert_Im: [Num_Selected, Im_h, Im_w, 3]imp
Most_Uncert_FB_GT: [Num_Selected, Im_h, Im_w,1]
Most_Uncert_ED_GT: [Num_Selected, Im_h, Im_w,1]
Most_Uncert_Binary_Mask: [Num_Selected, Im_h, Im_w,1]
Selected_Image_Index: [Num_Selected]
"""
num_im = np.shape(x_image_pl)[0]
uncertainty_map_tot = []
for i in range(num_im):
if method == 'B':
var_stat = get_uncert_heatmap(x_image_pl[i], fb_pred[i])
elif method == 'C':
var_stat = get_entropy_heatmap(fb_pred[i])
elif method == 'D':
var_stat = get_bald_heatmap(fb_prob_mean_bald[i], fb_pred[i])
uncertainty_map_tot.append(var_stat)
uncertainty_map_tot = np.array(uncertainty_map_tot)
if already_select_image_index is None:
print("--------This is the beginning of the selection process-------")
else:
print(
"----------Some patches have already been annotated, I need to deal with that")
previously_selected_binary_mask = np.squeeze(previously_selected_binary_mask, axis=-1)
for i in range(np.shape(previously_selected_binary_mask)[0]):
uncertainty_map_single = uncertainty_map_tot[already_select_image_index[i]]
uncertainty_map_updated = uncertainty_map_single * (1 - previously_selected_binary_mask[i])
uncertainty_map_tot[already_select_image_index[i]] = uncertainty_map_updated
selected_numeric_image_index, binary_mask_updated_tot = calculate_score_for_patch(uncertainty_map_tot,
kernel_window, stride_size,
num_most_uncert_patch)
pseudo_fb_la_tot = []
pseudo_ed_la_tot = []
for index, single_selected_image_index in enumerate(selected_numeric_image_index):
pseudo_fb_la, pseudo_ed_la = return_pseudo_label(y_label_pl[single_selected_image_index],
fb_pred[single_selected_image_index],
ed_pred[single_selected_image_index],
binary_mask_updated_tot[index])
pseudo_fb_la_tot.append(pseudo_fb_la)
pseudo_ed_la_tot.append(pseudo_ed_la)
most_uncert_im_tot = x_image_pl[selected_numeric_image_index]
most_uncertain = [most_uncert_im_tot,
pseudo_fb_la_tot,
pseudo_ed_la_tot,
binary_mask_updated_tot,
selected_numeric_image_index]
return most_uncertain
def calculate_score_for_patch(uncert_est, kernel, stride_size, num_most_uncertain_patch):
"""This function is used to calculate the utility score for each patch.
Args:
uncert_est: [num_image, imh, imw]
kernel: the size of each searching shape
stride_size: the stride between every two regions
num_most_uncertain_patch: int, the number of selected regions
Returns:
most_uncert_image_index: [Num_Most_Selec] this should be the real image index
%most_uncert_patch_index: [Num_Most_Selec] this should be the numeric index for the selected patches
binary_mask: [Num_Most_Selec, Im_h, Im_w,1]
%pseudo_label: [Num_Most_Selec, Im_h, Im_w,1]
"""
num_im, imh, imw = np.shape(uncert_est)
kh, kw = np.shape(kernel)
h_num_patch = imh - np.shape(kernel)[0] + 1
w_num_patch = imw - np.shape(kernel)[1] + 1
num_row_wise = h_num_patch // stride_size
num_col_wise = w_num_patch // stride_size
if stride_size == 1:
tot_num_patch_per_im = num_row_wise * num_col_wise
else:
tot_num_patch_per_im = (num_row_wise + 1) * (num_col_wise + 1)
print('-------------------------------There are %d patches in per image' % tot_num_patch_per_im)
patch_tot = []
for i in range(num_im):
patch_subset = select_patches_in_image_area(uncert_est[i], kernel, stride_size, num_row_wise, num_col_wise)
patch_tot.append(np.reshape(patch_subset, [-1]))
patch_tot = np.reshape(np.array(patch_tot), [-1])
# print('Based on the experiments, there are %d patches in total'%np.shape(patch_tot)[0])
# print('Based on the calculation, there supposed to be %d patches in tot'%(Num_Im*tot_num_patch_per_im))
sorted_index = np.argsort(patch_tot)
select_most_uncert_patch = (sorted_index[-num_most_uncertain_patch:]).astype('int64')
select_most_uncert_patch_imindex = (select_most_uncert_patch // tot_num_patch_per_im).astype('int64')
select_most_uncert_patch_index_per_im = (select_most_uncert_patch % tot_num_patch_per_im).astype('int64')
if stride_size == 1:
select_most_uncert_patch_rownum_per_im = (select_most_uncert_patch_index_per_im // num_col_wise).astype('int64')
select_most_uncert_patch_colnum_per_im = (select_most_uncert_patch_index_per_im % num_col_wise).astype('int64')
else:
select_most_uncert_patch_rownum_per_im = (select_most_uncert_patch_index_per_im // (num_col_wise + 1)).astype(
'int64')
select_most_uncert_patch_colnum_per_im = (select_most_uncert_patch_index_per_im % (num_col_wise + 1)).astype(
'int64')
transfered_rownum, transfered_colnum = transfer_strid_rowcol_backto_nostride_rowcol(
select_most_uncert_patch_rownum_per_im,
select_most_uncert_patch_colnum_per_im,
[h_num_patch, w_num_patch],
[num_row_wise + 1, num_col_wise + 1],
stride_size)
binary_mask_tot = []
# print("The numeric index for the selected most uncertain patches-----", select_most_uncert_patch)
# print("The corresponding uncertainty value in the selected patch-----", patch_tot[select_most_uncert_patch])
# print("The image index for the selected most uncertain patches-------", select_most_uncert_patch_imindex)
# print("The index of the patch in per image---------------------------", select_most_uncert_patch_index_per_im)
# print("The row index for the selected patch--------------------------", select_most_uncert_patch_rownum_per_im)
# print("The col index for the selected patch--------------------------", select_most_uncert_patch_colnum_per_im)
# print("The transfered row index for the selected patch---------------", transfered_rownum)
# print("The transfered col index for the selected patch---------------", transfered_colnum)
for i in range(num_most_uncertain_patch):
single_binary_mask = generate_binary_mask(imh, imw,
transfered_rownum[i],
transfered_colnum[i],
kh, kw)
binary_mask_tot.append(single_binary_mask)
binary_mask_tot = np.array(binary_mask_tot)
unique_im_index = np.unique(select_most_uncert_patch_imindex)
if np.shape(unique_im_index)[0] == num_most_uncertain_patch:
print("----------------------------There is no replication for the selected images")
uncertain_info = [select_most_uncert_patch_imindex, binary_mask_tot]
else:
print("-----These images have been selected more than twice", unique_im_index)
binary_mask_final_tot = []
for i in unique_im_index:
loc_im = np.where(select_most_uncert_patch_imindex == i)[0].astype('int64')
binary_mask_combine = (np.sum(binary_mask_tot[loc_im], axis=0) != 0).astype('int64')
binary_mask_final_tot.append(binary_mask_combine)
uncertain_info = [unique_im_index.astype('int64'), np.array(binary_mask_final_tot)]
print("the shape for binary mask", np.shape(binary_mask_final_tot))
return uncertain_info
def return_pseudo_label(single_gt, single_fb_pred, single_ed_pred, single_binary_mask):
"""This function is used to return the pseudo label for the selected patches in per image
Args:
single_gt: [imh, imw,1]
single_fb_pred: [imh, imw, 2]
single_ed_pred: [imh, imw, 2]
single_binary_mask: [imh, imw]
Return:
pseudo_fb_la: [Im_h, Im_w, 1]
pseudo_ed_la: [Im_h, Im_w, 1]
"""
single_gt = (single_gt != 0).astype('int64')
edge_gt = extract_edge(single_gt)
fake_pred = (single_fb_pred[:, :, -1:] >= 0.5).astype('int64')
fake_ed_pred = (single_ed_pred[:, :, -1:] >= 0.2).astype('int64')
print(np.shape(fake_pred), np.shape(single_binary_mask), np.shape(single_gt), np.shape(edge_gt))
pseudo_fb_la = fake_pred * (1 - single_binary_mask) + single_gt * single_binary_mask
pseudo_ed_la = fake_ed_pred * (1 - single_binary_mask) + edge_gt * single_binary_mask
return pseudo_fb_la, pseudo_ed_la
def extract_edge(la_sep):
"""This function is utilized to extract the edge from the ground truth
Args:
la_sep [im_h, im_w]
Return
edge_gt [im_h, im_w]
"""
selem = disk(3)
sx = ndimage.sobel(la_sep, axis=0, mode='constant')
sy = ndimage.sobel(la_sep, axis=1, mode='constant')
sob = np.hypot(sx, sy)
row = (np.reshape(sob, -1) > 0) * 1
edge_sep = np.reshape(row, [np.shape(sob)[0], np.shape(sob)[1]])
edge_sep = dilation(edge_sep, selem)
edge_sep = np.expand_dims(edge_sep, axis=-1)
return edge_sep.astype('int64')
def generate_binary_mask(imh, imw, rowindex, colindex, kh, kw):
"""This function is used to generate the binary mask for the selected most uncertain images
Args:
Im_h, Im_w are the size of the binary mask
row_index, col_index are the corresponding row and column index for most uncertain patch
kh,kw are the kernel size
Output:
Binary_Mask
Opts:
To transform from the selected patch index to the original image. It will be like
rowindex:rowindex+kh
colindex:colindex+kw
"""
binary_mask = np.zeros([imh, imw, 1])
binary_mask[rowindex:(rowindex + kh), colindex:(colindex + kw)] = 1
return binary_mask
def transfer_strid_rowcol_backto_nostride_rowcol(rownum, colnum, no_stride_row_col, stride_row_col, stride_size):
"""This function is used to map the row index and col index from the strided version back to the original version
if the row_num and col_num are not equal to the last row num or last col num
then the transfer is just rownum*stride_size, colnum*stride_size
but if the row_num and colnum are actually the last row num or last col num
then the transfer is that rownum*stride_size, colnum_no_stride, or row_num_no_stride, colnum*stride_size
"""
if stride_size != 1:
row_num_no_stride, col_num_no_stride = no_stride_row_col
row_num_stride, col_num_stride = stride_row_col
transfered_row_num = np.zeros([np.shape(rownum)[0]])
for i in range(np.shape(rownum)[0]):
if rownum[i] != (row_num_stride - 1):
transfered_row_num[i] = stride_size * rownum[i]
else:
transfered_row_num[i] = row_num_no_stride - 1
transfered_col_num = np.zeros([np.shape(colnum)[0]])
for i in range(np.shape(colnum)[0]):
if colnum[i] != (col_num_stride - 1):
transfered_col_num[i] = colnum[i] * stride_size
else:
transfered_col_num[i] = col_num_no_stride - 1
else:
transfered_row_num = rownum
transfered_col_num = colnum
return transfered_row_num.astype('int64'), transfered_col_num.astype('int64')
def select_patches_in_image_area(single_fb, kernel, stride_size, num_row_wise, num_col_wise):
"""There needs to be a stride"""
utility_patches = signal.convolve(single_fb, kernel, mode='valid')
if stride_size != 1:
subset_patch = np.zeros([num_row_wise + 1, num_col_wise + 1])
for i in range(num_row_wise):
for j in range(num_col_wise):
subset_patch[i, j] = utility_patches[i * stride_size, j * stride_size]
for i in range(num_row_wise):
subset_patch[i, -1] = utility_patches[i * stride_size, -1]
for j in range(num_col_wise):
subset_patch[-1, j] = utility_patches[-1, j * stride_size]
subset_patch[-1, -1] = utility_patches[-1, -1]
else:
subset_patch = utility_patches
return subset_patch
def get_uncert_heatmap(image_single, fb_prob_single, check_rank=False):
if check_rank is True:
sele_index = np.where(np.mean(image_single, -1) != 0)
fb_prob_single = fb_prob_single[np.min(sele_index[0]):np.max(sele_index[0] + 1),
np.min(sele_index[1]):np.max(sele_index[1] + 1), :]
else:
fb_prob_single = fb_prob_single
fb_index = (fb_prob_single[:, :, 1] >= 0.5).astype('int64')
fb_prob_map = fb_index * fb_prob_single[:, :, 1] + (1 - fb_index) * fb_prob_single[:, :, 0]
only_base_fb = 1 - fb_prob_map
return only_base_fb
def get_entropy_heatmap(fb_prob_single):
fb_entropy = np.sum(-fb_prob_single * np.log(fb_prob_single + 1e-8),
axis=-1) # calculate the sum w.r.t the number of classes
return fb_entropy
def get_bald_heatmap(fb_prob_mean_bald_single, fb_prob_single):
bald_first_term = -np.sum(fb_prob_single * np.log(fb_prob_single + 1e-08), axis=-1)
bald_second_term = np.sum(fb_prob_mean_bald_single, axis=-1)
bald_value = bald_first_term + bald_second_term
return bald_value