Newer
Older
# imports
# standard
import math
# local
# import numpy as np
# import networkx as nx
import pyomo.environ as pyo
# import src.topupopt.problems.esipp.utils as utils
from src.topupopt.data.misc.utils import generate_pseudo_unique_key
from src.topupopt.problems.esipp.problem import InfrastructurePlanningProblem
from src.topupopt.problems.esipp.network import Arcs, Network
from src.topupopt.problems.esipp.network import ArcsWithoutStaticLosses
from src.topupopt.problems.esipp.resource import ResourcePrice
from src.topupopt.problems.esipp.utils import compute_cost_volume_metrics
from src.topupopt.problems.esipp.time import EconomicTimeFrame
# from src.topupopt.problems.esipp.converter import Converter
# *****************************************************************************
# *****************************************************************************
solver = 'glpk'
# solver = 'scip'
# solver = 'cbc'
def build_solve_ipp(
# solver: str = "glpk",
solver_options: dict = None,
use_sos_arcs: bool = False,
arc_sos_weight_key: str = (InfrastructurePlanningProblem.SOS1_ARC_WEIGHTS_NONE),
arc_use_real_variables_if_possible: bool = False,
use_sos_sense: bool = False,
sense_sos_weight_key: int = (
InfrastructurePlanningProblem.SOS1_SENSE_WEIGHT_NOMINAL_HIGHER
),
sense_use_real_variables_if_possible: bool = False,
sense_use_arc_interfaces: bool = False,
perform_analysis: bool = False,
plot_results: bool = False,
print_solver_output: bool = False,
time_frame: EconomicTimeFrame = None,
static_losses_mode=None,
mandatory_arcs: list = None,
max_number_parallel_arcs: dict = None,
arc_groups_dict: dict = None,
init_aux_sets: bool = False,
assessment_weights: dict = None,
simplify_problem: bool = False,
):
if type(assessment_weights) != dict:
if type(converters) != dict:
converters = {}
# time weights
# relative weight of time period
# one interval twice as long as the average is worth twice
# one interval half as long as the average is worth half
# time_weights = [
# [time_period_duration/average_time_interval_duration
# for time_period_duration in intraperiod_time_interval_duration]
# for p in range(number_periods)]
time_weights = None # nothing yet
normalised_time_interval_duration = None # nothing yet
# create problem object
ipp = InfrastructurePlanningProblem(
time_frame=time_frame,
# reporting_periods=time_frame.reporting_periods,
# time_intervals=time_frame.time_interval_durations,
time_weights=time_weights,
normalised_time_interval_duration=normalised_time_interval_duration,
# add networks and systems
for netkey, net in networks.items():
ipp.add_network(network_key=netkey, network=net)
# add converters
for cvtkey, cvt in converters.items():
ipp.add_converter(converter_key=cvtkey, converter=cvt)
# define arcs as mandatory
if type(mandatory_arcs) == list:
for full_arc_key in mandatory_arcs:
ipp.make_arc_mandatory(full_arc_key[0], full_arc_key[1:])
# if make_all_arcs_mandatory:
# for network_key in ipp.networks:
# for arc_key in ipp.networks[network_key].edges(keys=True):
# # preexisting arcs are no good
# if ipp.networks[network_key].edges[arc_key][
# Network.KEY_ARC_TECH].has_been_selected():
# ipp.make_arc_mandatory(network_key, arc_key)
# set up the use of sos for arc selection
if use_sos_arcs:
for network_key in ipp.networks:
for arc_key in ipp.networks[network_key].edges(keys=True):
if (
ipp.networks[network_key]
.edges[arc_key][Network.KEY_ARC_TECH]
.has_been_selected()
):
continue
ipp.use_sos1_for_arc_selection(
arc_key,
use_real_variables_if_possible=(
arc_use_real_variables_if_possible
),
sos1_weight_method=arc_sos_weight_key,
)
# set up the use of sos for flow sense determination
if use_sos_sense:
for network_key in ipp.networks:
for arc_key in ipp.networks[network_key].edges(keys=True):
if not ipp.networks[network_key].edges[arc_key][
continue
ipp.use_sos1_for_flow_senses(
arc_key,
use_real_variables_if_possible=(
sense_use_real_variables_if_possible
use_interface_variables=sense_use_arc_interfaces,
sos1_weight_method=sense_sos_weight_key,
)
elif sense_use_arc_interfaces: # set up the use of arc interfaces w/o sos1
for network_key in ipp.networks:
for arc_key in ipp.networks[network_key].edges(keys=True):
if (
ipp.networks[network_key]
.edges[arc_key][Network.KEY_ARC_TECH]
.has_been_selected()
):
continue
ipp.use_interface_variables_for_arc_selection(network_key, arc_key)
# static losses
if static_losses_mode == ipp.STATIC_LOSS_MODE_ARR:
ipp.place_static_losses_arrival_node()
elif static_losses_mode == ipp.STATIC_LOSS_MODE_DEP:
ipp.place_static_losses_departure_node()
elif static_losses_mode == ipp.STATIC_LOSS_MODE_US:
ipp.place_static_losses_upstream()
elif static_losses_mode == ipp.STATIC_LOSS_MODE_DS:
ipp.place_static_losses_downstream()
else:
raise ValueError("Unknown static loss modelling mode.")
# *********************************************************************
# groups
if type(arc_groups_dict) != type(None):
for key in arc_groups_dict:
ipp.create_arc_group(arc_groups_dict[key])
# *********************************************************************
# maximum number of parallel arcs
for key in max_number_parallel_arcs:
ipp.set_maximum_number_parallel_arcs(
network_key=key[0],
node_a=key[1],
node_b=key[2],
limit=max_number_parallel_arcs[key],
)
# *********************************************************************
if simplify_problem:
ipp.simplify_peak_total_assessments()
# *********************************************************************
# instantiate (disable the default case v-a-v fixed losses)
# ipp.instantiate(place_fixed_losses_upstream_if_possible=False)
ipp.instantiate(initialise_ancillary_sets=init_aux_sets)
# optimise
solver_name=self.solver,
solver_options=solver_options,
output_options={},
print_solver_output=print_solver_output,
)
# return the problem object
return ipp
# *********************************************************************
# *********************************************************************
# *************************************************************************
# *************************************************************************
def test_single_network_single_arc_problem(self):
q = 0
tf = EconomicTimeFrame(
discount_rate=3.5/100,
reporting_periods={q: (0, 1)},
reporting_period_durations={q: (365 * 24 * 3600, 365 * 24 * 3600)},
time_intervals={q: (0, 1, 2)},
time_interval_durations={q: (1, 1, 1)},
# 2 nodes: one import, one regular
mynet = Network()
node_IMP = generate_pseudo_unique_key(mynet.nodes())
mynet.add_import_node(
prices={
qpk: ResourcePrice(prices=1.0, volumes=None)
for qpk in tf.qpk()
# other nodes
node_A = generate_pseudo_unique_key(mynet.nodes())
mynet.add_source_sink_node(
node_key=node_A,
base_flow={(q, 0): 0.50, (q, 1): 0.00, (q, 2): 1.00},
)
# arc IA
arc_tech_IA = Arcs(
efficiency_reverse=None,
static_loss=None,
capacity=[3],
minimum_cost=[2],
capacity_is_instantaneous=False,
validate=False,
)
mynet.add_directed_arc(node_key_a=node_IMP, node_key_b=node_A, arcs=arc_tech_IA)
# identify node types
mynet.identify_node_types()
# no sos, regular time intervals
ipp = self.build_solve_ipp(
solver_options={},
perform_analysis=False,
print_solver_output=False,
networks={"mynet": mynet},
static_losses_mode=True, # just to reach a line,
mandatory_arcs=[],
max_number_parallel_arcs={},
# *********************************************************************
# *********************************************************************
# validation
assert ipp.has_peak_total_assessments()
assert ipp.results["Problem"][0]["Number of constraints"] == 24
assert ipp.results["Problem"][0]["Number of variables"] == 22
assert ipp.results["Problem"][0]["Number of nonzeros"] == 49
# the arc should be installed since it is required for feasibility
assert (
True
in ipp.networks["mynet"]
.edges[(node_IMP, node_A, 0)][Network.KEY_ARC_TECH]
.options_selected
)
# the flows should be 1.0, 0.0 and 2.0
assert math.isclose(
pyo.value(ipp.instance.var_v_glljqk[("mynet", node_IMP, node_A, 0, q, 0)]),
1.0,
assert math.isclose(
pyo.value(ipp.instance.var_v_glljqk[("mynet", node_IMP, node_A, 0, q, 1)]),
0.0,
assert math.isclose(
pyo.value(ipp.instance.var_v_glljqk[("mynet", node_IMP, node_A, 0, q, 2)]),
2.0,
# arc amplitude should be two
assert math.isclose(
pyo.value(ipp.instance.var_v_amp_gllj[("mynet", node_IMP, node_A, 0)]),
2.0,
# capex should be four
assert math.isclose(pyo.value(ipp.instance.var_capex), 4.0, abs_tol=1e-3)
# sdncf should be -5.7
assert math.isclose(pyo.value(ipp.instance.var_sdncf_q[q]), -5.7, abs_tol=1e-3)
# the objective function should be -9.7
assert math.isclose(pyo.value(ipp.instance.obj_f), -9.7, abs_tol=1e-3)
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
# *************************************************************************
# *************************************************************************
def test_single_network_two_arcs_problem(self):
# TODO: test simplifying this problem
# assessment
q = 0
tf = EconomicTimeFrame(
discount_rate=3.5/100,
reporting_periods={q: (0, 1)},
reporting_period_durations={q: (365 * 24 * 3600, 365 * 24 * 3600)},
time_intervals={q: (0, 1, 2)},
time_interval_durations={q: (1, 1, 1)},
)
# 2 nodes: one import, one regular
mynet = Network()
# import node
node_IMP = generate_pseudo_unique_key(mynet.nodes())
mynet.add_import_node(
node_key=node_IMP,
prices={
qpk: ResourcePrice(prices=1.0, volumes=None)
for qpk in tf.qpk()
}
)
# export node
node_EXP = generate_pseudo_unique_key(mynet.nodes())
mynet.add_export_node(
node_key=node_EXP,
prices={
qpk: ResourcePrice(prices=0.5, volumes=None)
for qpk in tf.qpk()
}
)
# other nodes
node_A = generate_pseudo_unique_key(mynet.nodes())
mynet.add_source_sink_node(
node_key=node_A,
base_flow={(q, 0): 0.50, (q, 1): -1.50, (q, 2): 1.00},
)
# arc IA
arc_tech_IA = Arcs(
name="any",
efficiency={qk: 0.5 for qk in tf.qk()},
efficiency_reverse=None,
static_loss=None,
capacity=[3],
minimum_cost=[2],
specific_capacity_cost=1,
capacity_is_instantaneous=False,
validate=False,
)
mynet.add_directed_arc(node_key_a=node_IMP, node_key_b=node_A, arcs=arc_tech_IA)
# arc AE
arc_tech_AE = Arcs(
name="any",
efficiency={qk: 0.8 for qk in tf.qk()},
efficiency_reverse=None,
static_loss=None,
capacity=[3],
minimum_cost=[2],
specific_capacity_cost=1,
capacity_is_instantaneous=False,
validate=False,
)
mynet.add_directed_arc(node_key_a=node_A, node_key_b=node_EXP, arcs=arc_tech_AE)
# identify node types
mynet.identify_node_types()
# no sos, regular time intervals
ipp = self.build_solve_ipp(
solver_options={},
perform_analysis=False,
plot_results=False, # True,
print_solver_output=False,
time_frame=tf,
networks={"mynet": mynet},
static_losses_mode=True, # just to reach a line,
mandatory_arcs=[],
max_number_parallel_arcs={},
simplify_problem=False,
)
assert ipp.has_peak_total_assessments()
assert ipp.results["Problem"][0]["Number of constraints"] == 42
assert ipp.results["Problem"][0]["Number of variables"] == 40
assert ipp.results["Problem"][0]["Number of nonzeros"] == 95
# *********************************************************************
# *********************************************************************
# validation
# TODO: make a dict with the results and a for loop to reduce extent
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
# the arc should be installed since it is required for feasibility
assert (
True
in ipp.networks["mynet"]
.edges[(node_IMP, node_A, 0)][Network.KEY_ARC_TECH]
.options_selected
)
# the flows should be 1.0, 0.0 and 2.0
assert math.isclose(
pyo.value(ipp.instance.var_v_glljqk[("mynet", node_IMP, node_A, 0, q, 0)]),
1.0,
abs_tol=1e-6,
)
assert math.isclose(
pyo.value(ipp.instance.var_v_glljqk[("mynet", node_IMP, node_A, 0, q, 1)]),
0.0,
abs_tol=1e-6,
)
assert math.isclose(
pyo.value(ipp.instance.var_v_glljqk[("mynet", node_IMP, node_A, 0, q, 2)]),
2.0,
abs_tol=1e-6,
)
# the flows should be 1.0, 0.0 and 2.0
assert math.isclose(
pyo.value(ipp.instance.var_v_glljqk[("mynet", node_A, node_EXP, 0, q, 0)]),
0.0,
abs_tol=1e-6,
)
assert math.isclose(
pyo.value(ipp.instance.var_v_glljqk[("mynet", node_A, node_EXP, 0, q, 1)]),
1.5,
abs_tol=1e-6,
)
assert math.isclose(
pyo.value(ipp.instance.var_v_glljqk[("mynet", node_A, node_EXP, 0, q, 2)]),
0.0,
abs_tol=1e-6,
)
# arc amplitude should be two
assert math.isclose(
pyo.value(ipp.instance.var_v_amp_gllj[("mynet", node_IMP, node_A, 0)]),
2.0,
abs_tol=0.01,
)
assert math.isclose(
pyo.value(ipp.instance.var_v_amp_gllj[("mynet", node_A, node_EXP, 0)]),
1.5,
abs_tol=0.01,
)
# capex should be four
assert math.isclose(pyo.value(ipp.instance.var_capex), 7.5, abs_tol=1e-3)
# sdncf should be -5.7+0.6*(0.966+0.934)
assert math.isclose(pyo.value(ipp.instance.var_sdncf_q[q]), -5.7+0.6*(0.966+0.934), abs_tol=1e-3)
# the objective function should be -9.7+0.6*(0.966+0.934)
assert math.isclose(pyo.value(ipp.instance.obj_f), -9.7+0.6*(0.966+0.934)-3.5, abs_tol=1e-3)
# *************************************************************************
# *************************************************************************
def test_single_network_single_arc_problem_simpler(self):
q = 0
tf = EconomicTimeFrame(
discount_rate=3.5/100,
reporting_periods={q: (0, 1)},
reporting_period_durations={q: (365 * 24 * 3600, 365 * 24 * 3600)},
time_intervals={q: (0, 1, 2)},
time_interval_durations={q: (1, 1, 1)},
# 2 nodes: one import, one regular
mynet = Network()
mynet.add_import_node(
prices={
qpk: ResourcePrice(prices=1.0, volumes=None)
for qpk in tf.qpk()
# other nodes
mynet.add_source_sink_node(
node_key=node_A,
# base_flow=[0.5, 0.0, 1.0],
base_flow={(q, 0): 0.50, (q, 1): 0.00, (q, 2): 1.00},
)
# arc IA
arc_tech_IA = Arcs(
efficiency_reverse=None,
static_loss=None,
capacity=[3],
minimum_cost=[2],
capacity_is_instantaneous=False,
validate=False,
)
mynet.add_directed_arc(node_key_a=node_IMP, node_key_b=node_A, arcs=arc_tech_IA)
# identify node types
mynet.identify_node_types()
# no sos, regular time intervals
ipp = self.build_solve_ipp(
solver_options={},
perform_analysis=False,
print_solver_output=False,
networks={"mynet": mynet},
static_losses_mode=True, # just to reach a line,
mandatory_arcs=[],
max_number_parallel_arcs={},
assert ipp.has_peak_total_assessments()
assert ipp.results["Problem"][0]["Number of constraints"] == 16 # 20
assert ipp.results["Problem"][0]["Number of variables"] == 15 # 19
assert ipp.results["Problem"][0]["Number of nonzeros"] == 28 # 36
# *********************************************************************
# *********************************************************************
# validation
# the arc should be installed since it is required for feasibility
assert (
True
in ipp.networks["mynet"]
.edges[(node_IMP, node_A, 0)][Network.KEY_ARC_TECH]
.options_selected
)
# capex should be four
assert math.isclose(pyo.value(ipp.instance.var_capex), 4.0, abs_tol=1e-3)
# the objective function should be -9.7
assert math.isclose(pyo.value(ipp.instance.obj_f), -9.7, abs_tol=1e-3)
# *************************************************************************
# *************************************************************************
def test_problem_increasing_imp_prices(self):
tf = EconomicTimeFrame(
discount_rate=0.0,
reporting_periods={q: (0,)},
reporting_period_durations={q: (365 * 24 * 3600,)},
time_intervals={q: (0,)},
time_interval_durations={q: (1,)},
# 2 nodes: one import, one regular
mynet = Network()
node_IMP = generate_pseudo_unique_key(mynet.nodes())
mynet.add_import_node(
# (q, p, k): ResourcePrice(prices=[1.0, 2.0], volumes=[0.5, None])
# for p in range(number_periods)
# for k in range(number_intervals)
qpk: ResourcePrice(prices=[1.0, 2.0], volumes=[0.5, None])
for qpk in tf.qpk()
# other nodes
node_A = generate_pseudo_unique_key(mynet.nodes())
mynet.add_source_sink_node(node_key=node_A, base_flow={(q, 0): 1.0})
# arc IA
arc_tech_IA = Arcs(
efficiency={(q, 0): 0.5},
efficiency_reverse=None,
static_loss=None,
capacity=[3],
minimum_cost=[2],
capacity_is_instantaneous=False,
validate=False,
)
mynet.add_directed_arc(node_key_a=node_IMP, node_key_b=node_A, arcs=arc_tech_IA)
# identify node types
mynet.identify_node_types()
# no sos, regular time intervals
ipp = self.build_solve_ipp(
solver_options={},
perform_analysis=False,
networks={"mynet": mynet},
static_losses_mode=True, # just to reach a line,
mandatory_arcs=[],
max_number_parallel_arcs={},
simplify_problem=False
assert not ipp.has_peak_total_assessments()
assert ipp.results["Problem"][0]["Number of constraints"] == 10
assert ipp.results["Problem"][0]["Number of variables"] == 11
assert ipp.results["Problem"][0]["Number of nonzeros"] == 20
# *********************************************************************
# *********************************************************************
# the arc should be installed since it is required for feasibility
assert (
True
in ipp.networks["mynet"]
.edges[(node_IMP, node_A, 0)][Network.KEY_ARC_TECH]
.options_selected
)
# the flows should be 1.0, 0.0 and 2.0
assert math.isclose(
pyo.value(ipp.instance.var_v_glljqk[("mynet", node_IMP, node_A, 0, q, 0)]),
# arc amplitude should be two
assert math.isclose(
pyo.value(ipp.instance.var_v_amp_gllj[("mynet", node_IMP, node_A, 0)]),
# capex should be four
assert math.isclose(pyo.value(ipp.instance.var_capex), 4.0, abs_tol=1e-3)
assert math.isclose(pyo.value(ipp.instance.var_sdncf_q[q]), -3.5, abs_tol=1e-3)
# the objective function should be -7.5
assert math.isclose(pyo.value(ipp.instance.obj_f), -7.5, abs_tol=1e-3)
# *************************************************************************
# *************************************************************************
def test_problem_decreasing_exp_prices(self):
q = 0
# time
number_intervals = 1
# periods
number_periods = 1
tf = EconomicTimeFrame(
discount_rate=0.0,
reporting_periods={q: (0,)},
reporting_period_durations={q: (365 * 24 * 3600,)},
time_intervals={q: (0,)},
time_interval_durations={q: (1,)},
# 2 nodes: one export, one regular
mynet = Network()
node_EXP = generate_pseudo_unique_key(mynet.nodes())
mynet.add_export_node(
(q, p, k): ResourcePrice(prices=[2.0, 1.0], volumes=[0.5, None])
for p in range(number_periods)
for k in range(number_intervals)
# other nodes
node_A = generate_pseudo_unique_key(mynet.nodes())
mynet.add_source_sink_node(node_key=node_A, base_flow={(q, 0): -1.0})
# arc IA
arc_tech_IA = Arcs(
efficiency={(q, 0): 0.5},
efficiency_reverse=None,
static_loss=None,
capacity=[3],
minimum_cost=[2],
capacity_is_instantaneous=False,
validate=False,
)
mynet.add_directed_arc(node_key_a=node_A, node_key_b=node_EXP, arcs=arc_tech_IA)
# identify node types
mynet.identify_node_types()
# no sos, regular time intervals
ipp = self.build_solve_ipp(
solver_options={},
perform_analysis=False,
networks={"mynet": mynet},
static_losses_mode=True, # just to reach a line,
mandatory_arcs=[],
max_number_parallel_arcs={},
simplify_problem=False,
assert not ipp.has_peak_total_assessments()
assert ipp.results["Problem"][0]["Number of constraints"] == 10
assert ipp.results["Problem"][0]["Number of variables"] == 11
assert ipp.results["Problem"][0]["Number of nonzeros"] == 20
# *********************************************************************
# *********************************************************************
# the arc should be installed since it is required for feasibility
assert (
True
in ipp.networks["mynet"]
.edges[(node_A, node_EXP, 0)][Network.KEY_ARC_TECH]
.options_selected
)
# the flows should be 1.0, 0.0 and 2.0
assert math.isclose(
pyo.value(ipp.instance.var_v_glljqk[("mynet", node_A, node_EXP, 0, q, 0)]),
# arc amplitude should be two
assert math.isclose(
pyo.value(ipp.instance.var_v_amp_gllj[("mynet", node_A, node_EXP, 0)]),
# capex should be four
assert math.isclose(pyo.value(ipp.instance.var_capex), 3.0, abs_tol=1e-3)
assert math.isclose(pyo.value(ipp.instance.var_sdncf_q[q]), 1.0, abs_tol=1e-3)
# the objective function should be -7.5
assert math.isclose(pyo.value(ipp.instance.obj_f), -2.0, abs_tol=1e-3)
# *************************************************************************
# *************************************************************************
def test_problem_increasing_imp_decreasing_exp_prices(self):
# scenario
q = 0
# time
number_intervals = 2
# periods
number_periods = 1
tf = EconomicTimeFrame(
discount_rate=0.0,
reporting_periods={q: (0,)},
reporting_period_durations={q: (365 * 24 * 3600,)},
time_intervals={q: (0,1)},
time_interval_durations={q: (1,1)},
# 3 nodes: one import, one export, one regular
mynet = Network()
node_IMP = generate_pseudo_unique_key(mynet.nodes())
mynet.add_import_node(
(q, p, k): ResourcePrice(prices=[1.0, 2.0], volumes=[0.5, None])
for p in range(number_periods)
for k in range(number_intervals)
# export node
node_EXP = generate_pseudo_unique_key(mynet.nodes())
mynet.add_export_node(
(q, p, k): ResourcePrice(prices=[2.0, 1.0], volumes=[0.5, None])
for p in range(number_periods)
for k in range(number_intervals)
# other nodes
node_A = generate_pseudo_unique_key(mynet.nodes())
mynet.add_source_sink_node(
node_key=node_A, base_flow={(q, 0): 1.0, (q, 1): -1.0}
)
# arc IA
arc_tech_IA = Arcs(
efficiency={(q, 0): 0.5, (q, 1): 0.5},
efficiency_reverse=None,
static_loss=None,
capacity=[3],
minimum_cost=[2],
capacity_is_instantaneous=False,
validate=False,
)
mynet.add_directed_arc(node_key_a=node_IMP, node_key_b=node_A, arcs=arc_tech_IA)
# arc AE
arc_tech_AE = Arcs(
efficiency={(q, 0): 0.5, (q, 1): 0.5},
efficiency_reverse=None,
static_loss=None,
capacity=[3],
minimum_cost=[2],
capacity_is_instantaneous=False,
validate=False,
)
mynet.add_directed_arc(node_key_a=node_A, node_key_b=node_EXP, arcs=arc_tech_AE)
# identify node types
mynet.identify_node_types()
# no sos, regular time intervals
ipp = self.build_solve_ipp(
solver_options={},
perform_analysis=False,
networks={"mynet": mynet},
static_losses_mode=True, # just to reach a line,
mandatory_arcs=[],
max_number_parallel_arcs={},
simplify_problem=False,
assert not ipp.has_peak_total_assessments()
assert ipp.results["Problem"][0]["Number of constraints"] == 23
assert ipp.results["Problem"][0]["Number of variables"] == 26
assert ipp.results["Problem"][0]["Number of nonzeros"] == 57
# *********************************************************************
# *********************************************************************
# the arc should be installed since it is required for feasibility
assert (
True
in ipp.networks["mynet"]
.edges[(node_IMP, node_A, 0)][Network.KEY_ARC_TECH]
.options_selected
)
# the arc should be installed since it is required for feasibility
assert (
True
in ipp.networks["mynet"]
.edges[(node_A, node_EXP, 0)][Network.KEY_ARC_TECH]
.options_selected
)
# interval 0: import only
assert math.isclose(
pyo.value(ipp.instance.var_v_glljqk[("mynet", node_IMP, node_A, 0, q, 0)]),
pyo.value(ipp.instance.var_v_glljqk[("mynet", node_A, node_EXP, 0, q, 0)]),
# interval 1: export only
assert math.isclose(
pyo.value(ipp.instance.var_v_glljqk[("mynet", node_IMP, node_A, 0, q, 1)]),
pyo.value(ipp.instance.var_v_glljqk[("mynet", node_A, node_EXP, 0, q, 1)]),
# IA amplitude
assert math.isclose(
pyo.value(ipp.instance.var_v_amp_gllj[("mynet", node_IMP, node_A, 0)]),
# AE amplitude
assert math.isclose(
pyo.value(ipp.instance.var_v_amp_gllj[("mynet", node_A, node_EXP, 0)]),
# capex should be 7.0: 4+3
assert math.isclose(pyo.value(ipp.instance.var_capex), 7.0, abs_tol=1e-3)
# sdncf should be -2.5: -3.5+1.0
assert math.isclose(pyo.value(ipp.instance.var_sdncf_q[q]), -2.5, abs_tol=1e-3)
# the objective function should be -9.5: -7.5-2.5
assert math.isclose(pyo.value(ipp.instance.obj_f), -9.5, abs_tol=1e-3)
# *************************************************************************
# *************************************************************************