Newer
Older
import random
import math
from statistics import mean
# local, internal
from src.topupopt.data.misc import utils
# ******************************************************************************
# ******************************************************************************
class TestDataUtils:
# *************************************************************************
# *************************************************************************
def test_profile_synching2(self):
integration_result = 10446
ratio_min_avg = 0.2
min_to_max_ratio = ratio_min_avg / (2 - ratio_min_avg)
avg_state = [
2.66,
2.34,
3.54,
7.42,
11.72,
16.94,
17.94,
17.98,
14.1,
10.48,
6.74,
31, # jan
28, # fev
31, # mar
30, # apr
31, # may
30, # june
31, # july
31, # august
30, # september
31, # october
30, # november
31, # december
]
# *********************************************************************
# *********************************************************************
new_profile = utils.create_profile_using_time_weighted_state(
integration_result=integration_result,
avg_state=avg_state,
time_interval_durations=time_interval_durations,
Pedro Magalhães
committed
min_to_max_ratio=min_to_max_ratio,
1500.0513102636057,
1436.2189684321309,
1500.0513102636044,
1206.6051909345115,
896.2493366213225,
525.7218723351705,
283.3475134825171,
185.83058429361876,
270.8127439165165,
538.2566419011698,
861.4985340132666,
1241.355993542566,
]
assert math.isclose(sum(new_profile), integration_result, abs_tol=abs_tol)
for sample, expected_sample in zip(new_profile, expected_result):
assert math.isclose(sample, expected_sample, abs_tol=abs_tol)
# *********************************************************************
# *********************************************************************
new_profile = utils.create_profile_using_time_weighted_state(
integration_result=integration_result,
avg_state=avg_state,
time_interval_durations=time_interval_durations,
Pedro Magalhães
committed
min_to_max_ratio=min_to_max_ratio,
274.3377308322865,
166.45500417060902,
274.33773083228533,
510.54549399699533,
878.1397044745678,
1191.4288125963367,
1491.041527613374,
1588.5584568022714,
1446.3379410149894,
1236.132399194721,
855.6521509182398,
533.0330475533233,
]
assert math.isclose(sum(new_profile), integration_result, abs_tol=abs_tol)
for sample, expected_sample in zip(new_profile, expected_result):
assert math.isclose(sample, expected_sample, abs_tol=abs_tol)
# *********************************************************************
# *********************************************************************
pmax, pmin = utils.max_min_sinusoidal_profile(
integration_result=integration_result,
period=sum(time_interval_durations),
time_interval_duration=mean(time_interval_durations),
expected_pmax, expected_pmin = 1558.972133279683, 182.02786672031687
assert math.isclose(pmax, expected_pmax, abs_tol=1e-3)
assert math.isclose(pmin, expected_pmin, abs_tol=1e-3)
# *********************************************************************
# *********************************************************************
error_triggered = False
time_interval_durations.pop(0)
try:
new_profile = utils.create_profile_using_time_weighted_state(
integration_result=integration_result,
avg_state=avg_state,
time_interval_durations=time_interval_durations,
Pedro Magalhães
committed
min_to_max_ratio=min_to_max_ratio,
except ValueError:
error_triggered = True
assert error_triggered
# *********************************************************************
# *********************************************************************
# *************************************************************************
# *************************************************************************
def test_profile_synching(self):
# synch, normal, ex1
profile = [1, 2, 3, 4]
reference_profile = [2, 3, 4, 1]
synched_profile = utils.synch_profile(profile, reference_profile)
assert repr(synched_profile) == repr(true_synched_profile)
profile = [-2, -1, 1, 2, 0]
reference_profile = [2, 3, 4, 1, 5]
synched_profile = utils.synch_profile(profile, reference_profile)
assert repr(synched_profile) == repr(true_synched_profile)
profile = [1, 2, 3, 4]
reference_profile = [2, 3, 4, 1]
synched_profile = utils.synch_profile(profile, reference_profile, synch=False)
assert repr(synched_profile) == repr(true_synched_profile)
# *************************************************************************
# *************************************************************************
def test_profile_generation(self):
# *********************************************************************
integration_period = 365 * 24 * 3600
number_intervals = random.randint(1, 8760)
phase_shift_radians = 2 * math.pi * random.random()
Pedro Magalhães
committed
min_to_max_ratio = 0.2
profile = utils.discrete_sinusoid_matching_integral(
integration_result,
time_interval_durations,
min_to_max_ratio,
phase_shift_radians=phase_shift_radians,
)
assert math.isclose(sum(profile), integration_result, abs_tol=0.01)
# *********************************************************************
# # Data for plotting
# x = [i for i in range(number_intervals)]
# y = profile
# ax.set(xlabel='time (s)', ylabel='voltage (mV)',
# title='About as simple as it gets, folks')
# ax.grid()
# *********************************************************************
random.random() * 3.6e3 for i in range(number_intervals)
]
phase_shift_radians = 2 * math.pi * random.random()
Pedro Magalhães
committed
min_to_max_ratio = 0.2
profile = utils.discrete_sinusoid_matching_integral(
integration_result,
time_interval_durations,
min_to_max_ratio,
phase_shift_radians=phase_shift_radians,
)
assert math.isclose(sum(profile), integration_result, abs_tol=0.01)
# *********************************************************************
# t = [sum(time_interval_durations[0:i])
# for i in range(len(time_interval_durations)+1)]
# # Data for plotting
# x = [(t[i+1]+t[i])*0.5
# for i in range(number_intervals)] # time interval's center point
# y = profile
# ax.set(xlabel='time (s)', ylabel='voltage (mV)',
# title='About as simple as it gets, folks')
# ax.grid()
# *********************************************************************
integration_period = 365 * 24 * 3600
number_intervals = random.randint(1, 8760)
Pedro Magalhães
committed
min_to_max_ratio = 0.2
integration_result, time_interval_durations, min_to_max_ratio
)
assert math.isclose(sum(profile), integration_result, abs_tol=0.01)
# *************************************************************************
# *************************************************************************
def test_key_generation(self):
# generate_pseudo_unique_key
new_key = utils.generate_pseudo_unique_key(key_list=key_list)
new_key = utils.generate_pseudo_unique_key(key_list=[])
new_key = utils.generate_pseudo_unique_key(
key_list=key_list, max_iterations=0
)
except Exception:
error_triggered = True
assert error_triggered
rand = random.Random()
rand.seed(360)
uuid.uuid4 = lambda: uuid.UUID(int=rand.getrandbits(128), version=4)
key_list = [
"3e225573-4e78-48c8-bb08-efbeeb795c22",
"f6d30428-15d1-41e9-a952-0742eaaa5a31",
"8c29b906-2518-41c5-ada8-07b83508b5b8",
"f9a72a39-1422-4a02-af97-906ce79c32a3",
"b6941a48-10cc-465d-bf53-178bd2939bd1",
]
new_key = utils.generate_pseudo_unique_key(key_list=key_list)
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
# *************************************************************************
# *************************************************************************
def test_state_correlated_profile(self):
# correlation: direct, inverse
# states: positive, negative
# time intervals: regular irregular
#
# profile with positive correlation, positive states, regular intervals
number_time_intervals = 10
states = [i+1 for i in range(number_time_intervals)]
integration_result = 100
time_interval_durations = [10 for i in range(number_time_intervals)]
states_correlate_profile = True
min_max_ratio = 0.2
profile = utils.generate_state_correlated_profile(
integration_result=integration_result,
states=states,
time_interval_durations=time_interval_durations,
states_correlate_profile=states_correlate_profile,
min_max_ratio=min_max_ratio,
solver='glpk'
)
# test profile
assert len(profile) == number_time_intervals
assert math.isclose(sum(profile), integration_result, abs_tol=1e-3)
assert math.isclose(min(profile), max(profile)*min_max_ratio, abs_tol=1e-3)
assert max(profile) == profile[number_time_intervals-1]
# profile with inverse correlation, positive states, regular intervals
number_time_intervals = 10
states = [i+1 for i in range(number_time_intervals)]
integration_result = 100
time_interval_durations = [10 for i in range(number_time_intervals)]
states_correlate_profile = False
min_max_ratio = 0.2
profile = utils.generate_state_correlated_profile(
integration_result=integration_result,
states=states,
time_interval_durations=time_interval_durations,
states_correlate_profile=states_correlate_profile,
min_max_ratio=min_max_ratio,
solver='glpk'
)
# test profile
assert len(profile) == number_time_intervals
assert math.isclose(sum(profile), integration_result, abs_tol=1e-3)
assert math.isclose(min(profile), max(profile)*min_max_ratio, abs_tol=1e-3)
assert min(profile) == profile[number_time_intervals-1]
# *************************************************************************
# *************************************************************************
def test_trigger_state_correlated_profile_error(self):
# trigger an error
number_time_intervals = 10
states = [i+1 for i in range(number_time_intervals)]
integration_result = 100
time_interval_durations = [10 for i in range(number_time_intervals+1)]
states_correlate_profile = True
min_max_ratio = 0.2
error_raised = False
try:
utils.generate_state_correlated_profile(
integration_result=integration_result,
states=states,
time_interval_durations=time_interval_durations,
states_correlate_profile=states_correlate_profile,
min_max_ratio=min_max_ratio,
solver='glpk'
)
except ValueError:
error_raised = True
assert error_raised
# *************************************************************************
# *************************************************************************
def test_manual_state_correlated_profile(self):
# correlation: direct, inverse
# states: positive, negative
# time intervals: regular irregular
#
# profile with positive correlation, positive states, regular intervals
number_time_intervals = 10
states = [i+1 for i in range(number_time_intervals)]
integration_result = 100
time_interval_durations = [10 for i in range(number_time_intervals)]
deviation_gain = 1
profile = utils.generate_manual_state_correlated_profile(
integration_result=integration_result,
states=states,
time_interval_durations=time_interval_durations,
deviation_gain=deviation_gain
)
# test profile
assert len(profile) == number_time_intervals
assert math.isclose(sum(profile), integration_result, abs_tol=1e-3)
assert max(profile) == profile[number_time_intervals-1]
# profile with inverse correlation, positive states, regular intervals
number_time_intervals = 10
states = [i+1 for i in range(number_time_intervals)]
integration_result = 100
time_interval_durations = [10 for i in range(number_time_intervals)]
deviation_gain = -1
profile = utils.generate_manual_state_correlated_profile(
integration_result=integration_result,
states=states,
time_interval_durations=time_interval_durations,
deviation_gain=deviation_gain
)
# test profile
assert len(profile) == number_time_intervals
assert math.isclose(sum(profile), integration_result, abs_tol=1e-3)
assert min(profile) == profile[number_time_intervals-1]
# *************************************************************************
# *************************************************************************
def test_trigger_manual_state_correlated_profile_error(self):
# trigger an error
number_time_intervals = 10
states = [i+1 for i in range(number_time_intervals)]
integration_result = 100
time_interval_durations = [10 for i in range(number_time_intervals+1)]
deviation_gain = -1
error_raised = False
try:
utils.generate_manual_state_correlated_profile(
integration_result=integration_result,
states=states,
time_interval_durations=time_interval_durations,
deviation_gain=deviation_gain
)
except ValueError:
error_raised = True
assert error_raised
# *************************************************************************
# *************************************************************************
# *****************************************************************************
# *****************************************************************************