Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
# imports
# standard
from numbers import Real
from math import inf, isclose
# local, external
# local, internal
# topupopt
from src.topupopt.data.dhn.network import PipeTrenchOptions, ExistingPipeTrench
from src.topupopt.data.dhn.network import PipeTrenchInvestments
from src.topupopt.data.finance.invest import Investment
# topupheat
from topupheat.pipes.single import StandardisedPipe, StandardisedPipeDatabase
import topupheat.pipes.trenches as trenches
from topupheat.common.fluids import FluidDatabase
# *****************************************************************************
# *****************************************************************************
class TestDistrictHeatingNetwork:
# TODO: method to check the validity of arcs
def test_existing_pipe_trench(self):
# fluid data
waterdata_file = "tests/data/incropera2006_saturated_water.csv"
phase = FluidDatabase.fluid_LIQUID
fluid_db = FluidDatabase(fluid="fluid", phase=phase, source=waterdata_file)
singlepipedata_files = ["tests/data/isoplus_singlepipes_s1.csv"]
pipedb = StandardisedPipeDatabase(source=singlepipedata_files)
pipe = StandardisedPipe(
pipe_tuple=pipedb.pipe_tuples[0],
# e_eff=pipe_e_eff,
# sp=pipe_specific_price,
db=pipedb,
)
# network details
supply_temperature = 85 + 273.15
return_temperature = 45 + 273.15
pressure = 1e5
# trench
pipe_distance = 0.52 # m
pipe_depth = 0.66 # m
# environmental
outdoor_temperature = 6 + 273.15 # K
h_gs = inf # 14.6 # W/m2K
soil_k = 1.5 # W/mK
# more information
max_specific_pressure_loss = 100 # Pa/m
mytrench = trenches.SupplyReturnPipeTrench(
pipe_center_depth=pipe_depth,
pipe_center_distance=pipe_distance,
fluid_db=fluid_db,
phase=phase,
pressure=pressure,
supply_temperature=supply_temperature,
return_temperature=return_temperature,
max_specific_pressure_loss=max_specific_pressure_loss,
supply_pipe=pipe,
)
# PipeTrenchOptions
myarcs = ExistingPipeTrench(
option_selected=0, trench=mytrench, name="hellotrench", length=20
)
# add static loss scenario
myarcs.set_static_losses(
scenario_key="scenario0",
ground_thermal_conductivity=soil_k,
ground_air_heat_transfer_coefficient=h_gs,
time_interval_duration=3600,
temperature_surroundings=outdoor_temperature,
)
# add another static loss scenario
myarcs.set_static_losses(
scenario_key="scenario1",
ground_thermal_conductivity=soil_k + 1,
ground_air_heat_transfer_coefficient=h_gs + 1,
time_interval_duration=3600 + 100,
temperature_surroundings=outdoor_temperature + 1,
)
number_steps = 3
myarcs.set_static_losses(
scenario_key="scenario2",
ground_thermal_conductivity=[soil_k for i in range(number_steps)],
ground_air_heat_transfer_coefficient=[h_gs for i in range(number_steps)],
time_interval_duration=[3600 for i in range(number_steps)],
temperature_surroundings=[outdoor_temperature for i in range(number_steps)],
)
# test arcs
n = myarcs.number_options()
assert myarcs.has_been_selected()
assert len(myarcs.capacity) == n
assert len(myarcs.minimum_cost) == n
assert isinstance(myarcs.specific_capacity_cost, Real)
assert type(myarcs.efficiency) == type(None)
assert type(myarcs.efficiency_reverse) == type(None)
assert type(myarcs.static_loss) == dict
assert len(myarcs.static_loss) != 0
for (h, q, k), sl in myarcs.static_loss.items():
assert isinstance(sl, Real)
assert sl >= 0
# redefine the capacity
capacity = tuple(myarcs.capacity)
myarcs.set_capacity(max_specific_pressure_loss=max_specific_pressure_loss + 100)
assert len(capacity) == len(myarcs.capacity)
for _c1, _c2 in zip(capacity, myarcs.capacity):
assert _c1 != _c2
# redefine the minimum costs
min_cost = tuple(myarcs.minimum_cost)
myarcs.set_minimum_cost(minimum_cost=[_mc + 1 for _mc in min_cost])
assert len(min_cost) == len(myarcs.minimum_cost)
for _mc1, _mc2 in zip(min_cost, myarcs.minimum_cost):
assert _mc1 + 1 == _mc2
# *********************************************************************
# *************************************************************************
# *************************************************************************
def test_creating_single_arcs(self):
# fluid data
waterdata_file = "tests/data/incropera2006_saturated_water.csv"
phase = FluidDatabase.fluid_LIQUID
fluid_db = FluidDatabase(fluid="fluid", phase=phase, source=waterdata_file)
singlepipedata_files = ["tests/data/isoplus_singlepipes_s1.csv"]
pipedb = StandardisedPipeDatabase(source=singlepipedata_files)
pipe = StandardisedPipe(
pipe_tuple=pipedb.pipe_tuples[0],
# e_eff=pipe_e_eff,
# sp=pipe_specific_price,
db=pipedb,
)
# network details
supply_temperature = 85 + 273.15
return_temperature = 45 + 273.15
pressure = 1e5
# trench
pipe_distance = 0.52 # m
pipe_depth = 0.66 # m
# environmental
outdoor_temperature = 6 + 273.15 # K
h_gs = inf # 14.6 # W/m2K
soil_k = 1.5 # W/mK
# more information
max_specific_pressure_loss = 100 # Pa/m
mytrench = trenches.SupplyReturnPipeTrench(
pipe_center_depth=pipe_depth,
pipe_center_distance=pipe_distance,
fluid_db=fluid_db,
phase=phase,
pressure=pressure,
supply_temperature=supply_temperature,
return_temperature=return_temperature,
max_specific_pressure_loss=max_specific_pressure_loss,
supply_pipe=pipe,
)
# PipeTrenchOptions
myarcs = PipeTrenchOptions(trench=mytrench, name="hellotrench", length=50)
# add static loss scenario
myarcs.set_static_losses(
scenario_key="scenario0",
ground_thermal_conductivity=soil_k,
ground_air_heat_transfer_coefficient=h_gs,
time_interval_duration=3600,
temperature_surroundings=outdoor_temperature,
)
# add another static loss scenario
myarcs.set_static_losses(
scenario_key="scenario1",
ground_thermal_conductivity=soil_k + 1,
ground_air_heat_transfer_coefficient=h_gs + 1,
time_interval_duration=3600 + 100,
temperature_surroundings=outdoor_temperature + 1,
)
number_steps = 3
myarcs.set_static_losses(
scenario_key="scenario2",
ground_thermal_conductivity=[soil_k for i in range(number_steps)],
ground_air_heat_transfer_coefficient=[h_gs for i in range(number_steps)],
time_interval_duration=[3600 for i in range(number_steps)],
temperature_surroundings=[outdoor_temperature for i in range(number_steps)],
)
# test arcs
n = myarcs.number_options()
assert not myarcs.has_been_selected()
assert len(myarcs.capacity) == n
assert len(myarcs.minimum_cost) == n
assert isinstance(myarcs.specific_capacity_cost, Real)
assert type(myarcs.efficiency) == type(None)
assert type(myarcs.efficiency_reverse) == type(None)
assert type(myarcs.static_loss) == dict
assert len(myarcs.static_loss) != 0
for (h, q, k), sl in myarcs.static_loss.items():
assert isinstance(sl, Real)
assert sl >= 0
# redefine the capacity
capacity = tuple(myarcs.capacity)
myarcs.set_capacity(max_specific_pressure_loss=max_specific_pressure_loss + 100)
assert len(capacity) == len(myarcs.capacity)
for _c1, _c2 in zip(capacity, myarcs.capacity):
assert _c1 != _c2
# redefine the minimum costs
min_cost = tuple(myarcs.minimum_cost)
myarcs.set_minimum_cost(minimum_cost=[_mc + 1 for _mc in min_cost])
assert len(min_cost) == len(myarcs.minimum_cost)
for _mc1, _mc2 in zip(min_cost, myarcs.minimum_cost):
assert _mc1 + 1 == _mc2
# *********************************************************************
# create arcs object with multiple static loss values as a first case
# PipeTrenchOptions
myarcs = PipeTrenchOptions(trench=mytrench, name="hellotrench", length=50)
number_steps = 3
myarcs.set_static_losses(
scenario_key="scenario2",
ground_thermal_conductivity=[soil_k for i in range(number_steps)],
ground_air_heat_transfer_coefficient=[h_gs for i in range(number_steps)],
time_interval_duration=[3600 for i in range(number_steps)],
temperature_surroundings=[outdoor_temperature for i in range(number_steps)],
)
# *************************************************************************
# *************************************************************************
def test_creating_single_arcs_investment(self):
# fluid data
waterdata_file = "tests/data/incropera2006_saturated_water.csv"
phase = FluidDatabase.fluid_LIQUID
fluid_db = FluidDatabase(fluid="fluid", phase=phase, source=waterdata_file)
singlepipedata_files = ["tests/data/isoplus_singlepipes_s1.csv"]
pipedb = StandardisedPipeDatabase(source=singlepipedata_files)
pipe = StandardisedPipe(
pipe_tuple=pipedb.pipe_tuples[0],
# e_eff=pipe_e_eff,
# sp=pipe_specific_price,
db=pipedb,
)
# network details
supply_temperature = 85 + 273.15
return_temperature = 45 + 273.15
pressure = 1e5
# trench
pipe_distance = 0.52 # m
pipe_depth = 0.66 # m
# environmental
outdoor_temperature = 6 + 273.15 # K
h_gs = inf # 14.6 # W/m2K
soil_k = 1.5 # W/mK
# more information
max_specific_pressure_loss = 100 # Pa/m
mytrench = trenches.SupplyReturnPipeTrench(
pipe_center_depth=pipe_depth,
pipe_center_distance=pipe_distance,
fluid_db=fluid_db,
phase=phase,
pressure=pressure,
supply_temperature=supply_temperature,
return_temperature=return_temperature,
max_specific_pressure_loss=max_specific_pressure_loss,
supply_pipe=pipe,
)
# investments
number_periods = 20
discount_rate = 0.035
discount_rates = tuple([discount_rate for p in range(number_periods)])
inv = Investment(discount_rates=discount_rates)
# PipeTrenchOptions
myarcs = PipeTrenchInvestments(
trench=mytrench,
name="hellotrench",
length=50,
investments=(inv,),
)
# add static loss scenario
myarcs.set_static_losses(
scenario_key="scenario0",
ground_thermal_conductivity=soil_k,
ground_air_heat_transfer_coefficient=h_gs,
time_interval_duration=3600,
temperature_surroundings=outdoor_temperature,
)
# add another static loss scenario
myarcs.set_static_losses(
scenario_key="scenario1",
ground_thermal_conductivity=soil_k + 1,
ground_air_heat_transfer_coefficient=h_gs + 1,
time_interval_duration=3600 + 100,
temperature_surroundings=outdoor_temperature + 1,
)
number_steps = 3
myarcs.set_static_losses(
scenario_key="scenario2",
ground_thermal_conductivity=[soil_k for i in range(number_steps)],
ground_air_heat_transfer_coefficient=[h_gs for i in range(number_steps)],
time_interval_duration=[3600 for i in range(number_steps)],
temperature_surroundings=[outdoor_temperature for i in range(number_steps)],
)
# test arcs
n = myarcs.number_options()
assert not myarcs.has_been_selected()
assert len(myarcs.capacity) == n
assert len(myarcs.minimum_cost) == n
assert isinstance(myarcs.specific_capacity_cost, Real)
assert type(myarcs.efficiency) == type(None)
assert type(myarcs.efficiency_reverse) == type(None)
assert type(myarcs.static_loss) == dict
assert len(myarcs.static_loss) != 0
for (h, q, k), sl in myarcs.static_loss.items():
assert isinstance(sl, Real)
assert sl >= 0
# redefine the capacity
capacity = tuple(myarcs.capacity)
myarcs.set_capacity(max_specific_pressure_loss=max_specific_pressure_loss + 100)
assert len(capacity) == len(myarcs.capacity)
for _c1, _c2 in zip(capacity, myarcs.capacity):
assert _c1 != _c2
# redefine the minimum costs
min_cost = tuple(myarcs.minimum_cost)
myarcs.set_minimum_cost(minimum_cost=[_mc + 1 for _mc in min_cost])
assert len(min_cost) == len(myarcs.minimum_cost)
for _mc1, _mc2 in zip(min_cost, myarcs.minimum_cost):
assert _mc1 + 1 == _mc2
# *********************************************************************
# create arcs object with multiple static loss values as a first case
# PipeTrenchOptions
myarcs = PipeTrenchOptions(trench=mytrench, name="hellotrench", length=50)
number_steps = 3
myarcs.set_static_losses(
scenario_key="scenario2",
ground_thermal_conductivity=[soil_k for i in range(number_steps)],
ground_air_heat_transfer_coefficient=[h_gs for i in range(number_steps)],
time_interval_duration=[3600 for i in range(number_steps)],
temperature_surroundings=[outdoor_temperature for i in range(number_steps)],
)
# *************************************************************************
# *************************************************************************
def test_creating_multiple_arcs(self):
# fluid data
waterdata_file = "tests/data/incropera2006_saturated_water.csv"
phase = FluidDatabase.fluid_LIQUID
fluid_db = FluidDatabase(fluid="fluid", phase=phase, source=waterdata_file)
singlepipedata_files = ["tests/data/isoplus_singlepipes_s1.csv"]
pipedb = StandardisedPipeDatabase(source=singlepipedata_files)
pipe = StandardisedPipe(
pipe_tuple=pipedb.pipe_tuples[0],
# e_eff=pipe_e_eff,
# sp=pipe_specific_price,
db=pipedb,
)
# network details
supply_temperature = 85 + 273.15
return_temperature = 45 + 273.15
pressure = 1e5
# trench
pipe_distance = 0.52 # m
pipe_depth = 0.66 # m
# environmental
outdoor_temperature = 6 + 273.15 # K
h_gs = inf # 14.6 # W/m2K
soil_k = 1.5 # W/mK
# more information
max_specific_pressure_loss = 100 # Pa/m
number_options = 2
mytrench = trenches.SupplyReturnPipeTrench(
pipe_center_depth=[pipe_depth for i in range(number_options)],
pipe_center_distance=[pipe_distance for i in range(number_options)],
fluid_db=fluid_db,
phase=phase,
pressure=[pressure for i in range(number_options)],
supply_temperature=[supply_temperature for i in range(number_options)],
return_temperature=[return_temperature for i in range(number_options)],
max_specific_pressure_loss=[
max_specific_pressure_loss for i in range(number_options)
],
supply_pipe=[pipe for i in range(number_options)],
)
# PipeTrenchOptions
myarcs = PipeTrenchOptions(trench=mytrench, name="hellotrench", length=50)
# add static loss scenario
myarcs.set_static_losses(
scenario_key="scenario0",
ground_thermal_conductivity=soil_k,
ground_air_heat_transfer_coefficient=h_gs,
time_interval_duration=3600,
temperature_surroundings=outdoor_temperature,
)
# add another static loss scenario
myarcs.set_static_losses(
scenario_key="scenario1",
ground_thermal_conductivity=soil_k + 1,
ground_air_heat_transfer_coefficient=h_gs + 1,
time_interval_duration=3600 + 100,
temperature_surroundings=outdoor_temperature + 1,
)
# add static loss scenario
number_steps = 3
myarcs.set_static_losses(
scenario_key="scenario2",
ground_thermal_conductivity=[soil_k for i in range(number_steps)],
ground_air_heat_transfer_coefficient=[h_gs for i in range(number_steps)],
time_interval_duration=[3600 for i in range(number_steps)],
temperature_surroundings=[outdoor_temperature for i in range(number_steps)],
)
# test arcs
assert number_options == myarcs.number_options()
assert len(myarcs.capacity) == number_options
assert len(myarcs.minimum_cost) == number_options
assert isinstance(myarcs.specific_capacity_cost, Real)
assert type(myarcs.efficiency) == type(None)
assert type(myarcs.efficiency_reverse) == type(None)
assert type(myarcs.static_loss) == dict
assert len(myarcs.static_loss) != 0
for (h, q, k), sl in myarcs.static_loss.items():
assert isinstance(sl, Real)
assert sl >= 0
# redefine the capacity
capacity = tuple(myarcs.capacity)
myarcs.set_capacity(
max_specific_pressure_loss=[
max_specific_pressure_loss + 100 for i in range(number_options)
]
)
assert len(capacity) == len(myarcs.capacity)
for _c1, _c2 in zip(capacity, myarcs.capacity):
assert _c1 != _c2
# redefine the minimum costs
min_cost = tuple(myarcs.minimum_cost)
myarcs.set_minimum_cost(minimum_cost=[_mc + 1 for _mc in min_cost])
assert len(min_cost) == len(myarcs.minimum_cost)
for _mc1, _mc2 in zip(min_cost, myarcs.minimum_cost):
assert _mc1 + 1 == _mc2
# try redefining the capacity with a single input (non-list, non-tuple)
error_raised = False
try:
myarcs.set_capacity(
max_specific_pressure_loss=max_specific_pressure_loss + 100
)
except TypeError:
# vector mode and only one max specific pressure loss value was provided
error_raised = True
assert error_raised
# *********************************************************************
# PipeTrenchOptions
myarcs = PipeTrenchOptions(trench=mytrench, name="hellotrench", length=50)
number_steps = 3
myarcs.set_static_losses(
scenario_key="scenario2",
ground_thermal_conductivity=[soil_k for i in range(number_steps)],
ground_air_heat_transfer_coefficient=[h_gs for i in range(number_steps)],
time_interval_duration=[3600 for i in range(number_steps)],
temperature_surroundings=[outdoor_temperature for i in range(number_steps)],
)
# *************************************************************************
# *************************************************************************
# *****************************************************************************
# *****************************************************************************
# # test pipe trench objects
# def example_pipe_trench_objects(fluid_db,
# single_pipe_db,
# twin_pipe_db):
# #**************************************************************************
# #**************************************************************************
# # water pipes
# list_single_pipe_tuples = [pipe_tuple
# for pipe_tuple in single_pipe_db.pipe_tuples]
# list_twin_pipe_tuples = [pipe_tuple
# for pipe_tuple in twin_pipe_db.pipe_tuples]
# list_single_pipes = [
# StandardisedPipe(pipe_tuple=pipe_tuple,
# db=single_pipe_db)
# for i, pipe_tuple in enumerate(list_single_pipe_tuples)
# ]
# list_twin_pipes = [
# StandardisedTwinPipe(pipe_tuple=pipe_tuple,
# db=twin_pipe_db)
# for i, pipe_tuple in enumerate(list_twin_pipe_tuples)
# ]
# #**************************************************************************
# # what does it do?
# # >> Creates a distric heating trench object with multiple options
# # seed number
# seed_number = 249
# rand.seed(seed_number)
# # number of intervals
# number_intervals = 3
# time_interval_duration = [rand.random() for k in range(number_intervals)]
# # network
# dhn_supply_temperature = 100+273.15 # K
# dhn_return_temperature = 60+273.15 # K
# dhn_max_specific_pressure_loss = 100 # Pa
# # trench
# trench_pipe_depth = 3
# trench_pipe_distance = 2 #
# trench_ground_thermal_conductivity = 1.8 # 0.9-2.7
# trench_ground_surface_temperature = [
# 7.8+273.15 for i in range(number_intervals)] # K
# trench_ground_air_heat_transfer_coefficient = 14.6 # W/m2
# # pipe details
# pipe_length = 1000
# pipe_relative_roughness = 1e-3
# #**************************************************************************
# #**************************************************************************
# # single pipe trenches
# trench_tech = trenches.SupplyReturnPipeTrenchWithIdenticalPipes(
# pipes=list_single_pipes,
# fluid_database=fluid_db,
# ground_thermal_conductivity=trench_ground_thermal_conductivity,
# ground_air_heat_transfer_coefficient=trench_ground_air_heat_transfer_coefficient,
# pipe_center_depth=trench_pipe_depth,
# pipe_center_distance=trench_pipe_distance,
# supply_temperature=dhn_supply_temperature,
# return_temperature=dhn_return_temperature,
# max_specific_pressure_loss=dhn_max_specific_pressure_loss,
# time_interval_duration=time_interval_duration,
# surroundings_temperature=trench_ground_surface_temperature)
# # single pipe, no external cost, no offset
# pipe_trench_obj = PipeTrench(name='hello',
# trenches={0: trench_tech},
# length=pipe_length,
# use_proportional_losses=True,
# use_static_losses=True,
# minimum_cost=None,
# minimum_cost_offset=None,
# validate=True)
# original_min_cost = tuple(pipe_trench_obj.minimum_cost)
# # single pipe, no external cost, offset
# pipe_trench_obj = PipeTrench(name='hello',
# trenches={0: trench_tech},
# length=pipe_length,
# use_proportional_losses=True,
# use_static_losses=True,
# minimum_cost=None,
# minimum_cost_offset=tuple(
# rand.random()
# for pipe in list_single_pipes
# ),
# validate=True)
# for orig_cost, new_cost in zip(original_min_cost,
# pipe_trench_obj.minimum_cost):
# assert orig_cost <= new_cost
# # single pipe, external cost, no offset
# external_cost = tuple(0.2+min_cost for min_cost in original_min_cost)
# pipe_trench_obj = PipeTrench(name='hello',
# trenches={0: trench_tech},
# length=pipe_length,
# use_proportional_losses=True,
# use_static_losses=True,
# minimum_cost=external_cost,
# minimum_cost_offset=None,
# validate=True)
# assert external_cost == pipe_trench_obj.minimum_cost
# # single pipe, external cost, offset
Pedro L. Magalhães
committed
# error_raised = False
# try:
# pipe_trench_obj = PipeTrench(name='hello',
# trenches={0: trench_tech},
# length=pipe_length,
# use_proportional_losses=True,
# use_static_losses=True,
# minimum_cost=original_min_cost,
# minimum_cost_offset=external_cost,
# validate=True)
# except TypeError:
Pedro L. Magalhães
committed
# error_raised = True
# assert error_raised
Pedro L. Magalhães
committed
# error_raised = False
# try:
# pipe_trench_obj = PipeTrench(name='hello',
# trenches={0: trench_tech},
# length=pipe_length,
# use_proportional_losses=True,
# use_static_losses=True,
# minimum_cost=None,
# minimum_cost_offset=list(
# rand.random()
# for pipe in list_single_pipes
# ),
# validate=True)
# except TypeError:
Pedro L. Magalhães
committed
# error_raised = True
# assert error_raised
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
# #**************************************************************************
# #**************************************************************************
# # twin pipe trenches
# trench_tech = trenches.SupplyReturnPipeTrenchWithIdenticalPipes(
# pipes=list_twin_pipes,
# fluid_database=fluid_db,
# ground_thermal_conductivity=trench_ground_thermal_conductivity,
# ground_air_heat_transfer_coefficient=trench_ground_air_heat_transfer_coefficient,
# pipe_center_depth=trench_pipe_depth,
# pipe_center_distance=trench_pipe_distance,
# supply_temperature=dhn_supply_temperature,
# return_temperature=dhn_return_temperature,
# max_specific_pressure_loss=dhn_max_specific_pressure_loss,
# time_interval_duration=time_interval_duration,
# surroundings_temperature=trench_ground_surface_temperature)
# # single pipe, no external cost, no offset
# pipe_trench_obj = PipeTrench(name='hello',
# trenches={0: trench_tech},
# length=pipe_length,
# use_proportional_losses=True,
# use_static_losses=True,
# minimum_cost=None,
# minimum_cost_offset=None,
# validate=True)
# original_min_cost = tuple(pipe_trench_obj.minimum_cost)
# # single pipe, no external cost, offset
# pipe_trench_obj = PipeTrench(name='hello',
# trenches={0: trench_tech},
# length=pipe_length,
# use_proportional_losses=True,
# use_static_losses=True,
# minimum_cost=None,
# minimum_cost_offset=tuple(
# rand.random()
# for pipe in list_twin_pipes
# ),
# validate=True)
# for orig_cost, new_cost in zip(original_min_cost,
# pipe_trench_obj.minimum_cost):
# assert orig_cost <= new_cost
# # single pipe, external cost, no offset
# external_cost = tuple(0.2+min_cost for min_cost in original_min_cost)
# pipe_trench_obj = PipeTrench(name='hello',
# trenches={0: trench_tech},
# length=pipe_length,
# use_proportional_losses=True,
# use_static_losses=True,
# minimum_cost=external_cost,
# minimum_cost_offset=None,
# validate=True)
# assert external_cost == pipe_trench_obj.minimum_cost
# # single pipe, external cost, offset
Pedro L. Magalhães
committed
# error_raised = False
# try:
# pipe_trench_obj = PipeTrench(name='hello',
# trenches={0: trench_tech},
# length=pipe_length,
# use_proportional_losses=True,
# use_static_losses=True,
# minimum_cost=original_min_cost,
# minimum_cost_offset=external_cost,
# validate=True)
# except TypeError:
Pedro L. Magalhães
committed
# error_raised = True
# assert error_raised
Pedro L. Magalhães
committed
# error_raised = False
# try:
# pipe_trench_obj = PipeTrench(name='hello',
# trenches={0: trench_tech},
# length=pipe_length,
# use_proportional_losses=True,
# use_static_losses=True,
# minimum_cost=None,
# minimum_cost_offset=list(
# rand.random()
# for pipe in list_twin_pipes
# ),
# validate=True)
# except TypeError:
Pedro L. Magalhães
committed
# error_raised = True
# assert error_raised
# #**************************************************************************
# #**************************************************************************
# #******************************************************************************
# #******************************************************************************