Newer
Older
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import random
from networkx import binomial_tree, MultiDiGraph
# local
from src.topupopt.problems.esipp.network import Arcs, Network
from src.topupopt.problems.esipp.network import ArcsWithoutLosses
from src.topupopt.problems.esipp.network import ArcsWithoutProportionalLosses
from src.topupopt.problems.esipp.network import ArcsWithoutStaticLosses
from src.topupopt.problems.esipp.resource import ResourcePrice
from src.topupopt.data.misc.utils import generate_pseudo_unique_key
# *****************************************************************************
# *****************************************************************************
class TestNetwork:
# *************************************************************************
# *************************************************************************
def test_arc_technologies_static_losses(self):
number_time_intervals = 3
number_scenarios = 2
number_options = 4
efficiency_dict = {
(q, k): 0.95
for q in range(number_scenarios)
for k in range(number_time_intervals)
}
static_loss_dict = {
(h, q, k): 1
for h in range(number_options)
for q in range(number_scenarios)
for k in range(number_time_intervals)
}
for capacity_is_instantaneous in (True, False):
arc_tech = Arcs(
name="any",
efficiency=efficiency_dict,
efficiency_reverse=None,
capacity=tuple(1 + o for o in range(number_options)),
minimum_cost=tuple(1 + o for o in range(number_options)),
specific_capacity_cost=1,
capacity_is_instantaneous=capacity_is_instantaneous,
static_loss=static_loss_dict,
validate=True,
)
assert arc_tech.has_proportional_losses()
assert arc_tech.has_static_losses()
assert not arc_tech.is_infinite_capacity()
assert not arc_tech.has_been_selected()
assert arc_tech.is_isotropic(reverse_none_means_isotropic=True)
assert not arc_tech.is_isotropic(reverse_none_means_isotropic=False)
# isotropic
arc_tech = Arcs(
name="any",
efficiency=None,
efficiency_reverse=None,
capacity=tuple(1 + o for o in range(number_options)),
minimum_cost=tuple(1 + o for o in range(number_options)),
specific_capacity_cost=1,
capacity_is_instantaneous=capacity_is_instantaneous,
static_loss=static_loss_dict,
validate=True,
)
assert not arc_tech.has_proportional_losses()
assert arc_tech.has_static_losses()
assert not arc_tech.is_infinite_capacity()
assert not arc_tech.has_been_selected()
assert arc_tech.is_isotropic(reverse_none_means_isotropic=True)
assert arc_tech.is_isotropic(reverse_none_means_isotropic=False)
# create arc technology with only one option
arc_tech = Arcs(
name="any",
efficiency=efficiency_dict,
efficiency_reverse=None,
capacity=(1,),
minimum_cost=(1,),
specific_capacity_cost=1,
capacity_is_instantaneous=capacity_is_instantaneous,
static_loss={
(0, q, k): 1
# for h in range(number_options)
for q in range(number_scenarios)
for k in range(number_time_intervals)
},
validate=True,
)
assert arc_tech.has_proportional_losses()
assert arc_tech.has_static_losses()
assert not arc_tech.is_infinite_capacity()
assert not arc_tech.has_been_selected()
assert arc_tech.is_isotropic(reverse_none_means_isotropic=True)
assert not arc_tech.is_isotropic(reverse_none_means_isotropic=False)
# create arc technology for one time interval
arc_tech = Arcs(
name="any",
efficiency={
(q, 0): 0.5
for q in range(number_scenarios)
# for k in range(number_time_intervals)
},
efficiency_reverse=None,
capacity=tuple(1 + o for o in range(number_options)),
minimum_cost=tuple(1 + o for o in range(number_options)),
specific_capacity_cost=1,
capacity_is_instantaneous=capacity_is_instantaneous,
static_loss={
(h, q, 0): 1
for h in range(number_options)
for q in range(number_scenarios)
# for k in range(number_time_intervals)
},
validate=True,
)
assert arc_tech.has_proportional_losses()
assert arc_tech.has_static_losses()
assert not arc_tech.is_infinite_capacity()
assert not arc_tech.has_been_selected()
assert arc_tech.is_isotropic(reverse_none_means_isotropic=True)
assert not arc_tech.is_isotropic(reverse_none_means_isotropic=False)
# *********************************************************************
# TypeError: The static losses should be given as a dict or None.
Pedro L. Magalhães
committed
error_raised = False
try:
_ = Arcs(
name="any",
efficiency=None,
efficiency_reverse=None,
capacity=tuple(1 + o for o in range(number_options)),
minimum_cost=tuple(1 + o for o in range(number_options)),
specific_capacity_cost=1,
capacity_is_instantaneous=capacity_is_instantaneous,
static_loss=tuple(
[k for k in range(number_time_intervals)]
for o in range(number_options)
),
validate=True,
)
except TypeError:
Pedro L. Magalhães
committed
error_raised = True
assert error_raised
# ValueError('The static losses should be specified for each arc
# option.')
Pedro L. Magalhães
committed
error_raised = False
try:
_ = Arcs(
name="any",
efficiency=None,
efficiency_reverse=None,
capacity=tuple(1 + o for o in range(number_options)),
minimum_cost=tuple(1 + o for o in range(number_options)),
specific_capacity_cost=1,
capacity_is_instantaneous=capacity_is_instantaneous,
static_loss={
(
h,
q,
): 1
for h in range(number_options)
for q in range(number_scenarios)
},
validate=True,
)
except ValueError:
Pedro L. Magalhães
committed
error_raised = True
assert error_raised
# TypeError('The static losses must be specified via a list of lists.')
Pedro L. Magalhães
committed
error_raised = False
try:
_ = Arcs(
name="any",
efficiency=None,
efficiency_reverse=None,
capacity=tuple(1 + o for o in range(number_options)),
minimum_cost=tuple(1 + o for o in range(number_options)),
specific_capacity_cost=1,
capacity_is_instantaneous=capacity_is_instantaneous,
static_loss=[
tuple(k for k in range(number_time_intervals))
for o in range(number_options)
],
validate=True,
)
except TypeError:
Pedro L. Magalhães
committed
error_raised = True
assert error_raised
# ValueError('The static loss values are inconsistent with the number '
# 'of options, scenarios and intervals.')
Pedro L. Magalhães
committed
error_raised = False
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
try:
arc_tech = Arcs(
name="any",
efficiency=None,
efficiency_reverse=None,
capacity=tuple(1 + o for o in range(number_options)),
minimum_cost=tuple(1 + o for o in range(number_options)),
specific_capacity_cost=1,
capacity_is_instantaneous=capacity_is_instantaneous,
static_loss={
(h, q, k): 1
for h in range(number_options)
for q in range(number_scenarios)
for k in range(number_time_intervals - 1)
},
validate=True,
)
arc_tech.validate_sizes(
number_options=number_options,
number_scenarios=number_scenarios,
number_intervals=[
number_time_intervals for _ in range(number_scenarios)
],
)
except ValueError:
Pedro L. Magalhães
committed
error_raised = True
assert error_raised
# TypeError('The static losses were not provided as numbers.')
Pedro L. Magalhães
committed
error_raised = False
try:
_ = Arcs(
name="any",
efficiency=None,
efficiency_reverse=None,
capacity=tuple(1 + o for o in range(number_options)),
minimum_cost=tuple(1 + o for o in range(number_options)),
specific_capacity_cost=1,
capacity_is_instantaneous=capacity_is_instantaneous,
static_loss={
(h, q, k): str(3.54)
for h in range(number_options)
for q in range(number_scenarios)
for k in range(number_time_intervals)
},
validate=True,
)
except TypeError:
Pedro L. Magalhães
committed
error_raised = True
assert error_raised
# ValueError('The static losses must be positive or zero.')
Pedro L. Magalhães
committed
error_raised = False
try:
_ = Arcs(
name="any",
efficiency=None,
efficiency_reverse=None,
capacity=tuple(1 + o for o in range(number_options)),
minimum_cost=tuple(1 + o for o in range(number_options)),
specific_capacity_cost=1,
capacity_is_instantaneous=capacity_is_instantaneous,
static_loss={
(h, q, k): -random.randint(0, 1) * random.random()
for h in range(number_options)
for q in range(number_scenarios)
for k in range(number_time_intervals)
},
validate=True,
)
except ValueError:
Pedro L. Magalhães
committed
error_raised = True
assert error_raised
# TypeError: The static loss dict keys must be tuples
Pedro L. Magalhães
committed
error_raised = False
try:
_ = Arcs(
name="hey",
efficiency=None,
efficiency_reverse=None,
static_loss={k: 1 for k in range(number_time_intervals)},
capacity=tuple(1 + o for o in range(number_options)),
minimum_cost=tuple(1 + o for o in range(number_options)),
specific_capacity_cost=1,
capacity_is_instantaneous=capacity_is_instantaneous,
validate=True,
)
except TypeError:
Pedro L. Magalhães
committed
error_raised = True
assert error_raised
# ValueError( 'The static loss dict keys must be tuples of size 3.')
Pedro L. Magalhães
committed
error_raised = False
try:
_ = Arcs(
name="hey",
efficiency=None,
efficiency_reverse=None,
static_loss={(k, 3): 1 for k in range(number_time_intervals)},
capacity=tuple(1 + o for o in range(number_options)),
minimum_cost=tuple(1 + o for o in range(number_options)),
specific_capacity_cost=1,
capacity_is_instantaneous=capacity_is_instantaneous,
validate=True,
)
except ValueError:
Pedro L. Magalhães
committed
error_raised = True
assert error_raised
# TypeError(The staticl osses should be given as a dict or None.')
Pedro L. Magalhães
committed
error_raised = False
try:
_ = Arcs(
name="hey",
efficiency=None,
efficiency_reverse=None,
static_loss=[1 for k in range(number_time_intervals)],
capacity=tuple(1 + o for o in range(number_options)),
minimum_cost=tuple(1 + o for o in range(number_options)),
specific_capacity_cost=1,
capacity_is_instantaneous=capacity_is_instantaneous,
validate=True,
)
except TypeError:
Pedro L. Magalhães
committed
error_raised = True
assert error_raised
# ValueError(
# 'No static loss values were provided. There should be one'+
# ' value per option, scenario and time interval.')
Pedro L. Magalhães
committed
error_raised = False
try:
_ = Arcs(
name="hey",
efficiency=None,
efficiency_reverse=None,
static_loss={},
capacity=tuple(1 + o for o in range(number_options)),
minimum_cost=tuple(1 + o for o in range(number_options)),
specific_capacity_cost=1,
capacity_is_instantaneous=capacity_is_instantaneous,
validate=True,
)
except ValueError:
Pedro L. Magalhães
committed
error_raised = True
assert error_raised
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
# *************************************************************************
# *************************************************************************
def test_arc_technologies(self):
# *********************************************************************
# create arc technology using instantaneous capacities
number_scenarios = 2
number_options = 4
number_time_intervals = 3
efficiency_dict = {
(q, k): 0.85
for q in range(number_scenarios)
for k in range(number_time_intervals)
}
for capacity_is_instantaneous in (True, False):
arc_tech = Arcs(
name="any",
efficiency=efficiency_dict,
efficiency_reverse=None,
static_loss=None,
capacity=tuple(1 + o for o in range(number_options)),
minimum_cost=tuple(1 + o for o in range(number_options)),
specific_capacity_cost=1,
capacity_is_instantaneous=capacity_is_instantaneous,
validate=True,
)
assert arc_tech.has_proportional_losses()
assert not arc_tech.has_static_losses()
assert not arc_tech.is_infinite_capacity()
assert not arc_tech.has_been_selected()
assert arc_tech.is_isotropic(reverse_none_means_isotropic=True)
assert not arc_tech.is_isotropic(reverse_none_means_isotropic=False)
assert arc_tech.has_constant_efficiency()
# create arc technology with only one option
arc_tech = Arcs(
name="any",
efficiency=efficiency_dict,
efficiency_reverse=None,
static_loss=None,
capacity=(1,),
minimum_cost=(1,),
specific_capacity_cost=1,
capacity_is_instantaneous=capacity_is_instantaneous,
validate=True,
)
assert arc_tech.has_proportional_losses()
assert not arc_tech.has_static_losses()
assert not arc_tech.is_infinite_capacity()
assert not arc_tech.has_been_selected()
assert arc_tech.is_isotropic(reverse_none_means_isotropic=True)
assert not arc_tech.is_isotropic(reverse_none_means_isotropic=False)
assert arc_tech.has_constant_efficiency()
# create arc technology for one time interval
arc_tech = Arcs(
name="any",
efficiency={(0, 0): 0.95},
efficiency_reverse=None,
static_loss=None,
capacity=tuple(1 + o for o in range(number_options)),
minimum_cost=tuple(1 + o for o in range(number_options)),
specific_capacity_cost=1,
capacity_is_instantaneous=capacity_is_instantaneous,
validate=True,
)
assert arc_tech.has_proportional_losses()
assert not arc_tech.has_static_losses()
assert not arc_tech.is_infinite_capacity()
assert not arc_tech.has_been_selected()
assert arc_tech.is_isotropic(reverse_none_means_isotropic=True)
assert not arc_tech.is_isotropic(reverse_none_means_isotropic=False)
assert arc_tech.has_constant_efficiency()
# create arc technology for one time interval and isotropic
arc_tech = Arcs(
name="any",
efficiency={(0, 0): 0.95},
efficiency_reverse={(0, 0): 0.95},
static_loss=None,
capacity=tuple(1 + o for o in range(number_options)),
minimum_cost=tuple(1 + o for o in range(number_options)),
specific_capacity_cost=1,
capacity_is_instantaneous=capacity_is_instantaneous,
validate=True,
)
assert arc_tech.has_proportional_losses()
assert not arc_tech.has_static_losses()
assert not arc_tech.is_infinite_capacity()
assert not arc_tech.has_been_selected()
assert arc_tech.is_isotropic(reverse_none_means_isotropic=True)
assert arc_tech.is_isotropic(reverse_none_means_isotropic=False)
assert arc_tech.has_constant_efficiency()
# create arc technology for one time interval and anisotropic
arc_tech = Arcs(
name="any",
efficiency={(0, 0): 0.95},
efficiency_reverse={(0, 0): 1},
static_loss=None,
capacity=tuple(1 + o for o in range(number_options)),
minimum_cost=tuple(1 + o for o in range(number_options)),
specific_capacity_cost=1,
capacity_is_instantaneous=capacity_is_instantaneous,
validate=True,
)
assert arc_tech.has_proportional_losses()
assert not arc_tech.has_static_losses()
assert not arc_tech.is_infinite_capacity()
assert not arc_tech.has_been_selected()
assert not arc_tech.is_isotropic(reverse_none_means_isotropic=True)
assert not arc_tech.is_isotropic(reverse_none_means_isotropic=False)
assert not arc_tech.has_constant_efficiency()
# create arc technology for one time interval and anisotropic
arc_tech = Arcs(
name="any",
efficiency={(0, 0): 1},
efficiency_reverse={(0, 0): 0.95},
static_loss=None,
capacity=tuple(1 + o for o in range(number_options)),
minimum_cost=tuple(1 + o for o in range(number_options)),
specific_capacity_cost=1,
capacity_is_instantaneous=capacity_is_instantaneous,
validate=True,
)
assert arc_tech.has_proportional_losses()
assert not arc_tech.has_static_losses()
assert not arc_tech.is_infinite_capacity()
assert not arc_tech.has_been_selected()
assert not arc_tech.is_isotropic(reverse_none_means_isotropic=True)
assert not arc_tech.is_isotropic(reverse_none_means_isotropic=False)
assert not arc_tech.has_constant_efficiency()
# create arc technology for one time interval and anisotropic
arc_tech = Arcs(
name="any",
efficiency={(0, 0): 0.95},
efficiency_reverse={(0, 0): 0.95},
static_loss=None,
capacity=tuple(1 + o for o in range(number_options)),
minimum_cost=tuple(1 + o for o in range(number_options)),
specific_capacity_cost=1,
capacity_is_instantaneous=capacity_is_instantaneous,
validate=True,
)
assert arc_tech.has_proportional_losses()
assert not arc_tech.has_static_losses()
assert not arc_tech.is_infinite_capacity()
assert not arc_tech.has_been_selected()
assert arc_tech.is_isotropic(reverse_none_means_isotropic=True)
assert arc_tech.is_isotropic(reverse_none_means_isotropic=False)
assert arc_tech.has_constant_efficiency()
# *****************************************************************
# *****************************************************************
# trigger errors
# TypeError('The name attribute is not hashable.')
Pedro L. Magalhães
committed
error_raised = False
try:
_ = Arcs(
name=[1, 2, 3],
efficiency=efficiency_dict,
efficiency_reverse=None,
static_loss=None,
capacity=tuple(1 + o for o in range(number_options)),
minimum_cost=tuple(1 + o for o in range(number_options)),
specific_capacity_cost=1,
capacity_is_instantaneous=capacity_is_instantaneous,
validate=True,
)
except TypeError:
Pedro L. Magalhães
committed
error_raised = True
assert error_raised
# TypeError:The efficiency dict keys must be (scenario, interval) tuples
Pedro L. Magalhães
committed
error_raised = False
try:
_ = Arcs(
name="hey",
efficiency={k: 1 for k in range(number_time_intervals)},
efficiency_reverse=None,
static_loss=None,
capacity=tuple(1 + o for o in range(number_options)),
minimum_cost=tuple(1 + o for o in range(number_options)),
specific_capacity_cost=1,
capacity_is_instantaneous=capacity_is_instantaneous,
validate=True,
)
except TypeError:
Pedro L. Magalhães
committed
error_raised = True
assert error_raised
# ValueError( 'The efficiency dict keys must be tuples of size 2.')
Pedro L. Magalhães
committed
error_raised = False
try:
_ = Arcs(
name="hey",
efficiency={(k, 3, 4): 1 for k in range(number_time_intervals)},
efficiency_reverse=None,
static_loss=None,
capacity=tuple(1 + o for o in range(number_options)),
minimum_cost=tuple(1 + o for o in range(number_options)),
specific_capacity_cost=1,
capacity_is_instantaneous=capacity_is_instantaneous,
validate=True,
)
except ValueError:
Pedro L. Magalhães
committed
error_raised = True
assert error_raised
# TypeError(The efficiency should be given as a dict or None.')
Pedro L. Magalhães
committed
error_raised = False
try:
_ = Arcs(
name="hey",
efficiency=[1 for k in range(number_time_intervals)],
efficiency_reverse=None,
static_loss=None,
capacity=tuple(1 + o for o in range(number_options)),
minimum_cost=tuple(1 + o for o in range(number_options)),
specific_capacity_cost=1,
capacity_is_instantaneous=capacity_is_instantaneous,
validate=True,
)
except TypeError:
Pedro L. Magalhães
committed
error_raised = True
assert error_raised
# TypeError('The reverse efficiency has to match the nominal'+
# ' one when there are no proportional losses.')
Pedro L. Magalhães
committed
error_raised = False
try:
_ = Arcs(
name="hey",
efficiency=None,
efficiency_reverse={},
static_loss=None,
capacity=tuple(1 + o for o in range(number_options)),
minimum_cost=tuple(1 + o for o in range(number_options)),
specific_capacity_cost=1,
capacity_is_instantaneous=capacity_is_instantaneous,
validate=True,
)
except TypeError:
Pedro L. Magalhães
committed
error_raised = True
assert error_raised
# TypeError:'The reverse efficiency should be given as a dict or None.'
Pedro L. Magalhães
committed
error_raised = False
try:
_ = Arcs(
name="hey",
efficiency=efficiency_dict,
efficiency_reverse=[1 for k in range(number_time_intervals)],
static_loss=None,
capacity=tuple(1 + o for o in range(number_options)),
minimum_cost=tuple(1 + o for o in range(number_options)),
specific_capacity_cost=1,
capacity_is_instantaneous=capacity_is_instantaneous,
validate=True,
)
except TypeError:
Pedro L. Magalhães
committed
error_raised = True
assert error_raised
# ValueError(
# 'No efficiency values were provided. There should be '+
# 'one value per scenario and time interval.')
Pedro L. Magalhães
committed
error_raised = False
try:
_ = Arcs(
name="hey",
efficiency=efficiency_dict,
efficiency_reverse={},
static_loss=None,
capacity=tuple(1 + o for o in range(number_options)),
minimum_cost=tuple(1 + o for o in range(number_options)),
specific_capacity_cost=1,
capacity_is_instantaneous=capacity_is_instantaneous,
validate=True,
)
except ValueError:
Pedro L. Magalhães
committed
error_raised = True
assert error_raised
# ValueError: The keys for the efficiency dicts do not match.
Pedro L. Magalhães
committed
error_raised = False
try:
_ = Arcs(
name="hey",
efficiency=efficiency_dict,
efficiency_reverse={
(key[1], key[0]): value
for key, value in efficiency_dict.items()
},
static_loss=None,
capacity=tuple(1 + o for o in range(number_options)),
minimum_cost=tuple(1 + o for o in range(number_options)),
specific_capacity_cost=1,
capacity_is_instantaneous=capacity_is_instantaneous,
validate=True,
)
except ValueError:
Pedro L. Magalhães
committed
error_raised = True
assert error_raised
# TypeError: Efficiency values must be provided as numeric types.
Pedro L. Magalhães
committed
error_raised = False
try:
_ = Arcs(
name="hey",
efficiency=efficiency_dict,
efficiency_reverse={
(key[0], key[1]): str(value)
for key, value in efficiency_dict.items()
},
static_loss=None,
capacity=tuple(1 + o for o in range(number_options)),
minimum_cost=tuple(1 + o for o in range(number_options)),
specific_capacity_cost=1,
capacity_is_instantaneous=capacity_is_instantaneous,
validate=True,
)
except TypeError:
Pedro L. Magalhães
committed
error_raised = True
assert error_raised
# ValueError('Efficiency values must be positive.')
Pedro L. Magalhães
committed
error_raised = False
try:
_ = Arcs(
name="hey",
efficiency=efficiency_dict,
efficiency_reverse={
(key[0], key[1]): -1 for key, value in efficiency_dict.items()
},
static_loss=None,
capacity=tuple(1 + o for o in range(number_options)),
minimum_cost=tuple(1 + o for o in range(number_options)),
specific_capacity_cost=1,
capacity_is_instantaneous=capacity_is_instantaneous,
validate=True,
)
except ValueError:
Pedro L. Magalhães
committed
error_raised = True
assert error_raised
# TypeError('The capacity should be given as a list or tuple.')
Pedro L. Magalhães
committed
error_raised = False
try:
_ = Arcs(
name="hey",
efficiency=efficiency_dict,
efficiency_reverse=None,
static_loss=None,
capacity={o: 1 + o for o in range(number_options)},
minimum_cost=tuple(1 + o for o in range(number_options)),
specific_capacity_cost=1,
capacity_is_instantaneous=capacity_is_instantaneous,
validate=True,
)
except TypeError:
Pedro L. Magalhães
committed
error_raised = True
assert error_raised
# TypeError: The minimum cost values should be given as a list or tuple
Pedro L. Magalhães
committed
error_raised = False
try:
_ = Arcs(
name="hey",
efficiency=efficiency_dict,
efficiency_reverse=None,
static_loss=None,
capacity=tuple(1 + o for o in range(number_options)),
minimum_cost={o: 1 + o for o in range(number_options)},
specific_capacity_cost=1,
capacity_is_instantaneous=capacity_is_instantaneous,
validate=True,
)
except TypeError:
Pedro L. Magalhães
committed
error_raised = True
assert error_raised
# TypeError: The specific capacity cost was not given as a numeric type
Pedro L. Magalhães
committed
error_raised = False
try:
_ = Arcs(
name="hey",
efficiency=efficiency_dict,
efficiency_reverse=None,
static_loss=None,
capacity=tuple(1 + o for o in range(number_options)),
minimum_cost=tuple(1 + o for o in range(number_options)),
specific_capacity_cost=[1],
capacity_is_instantaneous=capacity_is_instantaneous,
validate=True,
)
except TypeError:
Pedro L. Magalhães
committed
error_raised = True
assert error_raised
# ValueError:The number of capacity and minimum cost entries must match
Pedro L. Magalhães
committed
error_raised = False
try:
_ = Arcs(
name="hey",
efficiency=efficiency_dict,
efficiency_reverse=None,
static_loss=None,
capacity=tuple(1 + o for o in range(number_options + 1)),
minimum_cost=tuple(1 + o for o in range(number_options)),
specific_capacity_cost=1,
capacity_is_instantaneous=capacity_is_instantaneous,
validate=True,
)
except ValueError:
Pedro L. Magalhães
committed
error_raised = True
assert error_raised
# ValueError: No entries for capacity and minimum cost were provided.
# At least one option should be provided.
Pedro L. Magalhães
committed
error_raised = False
try:
_ = Arcs(
name="hey",
efficiency=efficiency_dict,
efficiency_reverse=None,
static_loss=None,
capacity=tuple(),
minimum_cost=tuple(),
specific_capacity_cost=1,
capacity_is_instantaneous=capacity_is_instantaneous,
validate=True,
)
except ValueError:
Pedro L. Magalhães
committed
error_raised = True
assert error_raised
# ValueError: No entries for efficiency were provided. There should be
# one entry per time interval.
Pedro L. Magalhães
committed
error_raised = False
try:
_ = Arcs(
name="hey",
efficiency={},
efficiency_reverse=None,
static_loss=None,
capacity=tuple(1 + o for o in range(number_options)),
minimum_cost=tuple(1 + o for o in range(number_options)),
specific_capacity_cost=1,
capacity_is_instantaneous=capacity_is_instantaneous,
validate=True,
)
except ValueError:
Pedro L. Magalhães
committed
error_raised = True
assert error_raised
# ValueError('The number of efficiency values must match the number of
# time intervals.')
arc_tech = Arcs(
name="hey",
efficiency={
(q, k): 0.85
for q in range(number_scenarios)
for k in range(number_time_intervals + 1)
},
efficiency_reverse=None,
static_loss=None,
capacity=tuple(1 + o for o in range(number_options)),
minimum_cost=tuple(1 + o for o in range(number_options)),
specific_capacity_cost=1,
capacity_is_instantaneous=capacity_is_instantaneous,
validate=True,
)
Pedro L. Magalhães
committed
error_raised = False
try:
arc_tech.validate_sizes(
number_options=number_options,
number_scenarios=number_scenarios,
number_intervals=[
number_time_intervals for _ in range(number_scenarios)
],
)
except ValueError:
Pedro L. Magalhães
committed
error_raised = True
assert error_raised
# ValueError('The number of efficiency values must match the number of
# time intervals.')
Pedro L. Magalhães
committed
error_raised = False
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
try:
arc_tech = Arcs(
name="hey",
efficiency={
(q, k): 0.85
for q in range(number_scenarios)
for k in range(number_time_intervals)
},
efficiency_reverse={
(q, k): 0.85
for q in range(number_scenarios)
for k in range(number_time_intervals - 1)
},
static_loss=None,
capacity=tuple(1 + o for o in range(number_options)),
minimum_cost=tuple(1 + o for o in range(number_options)),
specific_capacity_cost=1,
capacity_is_instantaneous=capacity_is_instantaneous,
validate=True,
)
arc_tech.validate_sizes(
number_options=number_options,
number_scenarios=number_scenarios,
number_intervals=[
number_time_intervals for _ in range(number_scenarios)
],
)
except ValueError:
Pedro L. Magalhães
committed
error_raised = True
assert error_raised
# ValueError('The number of capacity values must match the number of
# options.')
arc_tech = Arcs(
name="hey",
efficiency=efficiency_dict,
efficiency_reverse=None,
static_loss=None,
capacity=tuple(1 + o for o in range(number_options + 1)),
minimum_cost=tuple(1 + o for o in range(number_options + 1)),
specific_capacity_cost=1,
capacity_is_instantaneous=capacity_is_instantaneous,
validate=True,
)
Pedro L. Magalhães
committed
error_raised = False
try:
arc_tech.validate_sizes(
number_options=number_options,
number_scenarios=number_scenarios,
number_intervals=[
number_time_intervals for _ in range(number_scenarios)
],
)
except ValueError:
Pedro L. Magalhães
committed
error_raised = True
assert error_raised
# ValueError: The minimum cost values are inconsistent with the number
# of options.
arc_tech = Arcs(
name="hey",
efficiency=efficiency_dict,
efficiency_reverse=None,
static_loss=None,
capacity=tuple(1 + o for o in range(number_options + 1)),
minimum_cost=tuple(1 + o for o in range(number_options + 1)),
specific_capacity_cost=1,
capacity_is_instantaneous=capacity_is_instantaneous,
validate=True,
)
Pedro L. Magalhães
committed
error_raised = False
try:
arc_tech.validate_sizes(
number_options=number_options,
number_scenarios=number_scenarios,
number_intervals=[
number_time_intervals for _ in range(number_scenarios)
],
)
except ValueError:
Pedro L. Magalhães
committed
error_raised = True
assert error_raised
# TypeError('Efficiency values must be provided as numeric types.')
Pedro L. Magalhães
committed
error_raised = False
try:
_ = Arcs(
name="hey",
efficiency={
key: str(value) for key, value in efficiency_dict.items()
},
efficiency_reverse=None,
static_loss=None,
capacity=tuple(1 + o for o in range(number_options)),
minimum_cost=tuple(1 + o for o in range(number_options)),
specific_capacity_cost=1,
capacity_is_instantaneous=capacity_is_instantaneous,
validate=True,
)
except TypeError:
Pedro L. Magalhães
committed
error_raised = True
assert error_raised
# ValueError('Efficiency values must be positive.')
Pedro L. Magalhães
committed
error_raised = False
try:
_ = Arcs(
name="hey",
efficiency={
key: -value * random.randint(0, 1)
for key, value in efficiency_dict.items()
},
efficiency_reverse=None,
static_loss=None,
capacity=tuple(1 + o for o in range(number_options)),
minimum_cost=tuple(1 + o for o in range(number_options)),
specific_capacity_cost=1,
capacity_is_instantaneous=capacity_is_instantaneous,
validate=True,
)
except ValueError:
Pedro L. Magalhães
committed
error_raised = True
assert error_raised
# TypeError('Capacity values must be provided as numeric types.')
Pedro L. Magalhães
committed
error_raised = False
try:
_ = Arcs(
name="hey",
efficiency=efficiency_dict,
efficiency_reverse=None,
static_loss=None,
capacity=tuple(str(1 + o) for o in range(number_options)),
minimum_cost=tuple(1 + o for o in range(number_options)),
specific_capacity_cost=1,
capacity_is_instantaneous=capacity_is_instantaneous,
validate=True,
)
except TypeError:
Pedro L. Magalhães
committed
error_raised = True
assert error_raised
# ValueError('Capacity values must be positive.')
Pedro L. Magalhães
committed
error_raised = False
try:
_ = Arcs(
name="hey",
efficiency=efficiency_dict,
efficiency_reverse=None,
static_loss=None,
capacity=tuple(
-random.randint(0, 1) for o in range(number_options)
),
minimum_cost=tuple(1 + o for o in range(number_options)),
specific_capacity_cost=1,
capacity_is_instantaneous=capacity_is_instantaneous,
validate=True,
)
except ValueError:
Pedro L. Magalhães
committed
error_raised = True
assert error_raised
# TypeError('Minimum cost values must be provided as numeric types.')
Pedro L. Magalhães
committed
error_raised = False
try:
_ = Arcs(
name="hey",
efficiency=efficiency_dict,
efficiency_reverse=None,
static_loss=None,
capacity=tuple(1 + o for o in range(number_options)),
minimum_cost=tuple(str(1 + o) for o in range(number_options)),
specific_capacity_cost=1,
capacity_is_instantaneous=capacity_is_instantaneous,
validate=True,
)
except TypeError:
Pedro L. Magalhães
committed
error_raised = True
assert error_raised
# ValueError('Minimum cost values must be positive or zero.')
Pedro L. Magalhães
committed
error_raised = False
try:
_ = Arcs(
name="hey",
efficiency=efficiency_dict,
efficiency_reverse=None,
static_loss=None,
capacity=tuple(1 + o for o in range(number_options)),
minimum_cost=tuple(-1 for o in range(number_options)),
specific_capacity_cost=1,
capacity_is_instantaneous=capacity_is_instantaneous,
validate=True,
)
except ValueError:
Pedro L. Magalhães
committed
error_raised = True
assert error_raised
# TypeError('The information about capacities being instantaneous or not
# should be given as a boolean variable.')
Pedro L. Magalhães
committed
error_raised = False
try:
_ = Arcs(
name="hey",
efficiency=efficiency_dict,
efficiency_reverse=None,
static_loss=None,
capacity=tuple(1 + o for o in range(number_options)),
minimum_cost=tuple(1 + o for o in range(number_options)),
specific_capacity_cost=1,
capacity_is_instantaneous=1,
validate=True,
)
except TypeError:
Pedro L. Magalhães
committed
error_raised = True
assert error_raised
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
# *********************************************************************
# *********************************************************************
# Network
arc_tech_AB = Arcs(
name="AB",
efficiency=efficiency_dict,
efficiency_reverse=None,
static_loss=None,
capacity=tuple(1 + o for o in range(number_options)),
minimum_cost=tuple(1 + o for o in range(number_options)),
specific_capacity_cost=1,
capacity_is_instantaneous=False,
validate=True,
)
arc_tech_AB.options_selected[0] = True
assert arc_tech_AB.number_options() == number_options
net = Network()
# add undirected arc
net.add_undirected_arc(node_key_a="A", node_key_b="B", arcs=arc_tech_AB)
# add directed arc
net.add_directed_arc(node_key_a="A", node_key_b="B", arcs=arc_tech_AB)
# add infinite capacity arc
net.add_infinite_capacity_arc(
node_key_a="C",
node_key_b="D",
efficiency={(i, j): 1 for i in range(3) for j in range(4)},
static_loss=None,
)
# add pre-existing directed arc
net.add_preexisting_directed_arc(
node_key_a="E",
node_key_b="F",
efficiency=efficiency_dict,
static_loss=None,
capacity=3,
capacity_is_instantaneous=True,
)
# add pre-existing undirected arc
net.add_preexisting_undirected_arc(
node_key_a="A",
node_key_b="C",
efficiency=efficiency_dict,
efficiency_reverse=efficiency_dict,
static_loss=None,
capacity=3,
capacity_is_instantaneous=True,
)
net.modify_network_arc(
node_key_a="A",
node_key_b="C",
arc_key_ab="AC",
data_dict={net.KEY_ARC_TECH: arc_tech_AB, net.KEY_ARC_UND: False},
)
# *********************************************************************
# *********************************************************************
# add import node
imp_resource_price = ResourcePrice(
prices=[random.random() for k in range(number_time_intervals)],
volumes=[
*[random.random() for k in range(number_time_intervals - 1)],
None,
],
)
Pedro L. Magalhães
committed
net.add_import_node("G", prices={(0, 0, 0): imp_resource_price})
# add export node
exp_resource_price = ResourcePrice(
prices=[random.random() for k in range(number_time_intervals)],
volumes=[
*[random.random() for k in range(number_time_intervals - 1)],
None,
],
)
Pedro L. Magalhães
committed
net.add_export_node("H", prices={(0, 0, 0): exp_resource_price})
Pedro L. Magalhães
committed
net.add_waypoint_node("Z")
base_flow = {(i, j): random.random() for i in range(3) for j in range(4)}
Pedro L. Magalhães
committed
net.add_source_sink_node("Y", base_flow=base_flow)
Pedro L. Magalhães
committed
net.modify_node("Y", **{net.KEY_NODE_BASE_FLOW: base_flow})
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
assert "Z" in net.waypoint_nodes
assert "G" in net.import_nodes
assert "H" in net.export_nodes
assert "Y" in net.source_sink_nodes
# *************************************************************************
# *************************************************************************
def test_arcs_without_losses(self):
# test arc without (static and proportional) losses
arc_tech = ArcsWithoutLosses(
name="AB",
capacity=(1, 2, 3),
minimum_cost=(4, 5, 6),
specific_capacity_cost=6,
capacity_is_instantaneous=False,
validate=True,
)
assert not arc_tech.has_proportional_losses()
assert not arc_tech.has_static_losses()
assert not arc_tech.is_infinite_capacity()
assert arc_tech.has_constant_efficiency()
# test arc without static losses
arc_tech = ArcsWithoutStaticLosses(
name="AB",
efficiency={(0, 0): 1, (0, 1): 0.9, (0, 2): 0.8},
efficiency_reverse=None,
capacity=(1, 2, 3),
minimum_cost=(4, 5, 6),
specific_capacity_cost=6,
capacity_is_instantaneous=False,
validate=True,
)
assert arc_tech.has_proportional_losses()
assert not arc_tech.has_static_losses()
assert not arc_tech.is_infinite_capacity()
assert not arc_tech.has_constant_efficiency()
# test arc without proportional losses
arc_tech = ArcsWithoutProportionalLosses(
name="AB",
static_loss={
(0, 0, 0): 0.1,
(0, 0, 1): 0.2,
(0, 0, 2): 0.3,
(1, 0, 0): 0.15,
(1, 0, 1): 0.25,
(1, 0, 2): 0.35,
(2, 0, 0): 0.16,
(2, 0, 1): 0.26,
(2, 0, 2): 0.36,
},
capacity=(1, 2, 3),
minimum_cost=(4, 5, 6),
specific_capacity_cost=6,
capacity_is_instantaneous=False,
validate=True,
)
assert not arc_tech.has_proportional_losses()
assert arc_tech.has_static_losses()
assert not arc_tech.is_infinite_capacity()
assert arc_tech.has_constant_efficiency()
# *************************************************************************
# *************************************************************************
def test_modifying_nodes(self):
# *********************************************************************
net = Network()
number_intervals = 3
resource_price = ResourcePrice(
prices=[random.random() for k in range(number_intervals)],
volumes=[*[random.random() for k in range(number_intervals - 1)], None],
)
base_flow = {(0, k): random.random() for k in range(number_intervals)}
arc_tech = ArcsWithoutLosses(
name="hello",
capacity=[5],
minimum_cost=[3],
specific_capacity_cost=3,
capacity_is_instantaneous=False,
)
# add isolated import node
Pedro L. Magalhães
committed
net.add_import_node("I_iso", prices={(0, 0, 0): resource_price})
Pedro L. Magalhães
committed
net.add_import_node("I", prices={(0, 0, 0): resource_price})
Pedro L. Magalhães
committed
net.add_import_node("E_iso", prices={(0, 0, 0): resource_price})
Pedro L. Magalhães
committed
net.add_export_node("E", prices={(0, 0, 0): resource_price})
Pedro L. Magalhães
committed
net.add_source_sink_node("A_iso", base_flow=base_flow)
Pedro L. Magalhães
committed
net.add_source_sink_node("A_in", base_flow=base_flow)
Pedro L. Magalhães
committed
net.add_source_sink_node("A_out", base_flow=base_flow)
# add normal node with incoming and outgoing arcs
Pedro L. Magalhães
committed
net.add_source_sink_node("A", base_flow=base_flow)
# *********************************************************************
# arcs
net.add_directed_arc(node_key_a="I", node_key_b="A_in", arcs=arc_tech)
net.add_directed_arc(node_key_a="I", node_key_b="A", arcs=arc_tech)
net.add_directed_arc(node_key_a="A_out", node_key_b="E", arcs=arc_tech)
net.add_directed_arc(node_key_a="A", node_key_b="E", arcs=arc_tech)
# *********************************************************************
# change I_iso to regular: okay
Pedro L. Magalhães
committed
net.modify_node(
"I_iso",
**{
net.KEY_NODE_BASE_FLOW: base_flow,
},
)
# reverse: okay
Pedro L. Magalhães
committed
net.modify_node(
"I_iso",
**{
net.KEY_NODE_TYPE: net.KEY_NODE_TYPE_IMP,
net.KEY_NODE_PRICES: resource_price,
},
)
# change I_iso to export: okay
Pedro L. Magalhães
committed
net.modify_node(
"I_iso",
**{
net.KEY_NODE_TYPE: net.KEY_NODE_TYPE_EXP,
net.KEY_NODE_PRICES: resource_price,
},
)
# reverse: okay
Pedro L. Magalhães
committed
net.modify_node(
"I_iso",
**{
net.KEY_NODE_TYPE: net.KEY_NODE_TYPE_IMP,
net.KEY_NODE_PRICES: resource_price,
},
)
# change I_iso to waypoint: okay
Pedro L. Magalhães
committed
net.modify_node(
"I_iso"
Pedro L. Magalhães
committed
net.modify_node(
"I_iso",
**{
net.KEY_NODE_TYPE: net.KEY_NODE_TYPE_IMP,
net.KEY_NODE_PRICES: resource_price,
},
)
# *********************************************************************
# change E_iso to regular: okay
Pedro L. Magalhães
committed
net.modify_node(
"E_iso",
**{
net.KEY_NODE_BASE_FLOW: base_flow,
},
)
# reverse: okay
Pedro L. Magalhães
committed
net.modify_node(
"E_iso",
**{
net.KEY_NODE_TYPE: net.KEY_NODE_TYPE_EXP,
net.KEY_NODE_PRICES: resource_price,
},
)
# change E_iso to import: okay
Pedro L. Magalhães
committed
net.modify_node(
"E_iso",
**{
net.KEY_NODE_TYPE: net.KEY_NODE_TYPE_IMP,
net.KEY_NODE_PRICES: resource_price,
},
)
# reverse: okay
Pedro L. Magalhães
committed
net.modify_node(
"E_iso",
**{
net.KEY_NODE_TYPE: net.KEY_NODE_TYPE_EXP,
net.KEY_NODE_PRICES: resource_price,
},
)
# change E_iso to waypoint: okay
Pedro L. Magalhães
committed
net.modify_node(
"E_iso"
Pedro L. Magalhães
committed
net.modify_node(
"E_iso",
**{
net.KEY_NODE_TYPE: net.KEY_NODE_TYPE_EXP,
net.KEY_NODE_PRICES: resource_price,
},
)
# *********************************************************************
# change A_iso to export: okay
Pedro L. Magalhães
committed
net.modify_node(
"A_iso",
**{
net.KEY_NODE_TYPE: net.KEY_NODE_TYPE_EXP,
net.KEY_NODE_PRICES: resource_price,
},
)
# reverse: okay
Pedro L. Magalhães
committed
net.modify_node(
"A_iso",
**{
net.KEY_NODE_BASE_FLOW: base_flow,
},
)
# change A_iso to import: okay
Pedro L. Magalhães
committed
net.modify_node(
"A_iso",
**{
net.KEY_NODE_TYPE: net.KEY_NODE_TYPE_IMP,
net.KEY_NODE_PRICES: resource_price,
},
)
# reverse: okay
Pedro L. Magalhães
committed
net.modify_node(
"A_iso",
**{
net.KEY_NODE_BASE_FLOW: base_flow,
},
)
# change A_iso to waypoint: okay
Pedro L. Magalhães
committed
net.modify_node(
"A_iso"
Pedro L. Magalhães
committed
net.modify_node(
"A_iso",
**{
net.KEY_NODE_BASE_FLOW: base_flow,
},
)
# *********************************************************************
# change I to regular: okay
Pedro L. Magalhães
committed
net.modify_node(
"I",
**{
net.KEY_NODE_BASE_FLOW: base_flow,
},
)
# reverse: okay
Pedro L. Magalhães
committed
net.modify_node(
"I",
**{
net.KEY_NODE_TYPE: net.KEY_NODE_TYPE_IMP,
net.KEY_NODE_PRICES: resource_price,
},
)
# change I to waypoint: okay
Pedro L. Magalhães
committed
net.modify_node(
"I"
Pedro L. Magalhães
committed
net.modify_node(
"I",
**{
net.KEY_NODE_TYPE: net.KEY_NODE_TYPE_IMP,
net.KEY_NODE_PRICES: resource_price,
},
)
# *********************************************************************
# change E to regular: okay
Pedro L. Magalhães
committed
net.modify_node(
"E",
**{
net.KEY_NODE_BASE_FLOW: base_flow,
},
)
# reverse: okay
Pedro L. Magalhães
committed
net.modify_node(
"E",
**{
net.KEY_NODE_TYPE: net.KEY_NODE_TYPE_EXP,
net.KEY_NODE_PRICES: resource_price,
},
)
# change E to waypoint: okay
Pedro L. Magalhães
committed
net.modify_node(
"E"
Pedro L. Magalhães
committed
net.modify_node(
"E",
**{
net.KEY_NODE_TYPE: net.KEY_NODE_TYPE_EXP,
net.KEY_NODE_PRICES: resource_price,
},
)
# *********************************************************************
# change A_in to export: okay
Pedro L. Magalhães
committed
net.modify_node(
"A_in",
**{
net.KEY_NODE_TYPE: net.KEY_NODE_TYPE_EXP,
net.KEY_NODE_PRICES: resource_price,
},
)
# reverse: okay
Pedro L. Magalhães
committed
net.modify_node(
"A_in",
**{
net.KEY_NODE_BASE_FLOW: base_flow,
},
)
# change A_in to waypoint: okay
Pedro L. Magalhães
committed
net.modify_node(
"A_in", **{net.KEY_NODE_TYPE: net.KEY_NODE_TYPE_WAY}
Pedro L. Magalhães
committed
net.modify_node(
"A_in",
**{
net.KEY_NODE_BASE_FLOW: base_flow,
},
)
# *********************************************************************
# change A_out to import: okay
Pedro L. Magalhães
committed
net.modify_node(
"A_out",
**{
net.KEY_NODE_TYPE: net.KEY_NODE_TYPE_IMP,
net.KEY_NODE_PRICES: resource_price,
},
)
# reverse: okay
Pedro L. Magalhães
committed
net.modify_node(
"A_out",
**{
net.KEY_NODE_BASE_FLOW: base_flow,
},
)
# change A_out to waypoint: okay
Pedro L. Magalhães
committed
net.modify_node(
"A_out", **{net.KEY_NODE_TYPE: net.KEY_NODE_TYPE_WAY}
Pedro L. Magalhães
committed
net.modify_node(
"A_out",
**{
net.KEY_NODE_BASE_FLOW: base_flow,
},
)
# *********************************************************************
# change I to export: fail
Pedro L. Magalhães
committed
error_raised = False
Pedro L. Magalhães
committed
net.modify_node(
"I",
**{
net.KEY_NODE_TYPE: net.KEY_NODE_TYPE_EXP,
net.KEY_NODE_PRICES: resource_price,
},
)
except ValueError:
Pedro L. Magalhães
committed
error_raised = True
assert error_raised
Pedro L. Magalhães
committed
error_raised = False
Pedro L. Magalhães
committed
net.modify_node(
"E",
**{
net.KEY_NODE_TYPE: net.KEY_NODE_TYPE_IMP,
net.KEY_NODE_PRICES: resource_price,
},
)
except ValueError:
Pedro L. Magalhães
committed
error_raised = True
assert error_raised
Pedro L. Magalhães
committed
error_raised = False
Pedro L. Magalhães
committed
net.modify_node(
"A_out",
**{
net.KEY_NODE_TYPE: net.KEY_NODE_TYPE_EXP,
net.KEY_NODE_PRICES: resource_price,
},
)
except ValueError:
Pedro L. Magalhães
committed
error_raised = True
assert error_raised
Pedro L. Magalhães
committed
error_raised = False
Pedro L. Magalhães
committed
net.modify_node(
"A_in",
**{
net.KEY_NODE_TYPE: net.KEY_NODE_TYPE_IMP,
net.KEY_NODE_PRICES: resource_price,
},
)
except ValueError:
Pedro L. Magalhães
committed
error_raised = True
assert error_raised
Pedro L. Magalhães
committed
error_raised = False
Pedro L. Magalhães
committed
net.modify_node(
"A",
**{
net.KEY_NODE_TYPE: net.KEY_NODE_TYPE_EXP,
net.KEY_NODE_PRICES: resource_price,
},
)
except ValueError:
Pedro L. Magalhães
committed
error_raised = True
assert error_raised
Pedro L. Magalhães
committed
error_raised = False
Pedro L. Magalhães
committed
net.modify_node(
"A",
**{
net.KEY_NODE_TYPE: net.KEY_NODE_TYPE_IMP,
net.KEY_NODE_PRICES: resource_price,
},
)
except ValueError:
Pedro L. Magalhães
committed
error_raised = True
assert error_raised
# *********************************************************************
# try to modify a non-existent node
Pedro L. Magalhães
committed
error_raised = False
Pedro L. Magalhães
committed
net.modify_node("ABCD")
Pedro L. Magalhães
committed
error_raised = True
assert error_raised
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
# *********************************************************************
# *************************************************************************
# *************************************************************************
def test_network_disallowed_cases(self):
net = Network()
number_intervals = 3
resource_price = ResourcePrice(
prices=[random.random() for k in range(number_intervals)],
volumes=[*[random.random() for k in range(number_intervals - 1)], None],
)
base_flow = {(0, k): random.random() for k in range(number_intervals)}
lossless_arcs = ArcsWithoutLosses(
name="hello",
capacity=[5],
minimum_cost=[3],
specific_capacity_cost=3,
capacity_is_instantaneous=False,
)
lossy_arcs = ArcsWithoutProportionalLosses(
name="hello back",
static_loss={(0, 0, k): random.random() for k in range(number_intervals)},
capacity=(1,),
minimum_cost=(5,),
specific_capacity_cost=0,
capacity_is_instantaneous=False,
)
# add import node I
Pedro L. Magalhães
committed
net.add_import_node("I", prices={(0, 0, 0): resource_price})
Pedro L. Magalhães
committed
net.add_export_node("E", prices={(0, 0, 0): resource_price})
Pedro L. Magalhães
committed
net.add_source_sink_node("A", base_flow=base_flow)
Pedro L. Magalhães
committed
net.add_source_sink_node("B", base_flow=base_flow)
# add a valid import-export arc
net.add_directed_arc(node_key_a="I", node_key_b="E", arcs=lossless_arcs)
# *********************************************************************
# *********************************************************************
# trigger errors using pre-identified nodes
# directed arcs cannot start in an export node: E -> B
Pedro L. Magalhães
committed
error_raised = False
try:
net.add_directed_arc(node_key_a="E", node_key_b="B", arcs=lossless_arcs)
except ValueError:
Pedro L. Magalhães
committed
error_raised = True
assert error_raised
# directed arcs cannot end on an import node: A -> I
Pedro L. Magalhães
committed
error_raised = False
try:
net.add_directed_arc(node_key_a="A", node_key_b="I", arcs=lossless_arcs)
except ValueError:
Pedro L. Magalhães
committed
error_raised = True
assert error_raised
# import-export nodes cannot have static losses
Pedro L. Magalhães
committed
error_raised = False
try:
net.add_directed_arc(node_key_a="I", node_key_b="E", arcs=lossy_arcs)
except ValueError:
Pedro L. Magalhães
committed
error_raised = True
assert error_raised
# undirected arcs cannot involve import nor export nodes
Pedro L. Magalhães
committed
error_raised = False
try:
net.add_undirected_arc(node_key_a="I", node_key_b="A", arcs=lossless_arcs)
except ValueError:
Pedro L. Magalhães
committed
error_raised = True
assert error_raised
# undirected arcs cannot involve import nor export nodes
Pedro L. Magalhães
committed
error_raised = False
try:
net.add_undirected_arc(node_key_a="B", node_key_b="E", arcs=lossless_arcs)
except ValueError:
Pedro L. Magalhães
committed
error_raised = True
assert error_raised
# undirected arcs cannot involve import nor export nodes
Pedro L. Magalhães
committed
error_raised = False
try:
net.add_undirected_arc(node_key_a="I", node_key_b="E", arcs=lossy_arcs)
except ValueError:
Pedro L. Magalhães
committed
error_raised = True
assert error_raised
# *********************************************************************
# trigger errors using non-identified nodes
# *********************************************************************
# create a new export node
Pedro L. Magalhães
committed
net.add_export_node("E1", prices={(0, 0, 0): resource_price})
# create an arc starting in that export node
Pedro L. Magalhães
committed
error_raised = False
try:
net.add_directed_arc(node_key_a="E1", node_key_b="B", arcs=lossless_arcs)
except ValueError:
Pedro L. Magalhães
committed
error_raised = True
assert error_raised
Pedro L. Magalhães
committed
# # remove the troublesome arc
# net.remove_edge(u="E1", v="B")
# *********************************************************************
# create a new import node
Pedro L. Magalhães
committed
net.add_import_node("I1", prices={(0, 0, 0): resource_price})
# create an arc ending in that import node
Pedro L. Magalhães
committed
error_raised = False
try:
net.add_directed_arc(node_key_a="A", node_key_b="I1", arcs=lossless_arcs)
except ValueError:
Pedro L. Magalhães
committed
error_raised = True
assert error_raised
Pedro L. Magalhães
committed
# # remove the troublesome arc
# net.remove_edge(u="A", v="I1")
# *********************************************************************
# check non-existent arc
net.arc_is_undirected(("X", "Y", 1))
# *************************************************************************
# *************************************************************************
def test_undirected_arc_import_error(self):
# network
mynet = Network()
# import node
imp_node_key = generate_pseudo_unique_key(mynet.nodes())
mynet.add_import_node(
Pedro L. Magalhães
committed
imp_node_key,
prices={
(0, 0, 0): ResourcePrice(prices=1+0.05, volumes=None)
},
)
# other nodes
node_A = generate_pseudo_unique_key(mynet.nodes())
mynet.add_source_sink_node(
Pedro L. Magalhães
committed
node_A,
# base_flow=[1, -1, 0.5, -0.5]
base_flow={(0, 0): 1, (0, 1): -1, (0, 2): 0.5, (0, 3): -0.5},
)
node_B = generate_pseudo_unique_key(mynet.nodes())
mynet.add_source_sink_node(
Pedro L. Magalhães
committed
node_B,
# base_flow=[-1, 1, -0.5, 0.5]
base_flow={(0, 0): -1, (0, 1): 1, (0, 2): -0.5, (0, 3): 0.5},
)
# add arcs
# import arc
arc_tech_IA = Arcs(
name="any",
# efficiency=[1, 1, 1, 1],
efficiency={(0, 0): 1, (0, 1): 1, (0, 2): 1, (0, 3): 1},
capacity=[0.5, 0.75, 1.0, 1.25, 1.5, 2.0],
minimum_cost=[10, 10.1, 10.2, 10.3, 10.4, 10.5],
specific_capacity_cost=1,
capacity_is_instantaneous=False,
efficiency_reverse=None,
static_loss=None,
validate=False,
)
Pedro L. Magalhães
committed
Pedro L. Magalhães
committed
# ValueError: Undirected arcs cannot involve import or export nodes.
mynet.add_undirected_arc(
node_key_a=imp_node_key, node_key_b=node_A, arcs=arc_tech_IA
)
except ValueError:
error_raised = True
assert error_raised
# *********************************************************************
# *********************************************************************
# *************************************************************************
# *************************************************************************
def test_undirected_arc_export_error(self):
# 4 nodes: one import, one export, two supply/demand nodes
mynet = Network()
# export node
exp_node_key = generate_pseudo_unique_key(mynet.nodes())
mynet.add_export_node(
Pedro L. Magalhães
committed
exp_node_key,
prices={
(0, 0, 0): ResourcePrice(prices=0.1+0.05, volumes=None)
},
)
# other nodes
node_B = generate_pseudo_unique_key(mynet.nodes())
mynet.add_source_sink_node(
Pedro L. Magalhães
committed
node_B,
# base_flow=[-1, 1, -0.5, 0.5]
base_flow={(0, 0): -1, (0, 1): 1, (0, 2): -0.5, (0, 3): 0.5},
)
# export arc
arc_tech_BE = Arcs(
name="any",
# efficiency=[1, 1, 1, 1],
efficiency={(0, 0): 1, (0, 1): 1, (0, 2): 1, (0, 3): 1},
capacity=[0.5, 0.75, 1.0, 1.25, 1.5, 2.0],
minimum_cost=[10, 10.1, 10.2, 10.3, 10.4, 10.5],
specific_capacity_cost=1,
capacity_is_instantaneous=False,
efficiency_reverse=None,
static_loss=None,
validate=False,
)
error_raised = False
try:
Pedro L. Magalhães
committed
# ValueError: Undirected arcs cannot involve import or export nodes.
mynet.add_undirected_arc(
node_key_a=node_B, node_key_b=exp_node_key, arcs=arc_tech_BE
)
except ValueError:
error_raised = True
assert error_raised
# *************************************************************************
# *************************************************************************
def test_tree_topology(self):
# create a network object with a tree topology
tree_network = binomial_tree(3, create_using=MultiDiGraph)
Pedro L. Magalhães
committed
network = Network(network_type=Network.NET_TYPE_TREE, incoming_graph_data=tree_network)
for edge_key in network.edges(keys=True):
arc = ArcsWithoutLosses(
name=str(edge_key),
capacity=[5, 10],
minimum_cost=[3, 6],
specific_capacity_cost=0,
capacity_is_instantaneous=False,
)
network.add_edge(*edge_key, **{Network.KEY_ARC_TECH: arc})
Pedro L. Magalhães
committed
# assert that it should have a tree topology
assert network.should_be_tree_network()
# assert that it does not have a tree topology
assert not network.has_tree_topology()
# select all the nodes
for edge_key in network.edges(keys=True):
network.edges[edge_key][Network.KEY_ARC_TECH].options_selected[0] = True
# assert that it has a tree topology
assert network.has_tree_topology()
Pedro L. Magalhães
committed
# *************************************************************************
# *************************************************************************
def test_pseudo_unique_key_generation(self):
# create network
network = Network()
Pedro L. Magalhães
committed
# add nodes A and B
network.add_nodes_from(['A','B'])
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
# add arcs
key_list = [
"3e225573-4e78-48c8-bb08-efbeeb795c22",
"f6d30428-15d1-41e9-a952-0742eaaa5a31",
"8c29b906-2518-41c5-ada8-07b83508b5b8",
"f9a72a39-1422-4a02-af97-906ce79c32a3",
"b6941a48-10cc-465d-bf53-178bd2939bd1",
]
for key in key_list:
network.add_edge(
u_for_edge="A",
v_for_edge="B",
key=key,
**{network.KEY_ARC_UND: False, network.KEY_ARC_TECH: None}
)
# use a seed number to trigger more iterations
import uuid
rand = random.Random()
rand.seed(360)
uuid.uuid4 = lambda: uuid.UUID(int=rand.getrandbits(128), version=4)
Pedro L. Magalhães
committed
error_raised = False
try:
_ = network.get_pseudo_unique_arc_key(
node_key_start="A", node_key_end="B", max_iterations=len(key_list) - 1
)
except Exception:
Pedro L. Magalhães
committed
error_raised = True
assert error_raised
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
# *************************************************************************
# *************************************************************************
def test_imp_exp_static_losses(self):
# assessment
q = 0
# 4 nodes: one import, one export, two supply/demand nodes
mynet = Network()
# import node
imp_node_key = generate_pseudo_unique_key(mynet.nodes())
imp_prices = {
qpk: ResourcePrice(
prices=0.5,
volumes=None,
)
for qpk in [(0,0,0),(0,0,1),(0,1,0),(0,1,1)]
}
mynet.add_import_node(
Pedro L. Magalhães
committed
imp_node_key,
prices=imp_prices
)
# export node
exp_node_key = generate_pseudo_unique_key(mynet.nodes())
exp_prices = {
qpk: ResourcePrice(
prices=1.5,
volumes=None,
)
for qpk in [(0,0,0),(0,0,1),(0,1,0),(0,1,1)]
}
mynet.add_export_node(
Pedro L. Magalhães
committed
exp_node_key,
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
prices=exp_prices,
)
# add arc with fixed losses from import node to export
arc_tech_IE_fix = Arcs(
name="IE_fix",
# efficiency=[1, 1, 1, 1],
efficiency={(q, 0): 1, (q, 1): 1},
efficiency_reverse=None,
validate=False,
capacity=[0.5, 1.0, 2.0],
minimum_cost=[5, 5.1, 5.2],
specific_capacity_cost=1,
capacity_is_instantaneous=False,
# static_losses=[
# [0.10, 0.15, 0.20, 0.25],
# [0.15, 0.20, 0.25, 0.30],
# [0.20, 0.25, 0.30, 0.35]]
static_loss={
(0, q, 0): 0.10,
(0, q, 1): 0.15,
(1, q, 0): 0.15,
(1, q, 1): 0.20,
(2, q, 0): 0.20,
(2, q, 1): 0.25,
},
)
error_raised = False
try:
Pedro L. Magalhães
committed
# ValueError: Arcs between import and export nodes cannot have static losses.
mynet.add_directed_arc(
node_key_a=imp_node_key, node_key_b=exp_node_key, arcs=arc_tech_IE_fix
)
except ValueError:
error_raised = True
assert error_raised
# *************************************************************************
# *************************************************************************
def test_antiparallel_arcs(self):
# create network
net = Network()
# add nodes
node_a = 'A'
Pedro L. Magalhães
committed
# net.add_waypoint_node(node_a)
Pedro L. Magalhães
committed
# net.add_waypoint_node(node_b)
Pedro L. Magalhães
committed
# net.add_waypoint_node(node_c)
net.add_nodes_from([node_a,node_b,node_c])
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
# add arcs
node_pairs = ((node_a, node_b), (node_b, node_a),)
# test network
for node_pair in node_pairs:
net.add_preexisting_directed_arc(
*node_pair,
efficiency=None,
static_loss=None,
capacity=1,
capacity_is_instantaneous=False
)
# assert that it can detected the selected antiparallel arcs
assert net.has_selected_antiparallel_arcs()
# check that it finds the right node pairs
identified_node_pairs = net.find_selected_antiparallel_arcs()
assert (node_a, node_b) in identified_node_pairs
assert (node_b, node_a) in identified_node_pairs
# *************************************************************************
# *************************************************************************
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
def test_add_nodes(self):
# create network
net = Network()
# add nodes
node_a = 'A'
net.add_node(node_a)
assert net.is_waypoint_node(node_a)
# source
node_b = 'B'
net.add_node(node_b, **{net.KEY_NODE_BASE_FLOW: {(0,0):-1}})
assert net.is_source_sink_node(node_b)
# sink
node_c = 'C'
net.add_node(node_c, **{net.KEY_NODE_BASE_FLOW: {(0,0):1}})
assert net.is_source_sink_node(node_c)
# import node
node_d = 'D'
net.add_node(node_d, **{net.KEY_NODE_PRICES: {(0,0): ResourcePrice(prices=[1, 2], volumes=[1,None])}, net.KEY_NODE_TYPE: net.KEY_NODE_TYPE_IMP})
assert net.is_import_node(node_d)
# export node
node_e = 'E'
net.add_node(node_e, **{net.KEY_NODE_PRICES: {(0,0): ResourcePrice(prices=[2, 3], volumes=[4,None])}, net.KEY_NODE_TYPE: net.KEY_NODE_TYPE_EXP})
assert net.is_export_node(node_e)
# modify nodes
# from waypoint to source/sink
net.modify_node(node_a, **{net.KEY_NODE_BASE_FLOW: {(0,0):-2}})
assert not net.is_waypoint_node(node_a)
assert net.is_source_sink_node(node_a)
# from source/sink to waypoint
net.modify_node(node_a)
assert not net.is_source_sink_node(node_a)
assert net.is_waypoint_node(node_a)
# from waypoint to import node
net.modify_node(node_a, **{net.KEY_NODE_PRICES: {(0,0): ResourcePrice(prices=[5, 3.5], volumes=[2,4])}, net.KEY_NODE_TYPE: net.KEY_NODE_TYPE_IMP})
assert not net.is_waypoint_node(node_a)
assert net.is_import_node(node_a)
# from import node to waypoint
net.modify_node(node_a)
assert not net.is_import_node(node_a)
assert net.is_waypoint_node(node_a)
# from waypoint node to export node
net.modify_node(node_a, **{net.KEY_NODE_PRICES: {(0,0): ResourcePrice(prices=[4, 1], volumes=[3,6])}, net.KEY_NODE_TYPE: net.KEY_NODE_TYPE_EXP})
assert not net.is_waypoint_node(node_a)
assert net.is_export_node(node_a)
# from export node to sink/source
net.modify_node(node_a, **{net.KEY_NODE_BASE_FLOW: {(0,0):-1}})
assert not net.is_export_node(node_a)
assert net.is_source_sink_node(node_a)
# from sink/source node to import node
net.modify_node(node_a, **{net.KEY_NODE_PRICES: {(0,0): ResourcePrice(prices=[5, 3.5], volumes=[2,4])}, net.KEY_NODE_TYPE: net.KEY_NODE_TYPE_IMP})
assert not net.is_source_sink_node(node_a)
assert net.is_import_node(node_a)
# from import node to export node
net.modify_node(node_a, **{net.KEY_NODE_PRICES: {(0,0): ResourcePrice(prices=[4, 1], volumes=[3,6])}, net.KEY_NODE_TYPE: net.KEY_NODE_TYPE_EXP})
assert not net.is_import_node(node_a)
assert net.is_export_node(node_a)
# from export node to waypoint node
net.modify_node(node_a)
assert not net.is_export_node(node_a)
assert net.is_waypoint_node(node_a)
# *********************************************************************
# test modifying nodes with preexisting arcs
# add arcs
# add arc between two waypoint nodes
net.add_preexisting_directed_arc(
node_key_a=node_a,
node_key_b=node_b,
efficiency=None,
static_loss=None,
capacity=3,
capacity_is_instantaneous=False
)
# modify nodes
# try to change the start node to an export node
with pytest.raises(ValueError):
net.modify_node(node_a, **{net.KEY_NODE_PRICES: {(0,0): ResourcePrice(prices=[4, 1], volumes=[3,6])}, net.KEY_NODE_TYPE: net.KEY_NODE_TYPE_EXP})
# try to change the end node to an import node
with pytest.raises(ValueError):
net.modify_node(node_b, **{net.KEY_NODE_PRICES: {(0,0): ResourcePrice(prices=[4, 1], volumes=[3,6])}, net.KEY_NODE_TYPE: net.KEY_NODE_TYPE_IMP})
# *************************************************************************
# *************************************************************************
# *****************************************************************************
# *****************************************************************************