Skip to content
Snippets Groups Projects
examples_esipp.py 42.6 KiB
Newer Older
  • Learn to ignore specific revisions
  • Pedro Magalhães's avatar
    Pedro Magalhães committed
    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
    # imports
    
    # standard
    
    import random as rand
    
    from statistics import mean
    
    import math
    
    # local
    
    import numpy as np
    
    import networkx as nx
    
    # imprt src.topupopt.problems.esipp as ipp
    
    import src.topupopt.problems.esipp.utils as utils
    
    from src.topupopt.problems.esipp.problem import InfrastructurePlanningProblem
    
    from src.topupopt.problems.esipp.network import Arcs, Network
    
    from src.topupopt.problems.esipp.resource import ResourcePrice
    
    # TODO: replace this set of examples with more deterministic ones
    
    #******************************************************************************
    #******************************************************************************
    
    def examples(solver: str,
                 solver_options: dict = None,
                 seed_number: int = None,
                 init_aux_sets: bool = False):
        
        # test a generic mvesipp problem using the original classes
        
        # termination criteria
        
        solver_timelimit = 60
        
        solver_abs_mip_gap = 0.001
        
        solver_rel_mip_gap = 0.01
    
        if type(solver_options) == dict:
        
            solver_options.update({
                'time_limit':solver_timelimit,
                'relative_mip_gap':solver_rel_mip_gap,
                'absolute_mip_gap':solver_abs_mip_gap
                })
            
        else:
            
            solver_options = {
                'time_limit':solver_timelimit,
                'relative_mip_gap':solver_rel_mip_gap,
                'absolute_mip_gap':solver_abs_mip_gap
                }
        
        #**************************************************************************
        
        # no sos, regular time intervals
        
        example_generic_problem(
            solver=solver,
            solver_options=solver_options,
            use_sos_arcs=False,
            sos_weight_key=InfrastructurePlanningProblem.SOS1_ARC_WEIGHTS_NONE,
            seed_number=seed_number,
            perform_analysis=True,
            plot_results=False, # True,
            print_solver_output=False,
            irregular_time_intervals=False,
            init_aux_sets=init_aux_sets
            )
        
        # sos, cost as weight, regular time intervals
          
        example_generic_problem(
            solver=solver,
            solver_options=solver_options,
            use_sos_arcs=True,
            sos_weight_key=InfrastructurePlanningProblem.SOS1_ARC_WEIGHTS_COST,
            seed_number=seed_number,
            perform_analysis=False,
            plot_results=False,
            print_solver_output=False,
            irregular_time_intervals=False,
            init_aux_sets=init_aux_sets
            )
        
        # sos, capacity as weight, regular time intervals
                        
        example_generic_problem(
            solver=solver,
            solver_options=solver_options,
            use_sos_arcs=True,
            sos_weight_key=InfrastructurePlanningProblem.SOS1_ARC_WEIGHTS_CAP,
            seed_number=seed_number,
            perform_analysis=False,
            plot_results=False,
            print_solver_output=False,
            irregular_time_intervals=False,
            init_aux_sets=init_aux_sets
            )
        
        # sos, specific minimum cost as weight, irregular time intervals
                       
        example_generic_problem(
            solver=solver,
            solver_options=solver_options,
            use_sos_arcs=True,
            sos_weight_key=InfrastructurePlanningProblem.SOS1_ARC_WEIGHTS_SPEC_COST,
            seed_number=seed_number,
            perform_analysis=False,
            plot_results=False,
            print_solver_output=False,
            irregular_time_intervals=True,
            init_aux_sets=init_aux_sets
            )
        
        #**************************************************************************
        
    #******************************************************************************
    #******************************************************************************
    #******************************************************************************
    #******************************************************************************
    
    def example_generic_problem(solver: str = 'glpk',
                                solver_options: dict = None,
                                use_sos_arcs: bool = False,
                                sos_weight_key: str = 'cost',
                                seed_number: int = None,
                                perform_analysis: bool = False,
                                plot_results: bool = False,
                                print_solver_output: bool = False,
                                irregular_time_intervals: bool = False,
                                init_aux_sets: bool = False):
        
        number_periods = 2
        
        number_intraperiod_time_intervals = 5
        
        discount_rates = tuple([0.035 for p in range(number_periods)])
        
        planning_horizon = [365*24*3600 for p in range(number_periods)] # intra-period, of course
        
        if irregular_time_intervals:
            
            # TODO: adjust demand/supply levels
            
            time_step_max_relative_variation = 0.25
            
            intraperiod_time_interval_duration = [
                (planning_horizon[0]/number_intraperiod_time_intervals)*
                (1+(k/(number_intraperiod_time_intervals-1)-0.5)*
                 time_step_max_relative_variation)
                for k in range(number_intraperiod_time_intervals)]
            
        else:
        
            intraperiod_time_interval_duration = [
                planning_horizon[0]/number_intraperiod_time_intervals
                for k in range(number_intraperiod_time_intervals)]
            
        # time weights
        
        # average time interval duration
        
        average_time_interval_duration = round(
            mean(
                intraperiod_time_interval_duration
                )
            )
        
        # relative weight of time period
        
        # one interval twice as long as the average is worth twice
        # one interval half as long as the average is worth half
        
        # time_weights = [
        #     [time_period_duration/average_time_interval_duration 
        #       for time_period_duration in intraperiod_time_interval_duration] 
        #     for p in range(number_periods)]
        
        time_weights = None
        
        # create problem object
        
        ipp = InfrastructurePlanningProblem(
            name='problem', 
            discount_rates={0: discount_rates}, 
            reporting_periods={0: tuple(i for i in range(number_periods))},
            time_intervals={
                0: tuple(dt for dt in intraperiod_time_interval_duration)
                },
            time_weights=time_weights
            )
        
        # add networks and systems
        
        ipp = create_generic_networks(ipp,
                                      seed_number)
        
        # set up the use of sos, if necessary
        
        if use_sos_arcs:
            
            for network_key in ipp.networks:
                
                for arc_key in ipp.networks[network_key].edges(keys=True):
                    
                    if ipp.networks[network_key].edges[arc_key][
                            Network.KEY_ARC_TECH].has_been_selected():
                        
                        continue
            
                    ipp.use_sos1_for_arc_selection(
                        network_key, 
                        arc_key,
                        use_real_variables_if_possible=False,
                        sos1_weight_method=sos_weight_key)
        
        # instantiate
        
        ipp.instantiate(initialise_ancillary_sets=init_aux_sets)
        
        # optimise
        
        if print_solver_output:
            
            ipp.instance.pprint()
        
        out = ipp.optimise(solver_name=solver, 
                           solver_options=solver_options, 
                           output_options={},
                           print_solver_output=print_solver_output)
        
        if out:
    
            print('The optimisation was successful. Running post-optimisation analysis.')
            
            # run tests
            
            utils.run_mvesipp_analysis(ipp,
                                       ipp.instance,
                                       analyse_problem=perform_analysis,
                                       analyse_results=perform_analysis)
            
        else:
            
            print('The optimisation failed. Skipping results analysis.')
        
            # run tests
            
            utils.run_mvesipp_analysis(ipp,
                                       ipp.instance,
                                       analyse_problem=perform_analysis,
                                       analyse_results=False)
        
        #**************************************************************************
        #**************************************************************************
        
        # print results
        
        if plot_results:
        
            utils.plot_mves(ipp,
                            filepath='/another_folder/',
                            filename_radical='network_')
        
        #**************************************************************************
        #**************************************************************************
        
        # return something
        
        return True
                    
    #******************************************************************************
    #******************************************************************************
    
    def generic_problem_get_arc_techs(number_time_intervals,
                                      network_order,
                                      network_name,
                                      arc_tech_efficiencies,
                                      number_arc_technologies,
                                      peak_flow,
                                      n1,
                                      n2,
                                      distance
                                      ):
            
        min_efficiency = min(arc_tech_efficiencies.values())
        
        # note: the network order needs to be accurate
        
        capacity = [
            peak_flow*
            (1/(min_efficiency**network_order))*
            (k+1)/number_arc_technologies
            for k in range(number_arc_technologies)]
        
        min_cost = [
            (k+1)*distance*1e3*(1+rand.random())
            for k in range(number_arc_technologies)]
        
        new_arc_tech = Arcs(
            name=( 
                network_name+
                '_arc_tech_n'+str(n1)+
                '_n'+str(n2)),
            efficiency=arc_tech_efficiencies, 
            efficiency_reverse=None,
            static_loss=None,
            capacity=capacity, 
            minimum_cost=min_cost,
            specific_capacity_cost=0,
            capacity_is_instantaneous=False,
            validate=False)
        
        # return
        
        return new_arc_tech
    
    #******************************************************************************
    #******************************************************************************
    
    def add_arc_this_way(network,
                         network_order,
                         ipp,
                         order_boost,
                         network_names,
                         g,
                         node_start,
                         node_end,
                         arc_number_key,
                         arc_tech_efficiency,
                         number_arc_technologies,
                         peak_flow,
                         distance_matrix):
    
        arc_tech = generic_problem_get_arc_techs(
            ipp.time_intervals[ipp.assessment_keys[0]],
            network_order[g]+order_boost,
            network_names[g],
            arc_tech_efficiency[g],
            number_arc_technologies,
            peak_flow[g],
            node_start,
            node_end,
            distance_matrix[g][node_start][node_end]
            )
                        
        # add it to the network
        
        if arc_number_key == None:
        
            network.add_directed_arc(
                node_key_a=node_start, 
                node_key_b=node_end,
                arcs=arc_tech)
            
        else:
            
            network.modify_network_arc(
                node_key_a=node_start,
                node_key_b=node_end,
                arc_key_ab=arc_number_key,
                data_dict={
                    Network.KEY_ARC_TECH: arc_tech,
                    Network.KEY_ARC_UND: False}
                )
        
        #**************************************************************************
        #**************************************************************************
    
    #******************************************************************************
    #******************************************************************************
            
    def create_generic_networks(ipp: InfrastructurePlanningProblem,
                                seed_number: int = None):
        
        #**************************************************************************
        #**************************************************************************
        
        if seed_number == None:
            
            seed_number = rand.randint(1,int(1e5))
        
            print('Seed number: '+str(seed_number))
        
        # initialise random number generators
        
        rand.seed(a=seed_number)
        
        np.random.seed(seed=seed_number)
        
        #**************************************************************************
        #**************************************************************************
        
        # problem specification
        
        # networks
        
        min_number_networks = 2
        
        max_number_networks = 3
        
        number_networks = rand.randint(min_number_networks, max_number_networks)
        
        # network type: supply (nodes only), demand (nodes only), hybrid (both)
        
        NET_TYPE_SUPPLY = 'supply'
        NET_TYPE_DEMAND = 'demand'
        NET_TYPE_HYBRID = 'hybrid'
        
        NET_TYPES = [NET_TYPE_SUPPLY,
                     NET_TYPE_DEMAND,
                     NET_TYPE_HYBRID]
    
        network_type = [NET_TYPES[rand.randint(0, len(NET_TYPES)-1)]
                        for g in range(number_networks)]
        print(network_type)
        # TODO: delete print above
        # order of network
        
        min_network_order = 2 # has to be at least 2 for hybrid mode
        
        max_network_order = 4
        
        network_order = [rand.randint(min_network_order,max_network_order)
                         for g in range(number_networks)]
        
        # import and export nodes
        
        # import nodes are needed with insuf. supply
        
        min_number_import_nodes = [(1 if (network_type[g] == NET_TYPE_DEMAND or
                                          network_type[g] == NET_TYPE_HYBRID)
                                    else 0)
                                   for g in range(number_networks)]
            
        max_number_import_nodes = [min_number_import_nodes[g]+rand.randint(0,1)
                                   for g in range(number_networks)]
        
        # export nodes are needed with insuf. demand
                                   
        min_number_export_nodes = [(1 if (network_type[g] == NET_TYPE_SUPPLY or
                                          network_type[g] == NET_TYPE_HYBRID)
                                    else 0)
                                   for g in range(number_networks)]
        
        max_number_export_nodes = [min_number_export_nodes[g]+rand.randint(0,1)
                                   for g in range(number_networks)]
        
        min_number_other_nodes = 3
        
        max_number_other_nodes = 6
        
        number_import_nodes = [rand.randint(min_number_import_nodes[g],
                                            max_number_import_nodes[g])
                               for g in range(number_networks)]
        
        number_export_nodes = [rand.randint(min_number_export_nodes[g],
                                            max_number_export_nodes[g])
                               for g in range(number_networks)]
        
        number_other_nodes = [rand.randint(min_number_other_nodes,
                                           max_number_other_nodes)
                              for g in range(number_networks)]
        
        number_nodes = [2**network_order[g]+
                        number_import_nodes[g]+ 
                        number_export_nodes[g]+
                        number_other_nodes[g]
                        for g in range(number_networks)]
        
        # arc technologies
        
        min_number_arc_technologies = [1 for g in range(number_networks)]
        
        max_number_arc_technologies = [6 for g in range(number_networks)]
        
        number_arc_technologies = [
            rand.randint(min_number_arc_technologies[g],
                         max_number_arc_technologies[g])
            for g in range(number_networks)]
        
        #**************************************************************************
        #**************************************************************************
        
        # generate data
            
        network_names = ['grid_'+str(g)
                         for g in range(number_networks)]
            
        # import prices (could be an empty dict)
        
        import_prices = {
            (g,n):[rand.random() 
                   for k in ipp.time_intervals[ipp.assessment_keys[0]]]
            for g in range(number_networks)
            for n in range(number_import_nodes[g])}
        
        # export prices (lower than import ones; random if no imports prices exist)
        
        export_prices = {
            (g,n):[min(import_prices[(g,n_imp)][k]
                       for n_imp in range(number_import_nodes[g]))*
                   rand.random() if number_import_nodes[g] != 0 else rand.random()
                   for k in range(
                           len(ipp.time_intervals[ipp.assessment_keys[0]])
                           )]
            for g in range(number_networks)
            for n in range(number_export_nodes[g])}
        
        # static supply (negative) or demand (positive)
            
        base_flow = {
            (g,n):[rand.random() if network_type[g] == NET_TYPE_DEMAND else
                   -rand.random() if network_type[g] == NET_TYPE_SUPPLY else 
                   -1+2*rand.random()
                   for k in ipp.time_intervals[ipp.assessment_keys[0]]]
            for g in range(number_networks)
            for n in range(number_other_nodes[g])}
        
        # positions
        
        position_nodes = [
            [(rand.random(),rand.random()) for n in range(number_nodes[g])]
            for g in range(number_networks)]
        
        # distance
        
        def distance_function(x1,x2,y1,y2):
            
            return np.sqrt((x1-x2)**2+(y1-y2)**2)
            
        distance_matrix = [
            [[distance_function(position_nodes[g][n1][0],
                                position_nodes[g][n2][0],
                                position_nodes[g][n1][1],
                                position_nodes[g][n2][1])
              for n2 in range(number_nodes[g])]
             for n1 in range(number_nodes[g])]
            for g in range(number_networks)]
        
        # determine peak demand
        
        peak_flow = [
            sum(
                max(
                    [abs(base_flow[(g,n)][k]) 
                     for k in range(
                             len(ipp.time_intervals[ipp.assessment_keys[0]])
                             )
                     ]
                    )    
                for n in range(number_other_nodes[g])
                )
            for g in range(number_networks)
            ]
        
        # arc tech efficiency per arc tech and grid
        
        # arc_tech_efficiency = [
        #     [1-rand.random()*rand.random()*rand.random()
        #      for k in range(ipp.number_intraperiod_time_intervals)]
        #     for g in range(number_networks)]
            
        arc_tech_efficiency = [
            {(q,k): 1-rand.random()*rand.random()*rand.random()
             for q in ipp.assessment_keys
             for k in range(ipp.number_time_intervals[q])}
            for g in range(number_networks)
            ]
                    
        #**************************************************************************
        #**************************************************************************
        
        # for each network:
        # 1) create network using networkx's graph creators
        # 2) add random data to the existing nodes and edges
        # 3) add import, export and other nodes (including the relevant data)
        # 4) add arcs from these new nodes to the other nodes in the network
                
        # list of Network objects
        
        for g in range(number_networks):
            
            #**********************************************************************
            
            order_boost = (
                2 if number_import_nodes[g] and number_export_nodes[g] else 1 
                if number_import_nodes[g] or number_export_nodes[g] else 0)
    
            #**********************************************************************
            
            # 1) create network using networkx's graph creators
            
            if network_type[g] == NET_TYPE_DEMAND:
                
                # consumer network (positive SB_glk)
            
                new_network = Network(
                    nx.binomial_tree(network_order[g],
                                     create_using=nx.MultiDiGraph))
                
            elif network_type[g] == NET_TYPE_SUPPLY:
                
                # producer network (negative SB_glk)
                    
                new_network = Network(
                    nx.binomial_tree(network_order[g],
                                     create_using=nx.MultiDiGraph))
                
                # reverse arc directions
                
                arc_list = []
                for arc in new_network.edges():
                    arc_list.append(arc)
                for arc in arc_list:
                    new_network.remove_edge(arc[0],arc[1])
                    new_network.add_edge(arc[1],arc[0])
                
            else: # hybrid
            
                # join one supply grid with one demand grid
                
                G1 = nx.binomial_tree(network_order[g]-1,
                                      create_using=nx.MultiDiGraph)
                                      
                G2 = nx.binomial_tree(network_order[g]-1,
                                      create_using=nx.MultiDiGraph)
                
                nn_g1 = G1.number_of_nodes()
                arc_list = [arc for arc in G2.edges()]
                node_list = [node_key for node_key in G2.nodes()]
                for arc in arc_list:
                    G2.remove_edge(arc[0],arc[1])
                    G2.add_node(arc[0]+nn_g1)
                    G2.add_node(arc[1]+nn_g1)
                    G2.add_edge(arc[1]+nn_g1,arc[0]+nn_g1)
                for node in node_list:
                    G2.remove_node(node)
                    
                G = nx.union(G1,G2)                
                G.add_edge(nn_g1,0) # G2 is the supply network, G1 is the demand 1
                new_network = Network(G)
                
            
            # define the nodes as not being import, nor export nor other nodes
            
            for n in new_network.nodes:
                
                new_network.add_waypoint_node(node_key=n)
                
            # add arc data
            
            for edge in new_network.edges(keys=True):
                
                # add arc
                
                add_arc_this_way(new_network,
                                 network_order,
                                 ipp,
                                 order_boost,
                                 network_names,
                                 g,
                                 edge[0],
                                 edge[1],
                                 edge[2],
                                 arc_tech_efficiency,
                                 number_arc_technologies[g],
                                 peak_flow,
                                 distance_matrix)
                
            #**********************************************************************
            
            # compute the number of outgoing arcs per node
            
            dict_number_outgoing_arcs = {
                node: len(nx.edges(new_network,node))
                for node in new_network.nodes()}
            
            # list the nodes ordered by descending number of outgoing arcs
            
            list_nodes_descending_number_outgoing_arcs = sorted(
                dict_number_outgoing_arcs,
                key=dict_number_outgoing_arcs.get,
                reverse=True)
                            
            # list the nodes ordered by ascending number of outgoing arcs
                
            list_nodes_ascending_number_outgoing_arcs = sorted(
                dict_number_outgoing_arcs,
                key=dict_number_outgoing_arcs.get)
            
            # compute the number of incoming arcs per node
            
            dict_number_incoming_arcs = {
                node: len([node_source 
                           for node_source in new_network.predecessors(node)])
                for node in new_network.nodes()}
            
            # list of nodes ordered by descending number of incoming arcs
            
            list_nodes_descending_number_incoming_arcs = sorted(
                dict_number_incoming_arcs,
                key=dict_number_incoming_arcs.get,
                reverse=True)
                    
            # list of nodes ordered by ascending number of incoming arcs
                
            list_nodes_ascending_number_incoming_arcs = sorted(
                dict_number_incoming_arcs,
                key=dict_number_incoming_arcs.get)
              
            #**********************************************************************
            
            # add import nodes
            
            for n in range(number_import_nodes[g]):
                
                # define key
                
                node_key = new_network.number_of_nodes()
                
                # res_pri = ResourcePrice(prices=import_prices[(g,n)],
                #                         volumes=None)
                
                new_network.add_import_node(
                    node_key=node_key,
                    prices={
                        (q,p,k): ResourcePrice(
                            prices=import_prices[(g,n)][k],
                            volumes=None
                            )
                        for q in range(ipp.number_assessments)
                        for p in range(ipp.number_reporting_periods[q])
                        for k in range(ipp.number_time_intervals[q])
                        }
                    )
                
                # add arc from import node to a node with many outgoing arcs
                
                add_arc_this_way(new_network,
                                 network_order,
                                 ipp,
                                 order_boost,
                                 network_names,
                                 g,
                                 node_key,
                                 list_nodes_descending_number_outgoing_arcs[n],
                                 None,
                                 arc_tech_efficiency,
                                 number_arc_technologies[g],
                                 peak_flow,
                                 distance_matrix)
                        
            #**********************************************************************
                
            # add export nodes
            
            for n in range(number_export_nodes[g]):
                
                # define key
                
                node_key = new_network.number_of_nodes()
                
                # res_pri = ResourcePrice(prices=export_prices[(g,n)],
                #                         volumes=None)
                
                new_network.add_export_node(
                    node_key=node_key,
                    prices={
                        (q,p,k): ResourcePrice(
                            prices=export_prices[(g,n)][k],
                            volumes=None
                            )
                        for q in range(ipp.number_assessments)
                        for p in range(ipp.number_reporting_periods[q])
                        for k in range(ipp.number_time_intervals[q])
                        
                        }
                    )
                
                # add arc from node with many incoming arcs to the export node
                
                add_arc_this_way(new_network,
                                 network_order,
                                 ipp,
                                 order_boost,
                                 network_names,
                                 g,
                                 list_nodes_descending_number_incoming_arcs[n],
                                 node_key,
                                 None,
                                 arc_tech_efficiency,
                                 number_arc_technologies[g],
                                 peak_flow,
                                 distance_matrix)
                
            #**********************************************************************
            
            # identify import and export nodes
            
            new_network.identify_node_types()
            
            #**********************************************************************
            
            # demand/supply nodes: create them and add arcs to random nodes
            
            demand_node_counter = 0
            
            supply_node_counter = 0
            
            for n in range(number_other_nodes[g]):
                
                # add demand/supply node
                
                node_key = new_network.number_of_nodes()
                
                new_network.add_source_sink_node(
                    node_key=node_key,
                    # base_flow=base_flow[(g,n)],
                    base_flow={
                        (q, k): base_flow[(g,n)][k]
                        for q in ipp.assessment_keys
                        for k in range(
                                len(ipp.time_intervals[q])
                                )
                        }
                    )
                
                # differentiate node placement based on the static flow needs
                
                # this will tend to ensure feasibility
                
                if min(base_flow[(g,n)]) >= 0:
                    
                    # demand node: 
                    # from nodes with zero/few outgoing arcs to the demand node
                    
                    node_key_start = list_nodes_ascending_number_outgoing_arcs[
                        demand_node_counter]
                    
                    add_arc_this_way(new_network,
                                     network_order,
                                     ipp,
                                     order_boost,
                                     network_names,
                                     g,
                                     node_key_start,
                                     node_key,
                                     None,
                                     arc_tech_efficiency,
                                     number_arc_technologies[g],
                                     peak_flow,
                                     distance_matrix)
                    
                    # increment counter
            
                    demand_node_counter = demand_node_counter + 1
                    
                elif max(base_flow[(g,n)]) <= 0:
                    
                    # supply node: 
                    # from the supply node to nodes with zero/few incoming arcs
                    
                    node_key_end = list_nodes_ascending_number_incoming_arcs[
                        supply_node_counter]
                    
                    add_arc_this_way(new_network,
                                     network_order,
                                     ipp,
                                     order_boost,
                                     network_names,
                                     g,
                                     node_key,
                                     node_key_end,
                                     None,
                                     arc_tech_efficiency,
                                     number_arc_technologies[g],
                                     peak_flow,
                                     distance_matrix)
                    
                    # increment counter
                    
                    supply_node_counter = supply_node_counter + 1
                
                else:
                    
                    # demand/supply node
                    
                    # add two arcs:
                    # arc 1) from an import node or nodes directly or indirectly
                    # connected to an import node (from which imports are possible)
                    # arc 2) to an export node or nodes directly or indirectly co-
                    # nnected to an export node (from which exports are possible)
                    
                    #**************************************************************
                    
                    # arc 1
                    
                    # randomly select a starting node
                    
                    # for each import node
                    
                    for import_node in new_network.import_nodes:
                        
                        # select a node with few outgoing arcs
                    
                        node_key_start = list_nodes_ascending_number_outgoing_arcs[
                            supply_node_counter]
                        
                        # check if there is a path between them
                        
                        if nx.has_path(new_network, import_node, node_key_start):
                            
                            # call random for comparison purposes
                            
                            rand.randint(0,1)
                            
                            # update the counter
                            
                            supply_node_counter = supply_node_counter + 1
                            
                            # if there is, break
                            
                            break
                        
                        # if not, continue
                    
                        # TODO: while loop to try more times with each import node
                    
                    else: 
                        
                        # randomly select an import node
                        
                        node_key_start = new_network.import_nodes[
                            rand.randint(0,len(new_network.import_nodes)-1)]
                    
                    # add arc
                    
                    add_arc_this_way(new_network,
                                     network_order,
                                     ipp,
                                     order_boost,
                                     network_names,
                                     g,
                                     node_key_start,
                                     node_key,
                                     None,
                                     arc_tech_efficiency,
                                     number_arc_technologies[g],
                                     peak_flow,
                                     distance_matrix)
                    
                    #**************************************************************
                    
                    # arc 2
                    
                    # randomly select an end node
                    
                    # for each export node
                    
                    for export_node in new_network.export_nodes:
                        
                        # select a node with few incoming arcs
                    
                        node_key_end = list_nodes_ascending_number_incoming_arcs[
                            demand_node_counter]
                        
                        # check if there is a path between them
                        
                        if nx.has_path(new_network, node_key_end, export_node):
                            
                            # call random for comparison purposes
                            
                            rand.randint(0,1)
                            
                            # update the counter
                    
                            demand_node_counter = demand_node_counter + 1
                            
                            # if there is, break
                            
                            break
                        
                        # if not, continue
                    
                        # TODO: while loop to try more times with each export node
                    
                    else: 
                        
                        # randomly select an export node