Skip to content
Snippets Groups Projects
FeatureEstimation.py 156 KiB
Newer Older
glia's avatar
glia committed
# -*- coding: utf-8 -*-
"""
Updated Oct 18 2022

@author: Qianliang Li (glia@dtu.dk)

This script contains the code to estimate the following EEG features:
    1. Power Spectral Density
    2. Frontal Theta/Beta Ratio
    3. Asymmetry
    4. Peak Alpha Frequency
    5. 1/f Exponents
    6. Microstates
    7. Long-Range Temporal Correlation (DFA Exponent)
Source localization and functional connectivity
    8. Imaginary part of Coherence
    9. Weighted Phase Lag Index
    10. (Orthogonalized) Power Envelope Correlations
    11. Granger Causality

It should be run after Preprocessing.py

All features are saved in pandas DataFrame format for the machine learning
pipeline

Note that the code has not been changed to fit the demonstration dataset,
thus just running it might introduce some errors.
The code is provided to show how we performed the feature estimation
and if you are adapting the code, you should check if it fits your dataset
e.g. the questionnaire data, sensors and source parcellation etc

The script was written in Spyder. The outline panel can be used to navigate
the different parts easier (Default shortcut: Ctrl + Shift + O)
"""

glia's avatar
glia committed
# Set working directory
s200431's avatar
s200431 committed
import numpy as np
glia's avatar
glia committed
import os
wkdir = "/home/s200431"
glia's avatar
glia committed
os.chdir(wkdir)

# Load all libraries from the Preamble
from Preamble import *

# %% Load preprocessed epochs and questionnaire data
load_path = "/home/s200431/PreprocessedData"
glia's avatar
glia committed

# Get filenames
files = []
for r, d, f in os.walk(load_path):
    for file in f:
        if ".fif" in file:
            files.append(os.path.join(r, file))
files.sort()

glia's avatar
glia committed
# Subject IDs
Subject_id = [0] * len(files)
for i in range(len(files)):
    temp = files[i].split("/")
    temp = temp[-1].split(".")
    temp = temp[0].split("_")
    Subject_id[i] = int(temp[0])

# Should exclude subject 100326 due to 7 bad channels
# Exclude 200013 and 200015 due to too many dropped epochs
# (200001, 200004, 200053 and 200072 were already excluded prior to preprocessing)
# Exclude 302215, 302224, 302227, 302233, 302264, 302268, 302275 due to too many dropped epochs
# 13 subjects excluded in total + 4 I did not receive because they were marked as bad from Helse
bad_subjects = [100326, 200013, 200015, 302224, 302227, 302233, 302264, 302268, 302275]
good_subject_idx = [not i in bad_subjects for i in Subject_id]

Subject_id = list(np.array(Subject_id)[good_subject_idx])
files = list(np.array(files)[good_subject_idx])
glia's avatar
glia committed

n_subjects = len(Subject_id)

# Load ISAF
n_ISAF = 51-1
ISAF7_final_epochs = [0]*n_ISAF
for n in range(len(ISAF7_final_epochs)):
    ISAF7_final_epochs[n] = mne.read_epochs(fname = os.path.join(files[n]),
                    verbose=0)

# Load HELSE
n_HELSE = 70-2
HELSE_final_epochs = [0]*n_HELSE
for n in range(len(HELSE_final_epochs)):
    HELSE_final_epochs[n] = mne.read_epochs(fname = os.path.join(files[n+n_ISAF]),
glia's avatar
glia committed
                    verbose=0)
    # Rename channels to match ISAF (Using 10-20 MCN)
    mne.rename_channels(HELSE_final_epochs[n].info, {"T3":"T7",
                                                     "T4":"T8",
                                                     "T5":"P7",
                                                     "T6":"P8"})
# Warning about chronological order is due to interleaved EO->EC->EO->EC being concatenated as 5xEC->5xEO

# Load Baseline
n_Base = 91-6
Base_final_epochs = [0]*n_Base
for n in range(len(Base_final_epochs)):
    Base_final_epochs [n] = mne.read_epochs(fname = os.path.join(files[n+n_ISAF+n_HELSE]),
                    verbose=0)

# I will use the union of the channels in both dataset (except mastoids)
# This means I add empty channels and interpolate when it is missing
# Helsefond montage has wrong calibration, head size are too big. 
# Thus I will need to re-calibrate by comparing with ISAF7
# Notice I already used the final dig montage for Baseline data

# Get channel names
ISAF7_chs = ISAF7_final_epochs[0].copy().info["ch_names"]
Helse_chs = HELSE_final_epochs[0].copy().info["ch_names"]
Base_chs = Base_final_epochs[0].copy().info["ch_names"]

# Get intersection of channels
intersect_ch = list(set(Helse_chs) & set(ISAF7_chs))
intersect_ch_ratio = [0]*len(intersect_ch)
for i in range(len(intersect_ch)):
    # Get channel name
    ch_name0 = intersect_ch[i]
    # Get index and electrode location
    ISAF7_ch_idx = np.where(np.array(ISAF7_chs) == ch_name0)[0]
    ISAF7_ch_loc = ISAF7_final_epochs[0].info["chs"][int(ISAF7_ch_idx)]["loc"]
    Helse_ch_idx = np.where(np.array(Helse_chs) == ch_name0)[0]
    Helse_ch_loc = HELSE_final_epochs[0].info["chs"][int(Helse_ch_idx)]["loc"]
    # Calculate ratio
    intersect_ch_ratio[i] = [ch_name0,ISAF7_ch_loc[0:3]/Helse_ch_loc[0:3]]
# Most of the ratios are either around 0.095 or 0/Inf when division with 0
# We also see that Cz for ISAF is defined as (0,0,0.095m). For Helse Cz is (0,0,1m)
Helse_to_ISAF7_cal = 0.095

# Now we are ready to make a combined montage (info["dig"])
# Get list of channels to add
ISAF7_add_ch_list = list(set(Helse_chs)-set(ISAF7_chs))
Helse_add_ch_list = list(set(ISAF7_chs)-set(Helse_chs))
combined_ch_list = Helse_chs + ISAF7_chs
# Remove duplicates while maintaining A-P order
duplicate = set()
final_ch_list = [x for x in combined_ch_list if not (x in duplicate or duplicate.add(x))]
# Move AFz and POz to correct position
final_ch_list.insert(3,final_ch_list.pop(-2)) # from second last to 3
final_ch_list.insert(-5,final_ch_list.pop(-1)) # from last to seventh from last

# The order of DigPoints in info are based on sorted ch names
Helse_dig = HELSE_final_epochs[0].copy().info["dig"]
Helse_chs_sorted = Helse_chs.copy()
Helse_chs_sorted.sort()
ISAF7_dig = ISAF7_final_epochs[0].copy().info["dig"]
ISAF7_chs_sorted = ISAF7_chs.copy()
ISAF7_chs_sorted.sort()

# Make one list with DigPoints from Helse + unique channels from ISAF7
ch_idx = [i for i, item in enumerate(ISAF7_chs_sorted) if item in set(Helse_add_ch_list)] # indices of unique channels
final_ch_list_sorted = final_ch_list.copy()
final_ch_list_sorted.sort()
dig_insert_idx = [i for i, item in enumerate(final_ch_list_sorted) if item in set(Helse_add_ch_list)] # find where ISAF7 channels should be inserted

# Prepare combined dig montage
final_dig = Helse_dig.copy()
# Calibrate Helse digpoints
for i in range(len(final_dig)):
    final_dig[i]["r"] = final_dig[i]["r"]*Helse_to_ISAF7_cal
# Insert ISAF7 digpoints
for i in range(len(ch_idx)):
    final_dig.insert(dig_insert_idx[i],ISAF7_dig[ch_idx[i]])

# Remove mastoids
Mastoid_ch = ["M1", "M2"]
M_idx = [i for i, item in enumerate(final_ch_list_sorted) if item in set(Mastoid_ch)] # find mastoids ch
M_idx2 = [i for i, item in enumerate(final_ch_list) if item in set(Mastoid_ch)] # find mastoids ch
M_idx3 = [i for i, item in enumerate(Helse_add_ch_list) if item in set(Mastoid_ch)] # find mastoids ch
for i in reversed(range(len(M_idx))):
    del final_ch_list_sorted[M_idx[i]]
    del final_dig[M_idx[i]]
    # Mastoids are placed in the back of final_ch_list and Helse_add_ch_list and are also removed
    del final_ch_list[M_idx2[i]]
    del Helse_add_ch_list[M_idx3[i]]

# T7, T8, Pz, P8 and P7 are placed wrongly (probably due to renaming)
# This is fixed manually
final_dig.insert(-7,final_dig.pop(-4)) # swap between P8 and T7
final_dig.insert(-6,final_dig.pop(-3)) # swap between T7 and T8
final_dig.insert(-4,final_dig.pop(-4)) # swap between Pz and T7
final_dig.insert(-5,final_dig.pop(-5)) # swap between Pz and POz

# Update EEG identity number
for i in range(len(final_dig)):
    final_dig[i]["ident"] = i+1

# Make final digital montage
final_digmon = mne.channels.DigMontage(dig=final_dig, ch_names=final_ch_list_sorted)
# final_digmon.plot() # visually inspect topographical positions
# final_digmon.plot(kind="3d") # visually inspect 3D positions
# final_digmon.save("final_digmon.fif") # Save digital montage
with open("final_digmon_ch_names.pkl", "wb") as filehandle:
    # The data is stored as binary data stream
    pickle.dump(final_digmon.ch_names, filehandle)

# Remove mastoids from ISAF, add channels from Helse and interpolate
for n in range(len(ISAF7_final_epochs)):
    # Remove mastoid channels
    ISAF7_final_epochs[n].drop_channels(Mastoid_ch)
    # Add empty channels to interpolate - notice that the locations are set to 0
    mne.add_reference_channels(ISAF7_final_epochs[n],ISAF7_add_ch_list,copy=False)
    # Fix channel info (both after removal of mastoids and newly added chs)
    # Ch info loc are linked for all reference channels and this link is removed
    for c in range(ISAF7_final_epochs[n].info["nchan"]):
        ISAF7_final_epochs[n].info["chs"][c]["loc"] = ISAF7_final_epochs[n].info["chs"][c]["loc"].copy()
        ISAF7_final_epochs[n].info["chs"][c]["scanno"] = c+1
        ISAF7_final_epochs[n].info["chs"][c]["logno"] = c+1
    # Set new combined montage
    ISAF7_final_epochs[n].set_montage(final_digmon)
    # Set newly added channels as "bad" and interpolate
    ISAF7_final_epochs[n].info["bads"] = ISAF7_add_ch_list
    ISAF7_final_epochs[n].interpolate_bads(reset_bads=True)
    # Fix "picks" in order to reorder channels
    ISAF7_final_epochs[n].picks = np.array(range(ISAF7_final_epochs[n].info["nchan"]))
    # Reorder channel
    ISAF7_final_epochs[n].reorder_channels(final_ch_list)

# Add channels from ISAF to Helse and interpolate
for n in range(len(HELSE_final_epochs)):
    # Add empty channels to interpolate
    mne.add_reference_channels(HELSE_final_epochs[n],Helse_add_ch_list,copy=False)
    # Fix channel info (both after removal of mastoids and newly added chs)
    # Ch info loc are linked for all reference channels and this link is removed
    for c in range(HELSE_final_epochs[n].info["nchan"]):
        HELSE_final_epochs[n].info["chs"][c]["loc"] = HELSE_final_epochs[n].info["chs"][c]["loc"].copy()
        HELSE_final_epochs[n].info["chs"][c]["scanno"] = c+1
        HELSE_final_epochs[n].info["chs"][c]["logno"] = c+1
    # Set new combined montage
    HELSE_final_epochs[n].set_montage(final_digmon)
    # Set newly added channels as "bad" and interpolate
    HELSE_final_epochs[n].info["bads"] = Helse_add_ch_list
    HELSE_final_epochs[n].interpolate_bads(reset_bads=True)
    # Fix "picks" in order to reorder channels
    HELSE_final_epochs[n].picks = np.array(range(HELSE_final_epochs[n].info["nchan"]))
    # Reorder channels
    HELSE_final_epochs[n].reorder_channels(final_ch_list)

# Add missing channels to Baseline and interpolate
Base_add_ch_list = list(set(final_ch_list)-set(Base_chs))
for n in range(len(Base_final_epochs)):
    # Add empty channels to interpolate
    mne.add_reference_channels(Base_final_epochs[n],Base_add_ch_list,copy=False)
    # Fix channel info (both after removal of mastoids and newly added chs)
    # Ch info loc are linked for all reference channels and this link is removed
    for c in range(Base_final_epochs[n].info["nchan"]):
        Base_final_epochs[n].info["chs"][c]["loc"] = Base_final_epochs[n].info["chs"][c]["loc"].copy()
        Base_final_epochs[n].info["chs"][c]["scanno"] = c+1
        Base_final_epochs[n].info["chs"][c]["logno"] = c+1
    # Set new combined montage
    Base_final_epochs[n].set_montage(final_digmon)
    # Set newly added channels as "bad" and interpolate
    Base_final_epochs[n].info["bads"] = Base_add_ch_list
    Base_final_epochs[n].interpolate_bads(reset_bads=True)
    # Fix "picks" in order to reorder channels
    Base_final_epochs[n].picks = np.array(range(Base_final_epochs[n].info["nchan"]))
    # Reorder channels
    Base_final_epochs[n].reorder_channels(final_ch_list)    

# Combine both dataset in one list
final_epochs = ISAF7_final_epochs+HELSE_final_epochs+Base_final_epochs
# Check number of epochs
file_lengths = [0]*len(final_epochs)
for i in range(len(final_epochs)):
    file_lengths[i] = len(final_epochs[i])
# sns.distplot(file_lengths) # visualize
np.min(file_lengths)/150*100 # Max 20% epochs dropped. Above and the subjects were excluded
n_subjects = len(final_epochs)

# Re-sample files to 200Hz (Data was already lowpass filtered at 100, so above 200 is oversampling)
for i in range(len(final_epochs)):
    final_epochs[i].resample(sfreq=200, verbose=2)

# # Save final epochs data
# save_path = "/home/glia/Analysis/Final_epochs_data"
# for n in range(len(final_epochs)):
#     # Make file writeable
#     final_epochs[n]._times_readonly.flags["WRITEABLE"] = False
#     # Save file
#     final_epochs[n].save(fname = os.path.join(save_path,str("{}_final_epoch".format(Subject_id[n]) + "-epo.fif")),
#                     overwrite=True, verbose=0)
glia's avatar
glia committed

# Load dropped epochs - used for gap idx in microstates
ISAF7_dropped_epochs_df = pd.read_pickle("ISAF7_dropped_epochs.pkl")
Helse_dropped_epochs_df = pd.read_pickle("HELSE_dropped_epochs.pkl")
Base_dropped_epochs_df = pd.read_pickle("Base_dropped_epochs.pkl")
glia's avatar
glia committed

Drop_epochs_df = pd.concat([ISAF7_dropped_epochs_df,Helse_dropped_epochs_df,
                            Base_dropped_epochs_df]).reset_index(drop=True)
glia's avatar
glia committed
good_subject_df_idx = [not i in bad_subjects for i in Drop_epochs_df["Subject_ID"]]
Drop_epochs_df = Drop_epochs_df.loc[good_subject_df_idx,:]
Drop_epochs_df = Drop_epochs_df.sort_values(by=["Subject_ID"]).reset_index(drop=True)

### Load questionnaire data
# ISAF
qdf_ISAF7 = pd.read_csv("/data/raw/FOR_DTU/Questionnaires_for_DTU.csv",
                   na_values=' ')
# Rename Subject_ID column
qdf_ISAF7.rename({"ID_number": "Subject_ID"}, axis=1, inplace=True)
# Sort Subject_id to match Subject_id for files
qdf_ISAF7 = qdf_ISAF7.sort_values(by=["Subject_ID"], ignore_index=True)
# Get column idx for PCL_t7 columns
PCL_idx = qdf_ISAF7.columns.str.contains("PCL") & np.invert(qdf_ISAF7.columns.str.contains("PCL_"))
# Keep subject id
PCL_idx[qdf_ISAF7.columns=="Subject_ID"] = True
# Make a final df and exclude dropped subjects
final_qdf0 = qdf_ISAF7.loc[qdf_ISAF7["Subject_ID"].isin(Subject_id),PCL_idx].reset_index(drop=True)
# Make column that is sum of all PCL
final_qdf0.insert(len(final_qdf0.columns),"PCL_total",np.sum(final_qdf0.iloc[:,1:],axis=1))

# Helse
qdf_helse = pd.read_csv("/data/may2020/Questionnaires/HelsfondenQuestData_nytLbn.csv",
                  sep=",", na_values=' ')
# Rename subject ID column
qdf_helse.rename(columns={"Nyt_lbn":"Subject_ID"}, inplace=True)
Helse_ID_modifier = 200000
# Add 200000 to id
qdf_helse["Subject_ID"] += Helse_ID_modifier
# Sort Subject_id to match Subject_id for files
qdf_helse = qdf_helse.sort_values(by=["Subject_ID"], ignore_index=True)
# Get column idx for PCL columns (don't use summarized columns with _)
PCL_idx = qdf_helse.columns.str.contains("PCL") & np.invert(qdf_helse.columns.str.contains("PCL_"))
# Keep subject id
PCL_idx[qdf_helse.columns=="Subject_ID"] = True

# Make a final df and exclude dropped subjects
final_qdf1 = qdf_helse.loc[qdf_helse["Subject_ID"].isin(Subject_id),PCL_idx].reset_index(drop=True)
# Make column that is sum of all PCL
final_qdf1.insert(len(final_qdf1.columns),"PCL_total",np.sum(final_qdf1.iloc[:,1:],axis=1))

# Baseline
# antal_børm renamed to antal_boern
qdf_base = pd.read_csv("/data/sep2020/BaselineForLi.csv", sep=",", na_values=' ')

# Rename subject ID column
qdf_base.rename(columns={"LbnRand":"Subject_ID"}, inplace=True)
Base_ID_modifier = 300000
# Add 300000 to id
qdf_base["Subject_ID"] += Base_ID_modifier
# Sort Subject_id to match Subject_id for files
qdf_base = qdf_base.sort_values(by=["Subject_ID"], ignore_index=True)
# Get column idx for PCL columns (don't use summarized columns with _)
PCL_idx = qdf_base.columns.str.contains("PCL") & np.invert(qdf_base.columns.str.contains("PCL_"))
# Keep subject id
PCL_idx[qdf_base.columns=="Subject_ID"] = True

# Make a final df and exclude dropped subjects
final_qdf2 = qdf_base.loc[qdf_base["Subject_ID"].isin(Subject_id),PCL_idx].reset_index(drop=True)
# Make column that is sum of all PCL
final_qdf2.insert(len(final_qdf2.columns),"PCL_total",np.sum(final_qdf2.iloc[:,1:],axis=1))

# Find NaN
nan_idx = np.where(final_qdf2.isna()==True)
final_qdf2.iloc[nan_idx[0],np.concatenate([np.array([0]),nan_idx[1]])] # 2252 has NaN for PCL3 and 12
# Interpolate with mean of column
final_qdf2 = final_qdf2.fillna(final_qdf2.mean())

# Combine the 3 datasets
final_qdf0.columns = final_qdf1.columns # fix colnames with t7
final_qdf = pd.concat([final_qdf0,final_qdf1,final_qdf2], ignore_index=True)

# Define folder for saving features
Feature_savepath = "./Features/"
Stat_savepath = "./Statistics/"
Model_savepath = "./Model/"

# Ensure all columns are integers
final_qdf = final_qdf.astype("int")
final_qdf.to_pickle(os.path.join(Feature_savepath,"final_qdf.pkl"))

glia's avatar
glia committed

# Define cases as >= 44 total PCL
# Type: numpy array with subject id
cases = np.array(final_qdf["Subject_ID"][final_qdf["PCL_total"]>=44])
glia's avatar
glia committed
n_groups = 2
Groups = ["CTRL", "PTSD"]

# Check percentage of cases in both datasets
len(np.where((cases>100000)&(cases<200000))[0])/n_ISAF # around 32%
len(np.where((cases>200000)&(cases<300000))[0])/n_HELSE # around 51%
len(np.where((cases>300000)&(cases<400000))[0])/n_Base # around 66%
# There is clearly class imbalance between studies!

### Get depression scores as binary above threshold
# BDI >= 20 is moderate depression
# DASS-42 >= 14 is moderate depression for depression subscale
dep_cases = np.concatenate([np.array(qdf_ISAF7["Subject_ID"][qdf_ISAF7["BDI_t7"] >= 20]),
                           np.array(qdf_helse["Subject_ID"][qdf_helse["DASS_D_t0"] >= 14]),
                           np.array(qdf_base["Subject_ID"][qdf_base["DASS_D_t0"] >= 14])])
dep_cases.sort()
dep_cases = dep_cases[np.isin(dep_cases,Subject_id)] # only keep those that we received and not excluded

# Check percentage of dep cases in both datasets
len(np.where((dep_cases>100000)&(dep_cases<200000))[0])/n_ISAF # around 34%
len(np.where((dep_cases>200000)&(dep_cases<300000))[0])/n_HELSE # around 53%
len(np.where((dep_cases>300000)&(dep_cases<400000))[0])/n_Base # around 72%

# Make normalized to max depression score to combine from both scales
# Relative score seem to be consistent between BDI-II and DASS-42 and clinical label
max_BDI = 63
max_DASS = 42
# Get normalized depression scores for each dataset
ISAF7_dep_score = qdf_ISAF7["BDI_t7"][qdf_ISAF7["Subject_ID"].isin(Subject_id)]/max_BDI
Helse_dep_score = qdf_helse["DASS_D_t0"][qdf_helse["Subject_ID"].isin(Subject_id)]/max_DASS
Base_dep_score = qdf_base["DASS_D_t0"][qdf_base["Subject_ID"].isin(Subject_id)]/max_DASS
Norm_dep_score = np.concatenate([ISAF7_dep_score.to_numpy(),Helse_dep_score.to_numpy(),Base_dep_score.to_numpy()])

# Check if subject id match when using concat
test_d1 = qdf_ISAF7["Subject_ID"][qdf_ISAF7["Subject_ID"].isin(Subject_id)]
test_d2 = qdf_helse["Subject_ID"][qdf_helse["Subject_ID"].isin(Subject_id)]
test_d3 = qdf_base["Subject_ID"][qdf_base["Subject_ID"].isin(Subject_id)]
test_d4 = np.concatenate([test_d1.to_numpy(),test_d2.to_numpy(),test_d3.to_numpy()])
assert all(np.equal(Subject_id,test_d4))

glia's avatar
glia committed

# %% Power spectrum features
Freq_Bands = {"delta": [1.25, 4.0],
              "theta": [4.0, 8.0],
              "alpha": [8.0, 13.0],
              "beta": [13.0, 30.0],
              "gamma": [30.0, 49.0]}
ch_names = final_epochs[0].info["ch_names"]
n_channels = final_epochs[0].info["nchan"]

# Pre-allocate memory
power_bands = [0]*len(final_epochs)

def power_band_estimation(n):
    # Get index for eyes open and eyes closed
    EC_index = final_epochs[n].events[:,2] == 1
    EO_index = final_epochs[n].events[:,2] == 2
    
    # Calculate the power spectral density
    psds, freqs = psd_multitaper(final_epochs[n], fmin = 1, fmax = 50) # output (epochs, channels, freqs)
    
    temp_power_band = []
    
    for fmin, fmax in Freq_Bands.values():
        # Calculate the power each frequency band
        psds_band = psds[:, :, (freqs >= fmin) & (freqs < fmax)].sum(axis=-1)
        # Calculate the mean for each eye status
        psds_band_eye = np.array([psds_band[EC_index,:].mean(axis=0),
                                      psds_band[EO_index,:].mean(axis=0)])
        # Append for each freq band
        temp_power_band.append(psds_band_eye)
        # Output: List with the 5 bands, and each element is a 2D array with eye status as 1st dimension and channels as 2nd dimension
    
    # The list is reshaped and absolute and relative power are calculated
    abs_power_band = np.reshape(temp_power_band, (5, 2, n_channels))
    abs_power_band = 10.*np.log10(abs_power_band) # Convert to decibel scale
    
    rel_power_band = np.reshape(temp_power_band, (5, 2, n_channels))
    rel_power_band = rel_power_band/np.sum(rel_power_band, axis=0, keepdims=True)
    # each eye condition and channel have been normalized to power in all 5 frequencies for that given eye condition and channel
    
    # Make one list in 1 dimension
    abs_power_values = np.concatenate(np.concatenate(abs_power_band, axis=0), axis=0)
    rel_power_values = np.concatenate(np.concatenate(rel_power_band, axis=0), axis=0)
    ## Output: First the channels, then the eye status and finally the frequency bands are concatenated
    ## E.g. element 26 is 3rd channel, eyes open, first frequency band
    #assert abs_power_values[26] == abs_power_band[0,1,2]
    #assert abs_power_values[47] == abs_power_band[0,1,23] # +21 channels to last
    #assert abs_power_values[50] == abs_power_band[1,0,2] # once all channels have been changed then the freq is changed and eye status
    
    # Get result
    res = np.concatenate([abs_power_values,rel_power_values],axis=0)
    return n, res

glia's avatar
glia committed
with concurrent.futures.ProcessPoolExecutor() as executor:
    for n, result in executor.map(power_band_estimation, range(len(final_epochs))): # Function and arguments
        power_bands[n] = result

for i in range(len(power_bands)):
    n, results = power_band_estimation(i)
    power_bands[i] = results
glia's avatar
glia committed

# Combine all data into one dataframe
# First the columns are prepared
n_subjects = len(Subject_id)

# The group status (PTSD/CTRL) is made using the information about the cases
Group_status = np.array(["CTRL"]*n_subjects)
Group_status[np.array([i in cases for i in Subject_id])] = "PTSD"

# A variable that codes the channels based on A/P localization is also made
Frontal_chs = ["Fp1", "Fpz", "Fp2", "AFz", "Fz", "F3", "F4", "F7", "F8"]
Central_chs = ["Cz", "C3", "C4", "T7", "T8", "FT7", "FC3", "FCz", "FC4", "FT8", "TP7", "CP3", "CPz", "CP4", "TP8"]
Posterior_chs = ["Pz", "P3", "P4", "P7", "P8", "POz", "O1", "O2", "Oz"]
s200431's avatar
s200431 committed
Parietal_chs = ["TP7", "CP3", "CPz", "CP4", "TP8", "P7", "P3", "Pz", "P4", "P8", "POz"]
glia's avatar
glia committed

s200431's avatar
s200431 committed
Brain_region_labels = ["Frontal","Central","Posterior","Parietal"]
glia's avatar
glia committed
Brain_region = np.array(ch_names, dtype = "<U9")
Brain_region[np.array([i in Frontal_chs for i in ch_names])] = Brain_region_labels[0]
Brain_region[np.array([i in Central_chs for i in ch_names])] = Brain_region_labels[1]
Brain_region[np.array([i in Posterior_chs for i in ch_names])] = Brain_region_labels[2]
s200431's avatar
s200431 committed
Brain_region[np.array([i in Parietal_chs for i in ch_names])] = Brain_region_labels[3]
glia's avatar
glia committed

# A variable that codes the channels based on M/L localization
Left_chs = ["Fp1", "F3", "F7", "FC3", "FT7", "C3", "T7", "CP3", "TP7", "P3", "P7", "O1"]
Right_chs = ["Fp2", "F4", "F8", "FC4", "FT8", "C4", "T8", "CP4", "TP8", "P4", "P8", "O2"]
Mid_chs = ["Fpz", "AFz", "Fz", "FCz", "Cz", "CPz", "Pz", "POz", "Oz"]

Brain_side = np.array(ch_names, dtype = "<U5")
Brain_side[np.array([i in Left_chs for i in ch_names])] = "Left"
Brain_side[np.array([i in Right_chs for i in ch_names])] = "Right"
Brain_side[np.array([i in Mid_chs for i in ch_names])] = "Mid"

# Eye status is added
eye_status = list(final_epochs[0].event_id.keys())
n_eye_status = len(eye_status)

# Frequency bands
freq_bands_name = list(Freq_Bands.keys())
n_freq_bands = len(freq_bands_name)

# Quantification (Abs/Rel)
quant_status = ["Absolute", "Relative"]
n_quant_status = len(quant_status)

# The dataframe is made by combining all the unlisted pds values
# Each row correspond to a different channel. It is reset after all channel names have been used
# Each eye status element is repeated n_channel times, before it is reset
# Each freq_band element is repeated n_channel * n_eye_status times, before it is reset
# Each quantification status element is repeated n_channel * n_eye_status * n_freq_bands times, before it is reset
power_df = pd.DataFrame(data = {"Subject_ID": [ele for ele in Subject_id for i in range(n_eye_status*n_quant_status*n_freq_bands*n_channels)],
                                "Group_status": [ele for ele in Group_status for i in range(n_eye_status*n_quant_status*n_freq_bands*n_channels)],
                                "Channel": ch_names*(n_eye_status*n_quant_status*n_freq_bands*n_subjects),
                                "Brain_region": list(Brain_region)*(n_eye_status*n_quant_status*n_freq_bands*n_subjects),
                                "Brain_side": list(Brain_side)*(n_eye_status*n_quant_status*n_freq_bands*n_subjects),
                                "Eye_status": [ele for ele in eye_status for i in range(n_channels)]*n_quant_status*n_freq_bands*n_subjects,
                                "Freq_band": [ele for ele in freq_bands_name for i in range(n_channels*n_eye_status)]*n_quant_status*n_subjects,
                                "Quant_status": [ele for ele in quant_status for i in range(n_channels*n_eye_status*n_freq_bands)]*n_subjects,
                                "PSD": list(np.concatenate(power_bands, axis=0))
                                })
# Absolute power is in decibels (10*log10(power))

# Fix Freq_band categorical order
power_df["Freq_band"] = power_df["Freq_band"].astype("category").\
            cat.reorder_categories(list(Freq_Bands.keys()), ordered=True)
glia's avatar
glia committed
# Fix Brain_region categorical order
power_df["Brain_region"] = power_df["Brain_region"].astype("category").\
            cat.reorder_categories(Brain_region_labels, ordered=True)
glia's avatar
glia committed
# Save the dataframe
# power_df.to_pickle(os.path.join(Feature_savepath,"Power_df.pkl"))
glia's avatar
glia committed

glia's avatar
glia committed
# %% Theta-beta ratio
# Frontal theta/beta ratio has been implicated in cognitive control of attention
power_df = pd.read_pickle(os.path.join(Feature_savepath,"Power_df.pkl"))

eye_status = list(final_epochs[0].event_id)
n_eye_status = len(eye_status)

# Subset frontal absolute power
power_df_sub1 = power_df[(power_df["Quant_status"] == "Absolute")&
                         (power_df["Brain_region"] == "Frontal")]
# Subset frontal, midline absolute power
power_df_sub2 = power_df[(power_df["Quant_status"] == "Absolute")&
                            (power_df["Brain_region"] == "Frontal")&
                            (power_df["Brain_side"] == "Mid")]
s200431's avatar
s200431 committed
# Subset posterior absolute power
power_df_sub3 = power_df[(power_df["Quant_status"] == "Absolute")&
                            (power_df["Brain_region"] == "Posterior")]
glia's avatar
glia committed

# Calculate average frontal power theta
glia's avatar
glia committed
frontal_theta_mean_subject = power_df_sub1[power_df_sub1["Freq_band"] == "theta"].\
    groupby(["Subject_ID","Group_status","Eye_status"]).mean().reset_index()

# Calculate average frontal power beta
glia's avatar
glia committed
frontal_beta_mean_subject = power_df_sub1[power_df_sub1["Freq_band"] == "beta"].\
    groupby(["Subject_ID","Group_status","Eye_status"]).mean().reset_index()
# Extract all values
frontal_beta_subject_values = power_df_sub1[power_df_sub1["Freq_band"] == "beta"]
glia's avatar
glia committed

# Calculate average frontal, midline power theta
frontal_midline_theta_mean_subject = power_df_sub2[power_df_sub2["Freq_band"] == "theta"].\
    groupby(["Subject_ID","Group_status","Eye_status"]).mean().reset_index()
# Extract all values
frontal_midline_theta_subject_values = power_df_sub2[power_df_sub2["Freq_band"] == "theta"]
s200431's avatar
s200431 committed
# Calculate average parietal alpha power
parietal_alpha_mean_subject = power_df_sub3[power_df_sub3["Freq_band"] == "alpha"].\
    groupby(["Subject_ID","Group_status","Eye_status"]).mean().reset_index()
# Extract all values
parietal_alpha_subject_values = power_df_sub3[power_df_sub3["Freq_band"] == "alpha"]

glia's avatar
glia committed
# Convert from dB to raw power
frontal_theta_mean_subject["PSD"] = 10**(frontal_theta_mean_subject["PSD"]/10)
frontal_beta_mean_subject["PSD"] = 10**(frontal_beta_mean_subject["PSD"]/10)
frontal_midline_theta_mean_subject["PSD"] = 10**(frontal_midline_theta_mean_subject["PSD"]/10)
frontal_beta_subject_values["PSD"] = 10**(frontal_beta_subject_values["PSD"]/10)
frontal_midline_theta_subject_values["PSD"] = 10**(frontal_midline_theta_subject_values["PSD"]/10)
s200431's avatar
s200431 committed
parietal_alpha_mean_subject["PSD"] = 10**(parietal_alpha_mean_subject["PSD"]/10)
parietal_alpha_subject_values["PSD"] = 10**(parietal_alpha_subject_values["PSD"]/10)
s200431's avatar
s200431 committed
# Safe values
frontal_beta_mean_subject.to_pickle(os.path.join(Feature_savepath,"fBMS_df.pkl"))
frontal_midline_theta_mean_subject.to_pickle(os.path.join(Feature_savepath,"fMTMS_df.pkl"))
frontal_beta_subject_values.to_pickle(os.path.join(Feature_savepath,"fBSV_df.pkl"))
frontal_midline_theta_subject_values.to_pickle(os.path.join(Feature_savepath,"fMTSV_df.pkl"))
s200431's avatar
s200431 committed
parietal_alpha_mean_subject.to_pickle(os.path.join(Feature_savepath,"pAMS_df.pkl"))
parietal_alpha_subject_values.to_pickle(os.path.join(Feature_savepath,"pASV_df.pkl"))
glia's avatar
glia committed

# Calculate mean for each group and take ratio for whole group
# To confirm trend observed in PSD plots
mean_group_f_theta = frontal_theta_mean_subject.iloc[:,1:].groupby(["Group_status","Eye_status"]).mean()
mean_group_f_beta = frontal_beta_mean_subject.iloc[:,1:].groupby(["Group_status","Eye_status"]).mean()
mean_group_f_theta_beta_ratio = mean_group_f_theta/mean_group_f_beta

# Calculate ratio for each subject
frontal_theta_beta_ratio = frontal_theta_mean_subject.copy()
frontal_theta_beta_ratio["PSD"] = frontal_theta_mean_subject["PSD"]/frontal_beta_mean_subject["PSD"]

# Take the natural log of ratio 
frontal_theta_beta_ratio["PSD"] = np.log(frontal_theta_beta_ratio["PSD"])

# Rename and save feature
frontal_theta_beta_ratio.rename(columns={"PSD":"TBR"},inplace=True)
# Add dummy variable for re-using plot code
dummy_variable = ["Frontal Theta Beta Ratio"]*frontal_theta_beta_ratio.shape[0]
frontal_theta_beta_ratio.insert(3, "Measurement", dummy_variable )

# frontal_theta_beta_ratio.to_pickle(os.path.join(Feature_savepath,"fTBR_df.pkl"))
glia's avatar
glia committed

glia's avatar
glia committed
# %% Frequency bands asymmetry
# Defined as ln(right) - ln(left)
# Thus we should only work with the absolute values and undo the dB transformation
# Here I avg over all areas. I.e. mean((ln(F4)-ln(F3),(ln(F8)-ln(F7),(ln(Fp2)-ln(Fp1))) for frontal
ROI = ["Frontal", "Central", "Posterior"]
qq = "Absolute" # only calculate asymmetry for absolute
# Pre-allocate memory
asymmetry = np.zeros(shape=(len(np.unique(power_df["Subject_ID"])),
                             len(np.unique(power_df["Eye_status"])),
                             len(list(Freq_Bands.keys())),
                             len(ROI)))

def calculate_asymmetry(i):
    ii = np.unique(power_df["Subject_ID"])[i]
    temp_asymmetry = np.zeros(shape=(len(np.unique(power_df["Eye_status"])),
                             len(list(Freq_Bands.keys())),
                             len(ROI)))
    for e in range(len(np.unique(power_df["Eye_status"]))):
        ee = np.unique(power_df["Eye_status"])[e]
        for f in range(len(list(Freq_Bands.keys()))):
            ff = list(Freq_Bands.keys())[f]
            
            # Get the specific part of the df
            temp_power_df = power_df[(power_df["Quant_status"] == qq) &
                                     (power_df["Eye_status"] == ee) &
                                     (power_df["Subject_ID"] == ii) &
                                     (power_df["Freq_band"] == ff)].copy()
            
            # Convert from dB to raw power
            temp_power_df.loc[:,"PSD"] = np.array(10**(temp_power_df["PSD"]/10))
            
            # Calculate the power asymmetry
            for r in range(len(ROI)):
                rr = ROI[r]
                temp_power_roi_df = temp_power_df[(temp_power_df["Brain_region"] == rr)&
                                                  ~(temp_power_df["Brain_side"] == "Mid")]
                # Sort using channel names to make sure F8-F7 and not F4-F7 etc.
                temp_power_roi_df = temp_power_roi_df.sort_values("Channel").reset_index(drop=True)
                # Get the log power
                R_power = temp_power_roi_df[(temp_power_roi_df["Brain_side"] == "Right")]["PSD"]
                ln_R_power = np.log(R_power) # get log power
                L_power = temp_power_roi_df[(temp_power_roi_df["Brain_side"] == "Left")]["PSD"]
                ln_L_power = np.log(L_power) # get log power
                # Pairwise subtraction followed by averaging
                asymmetry_value = np.mean(np.array(ln_R_power) - np.array(ln_L_power))
                # Save it to the array
                temp_asymmetry[e,f,r] = asymmetry_value
    # Print progress
    print("{} out of {} finished testing".format(i+1,n_subjects))
    return i, temp_asymmetry

with concurrent.futures.ProcessPoolExecutor() as executor:
    for i, res in executor.map(calculate_asymmetry, range(len(np.unique(power_df["Subject_ID"])))): # Function and arguments
        asymmetry[i,:,:,:] = res

# Prepare conversion of array to df using flatten
n_subjects = len(Subject_id)

# The group status (PTSD/CTRL) is made using the information about the cases
Group_status = np.array(["CTRL"]*n_subjects)
Group_status[np.array([i in cases for i in Subject_id])] = "PTSD"

# Eye status is added
eye_status = list(final_epochs[0].event_id.keys())
n_eye_status = len(eye_status)

# Frequency bands
freq_bands_name = list(Freq_Bands.keys())
n_freq_bands = len(freq_bands_name)

# ROIs
n_ROI = len(ROI)

# Make the dataframe                
asymmetry_df = pd.DataFrame(data = {"Subject_ID": [ele for ele in Subject_id for i in range(n_eye_status*n_freq_bands*n_ROI)],
                                     "Group_status": [ele for ele in Group_status for i in range(n_eye_status*n_freq_bands*n_ROI)],
                                     "Eye_status": [ele for ele in eye_status for i in range(n_freq_bands*n_ROI)]*(n_subjects),
                                     "Freq_band": [ele for ele in freq_bands_name for i in range(n_ROI)]*(n_subjects*n_eye_status),
                                     "ROI": list(ROI)*(n_subjects*n_eye_status*n_freq_bands),
                                     "Asymmetry_score": asymmetry.flatten(order="C")
                                     })
# Flatten with order=C means that it first goes through last axis,
# then repeat along 2nd last axis, and then repeat along 3rd last etc

# Asymmetry numpy to pandas conversion check
random_point=321
asymmetry_df.iloc[random_point]

i = np.where(np.unique(power_df["Subject_ID"]) == asymmetry_df.iloc[random_point]["Subject_ID"])[0]
e = np.where(np.unique(power_df["Eye_status"]) == asymmetry_df.iloc[random_point]["Eye_status"])[0]
f = np.where(np.array(list(Freq_Bands.keys())) == asymmetry_df.iloc[random_point]["Freq_band"])[0]
r = np.where(np.array(ROI) == asymmetry_df.iloc[random_point]["ROI"])[0]

assert asymmetry[i,e,f,r] == asymmetry_df.iloc[random_point]["Asymmetry_score"]

# Save the dataframe
asymmetry_df.to_pickle(os.path.join(Feature_savepath,"asymmetry_df.pkl"))

s200431's avatar
s200431 committed
"""
glia's avatar
glia committed
# %% Using FOOOF
# Peak alpha frequency (PAF) and 1/f exponent (OOF)
# Using the FOOOF algorithm (Fitting oscillations and one over f)
# Published by Donoghue et al, 2020 in Nature Neuroscience
# To start, FOOOF takes the freqs and power spectra as input
n_channels = final_epochs[0].info["nchan"]
ch_names = final_epochs[0].info["ch_names"]
sfreq = final_epochs[0].info["sfreq"]
Freq_Bands = {"delta": [1.25, 4.0],
              "theta": [4.0, 8.0],
              "alpha": [8.0, 13.0],
              "beta": [13.0, 30.0],
              "gamma": [30.0, 49.0]}
n_freq_bands = len(Freq_Bands)

# From visual inspection there seems to be problem if PSD is too steep at the start
# To overcome this problem, we try multiple start freq
OOF_r2_thres = 0.95 # a high threshold as we allow for overfitting
PAF_r2_thres = 0.90 # a more lenient threshold for PAF, as it is usually still captured even if fit for 1/f is not perfect
s200431's avatar
s200431 committed
PTF_r2_thres = 0.90 # a more lenient threshold for PTF, as it is usually still captured even if fit for 1/f is not perfect
PBF_r2_thres = 0.90 # a more lenient threshold for PBF, as it is usually still captured even if fit for 1/f is not perfect
glia's avatar
glia committed
freq_start_it_range = [2,3,4,5,6]
freq_end = 40 # Stop freq at 40Hz to not be influenced by the Notch Filter

eye_status = list(final_epochs[0].event_id.keys())
n_eye_status = len(eye_status)

PAF_data = np.zeros((n_subjects,n_eye_status,n_channels,3)) # CF, power, band_width
s200431's avatar
s200431 committed
PTF_data = np.zeros((n_subjects,n_eye_status,n_channels,3)) # CF, power, band_width
PBF_data = np.zeros((n_subjects,n_eye_status,n_channels,3)) # CF, power, band_width
glia's avatar
glia committed
OOF_data = np.zeros((n_subjects,n_eye_status,n_channels,2)) # offset and exponent

def FOOOF_estimation(i):
    PAF_data0 = np.zeros((n_eye_status,n_channels,3)) # CF, power, band_width
s200431's avatar
s200431 committed
    PTF_data0 = np.zeros((n_eye_status,n_channels,3)) # CF, power, band_width
    PBF_data0 = np.zeros((n_eye_status,n_channels,3)) # CF, power, band_width
glia's avatar
glia committed
    OOF_data0 = np.zeros((n_eye_status,n_channels,2)) # offset and exponent
    # Get Eye status
    eye_idx = [final_epochs[i].events[:,2] == 1, final_epochs[i].events[:,2] == 2] # EC and EO
    # Calculate the power spectral density
    psd, freqs = psd_multitaper(final_epochs[i], fmin = 1, fmax = 50) # output (epochs, channels, freqs)
    # Retrieve psds for the 2 conditions and calculate mean across epochs
    psds = []
    for e in range(n_eye_status):
        # Get the epochs for specific eye condition
        temp_psd = psd[eye_idx[e],:,:]
        # Calculate the mean across epochs
        temp_psd = np.mean(temp_psd, axis=0)
        # Save
        psds.append(temp_psd)
    # Try multiple start freq
    PAF_data00 = np.zeros((n_eye_status,n_channels,len(freq_start_it_range),3)) # CF, power, band_width
s200431's avatar
s200431 committed
    PTF_data00 = np.zeros((n_eye_status,n_channels,len(freq_start_it_range),3)) # CF, power, band_width
    PBF_data00 = np.zeros((n_eye_status,n_channels,len(freq_start_it_range),3)) # CF, power, band_width
glia's avatar
glia committed
    OOF_data00 = np.zeros((n_eye_status,n_channels,len(freq_start_it_range),2)) # offset and exponent
    r2s00 = np.zeros((n_eye_status,n_channels,len(freq_start_it_range)))
    for e in range(n_eye_status):
        psds_avg = psds[e]
        for f in range(len(freq_start_it_range)):
            # Initiate FOOOF group for analysis of multiple PSD
            fg = fooof.FOOOFGroup()
            # Set the frequency range to fit the model
            freq_range = [freq_start_it_range[f], freq_end] # variable freq start to 49Hz
            # Fit to each source PSD separately, but in parallel
            fg.fit(freqs,psds_avg,freq_range,n_jobs=1)
            # Extract aperiodic parameters
            aps = fg.get_params('aperiodic_params')
            # Extract peak parameters
            peaks = fg.get_params('peak_params')
            # Extract goodness-of-fit metrics
            r2s = fg.get_params('r_squared')
            # Save OOF and r2s
            OOF_data00[e,:,f] = aps
            r2s00[e,:,f] = r2s
            # Find the alpha peak with greatest power
            for c in range(n_channels):
                peaks0 = peaks[peaks[:,3] == c]
                # Subset the peaks within the alpha band
                in_alpha_band = (peaks0[:,0] >= Freq_Bands["alpha"][0]) & (peaks0[:,0] <= Freq_Bands["alpha"][1])
                if sum(in_alpha_band) > 0: # Any alpha peaks?
                    # Choose the peak with the highest power
                    max_alpha_idx = np.argmax(peaks0[in_alpha_band,1])
                    # Save results
                    PAF_data00[e,c,f] = peaks0[in_alpha_band][max_alpha_idx,:-1]
                else:
                    # No alpha peaks
                    PAF_data00[e,c,f] = [np.nan]*3
s200431's avatar
s200431 committed
            # Find the theta peak with greatest power
            for c in range(n_channels):
                peaks0 = peaks[peaks[:,3] == c]
                # Subset the peaks within the theta band
                in_theta_band = (peaks0[:,0] >= Freq_Bands["theta"][0]) & (peaks0[:,0] <= Freq_Bands["theta"][1])
                if sum(in_theta_band) > 0:
                    # Choose the peak with the highest power
                    max_theta_idx = np.argmax(peaks0[in_theta_band,1])
                    # Save results
                    PTF_data00[e,c,f] = peaks0[in_theta_band][max_theta_idx,:-1]
                else:
                    # No theta peaks
                    PTF_data00[e,c,f] = [np.nan]*3
            # Find the beta peak with greatest power 
            for c in range(n_channels):
                peaks0 = peaks[peaks[:,3] == c]
                # Subset the peaks within the beta band
                in_beta_band = (peaks0[:,0] >= Freq_Bands["beta"][0]) & (peaks0[:,0] <= Freq_Bands["beta"][1])
                if sum(in_beta_band) > 0:
                    # Choose the peak with the highest power
                    max_beta_idx = np.argmax(peaks0[in_beta_band,1])
                    # Save results
                    PBF_data00[e,c,f] = peaks0[in_beta_band][max_beta_idx,:-1]
                else:
                    # No beta peaks
                    PBF_data00[e,c,f] = [np.nan]*3
glia's avatar
glia committed
    # Check criterias
    good_fits_OOF = (r2s00 > OOF_r2_thres) & (OOF_data00[:,:,:,1] > 0) # r^2 > 0.95 and exponent > 0
    good_fits_PAF = (r2s00 > PAF_r2_thres) & (np.isfinite(PAF_data00[:,:,:,0])) # r^2 > 0.90 and detected peak in alpha band
s200431's avatar
s200431 committed
    good_fits_PTF = (r2s00 > PTF_r2_thres) & (np.isfinite(PTF_data00[:,:,:,0])) # r^2 > 0.90 and detected peak in theta band
    good_fits_PBF = (r2s00 > PBF_r2_thres) & (np.isfinite(PBF_data00[:,:,:,0])) # r^2 > 0.90 and detected peak in beta band
glia's avatar
glia committed
    # Save the data or NaN if criterias were not fulfilled
    for e in range(n_eye_status):
        for c in range(n_channels):
            if sum(good_fits_OOF[e,c]) == 0: # no good OOF estimation
                OOF_data0[e,c] = [np.nan]*2
            else: # Save OOF associated with greatest r^2 that fulfilled criterias
                OOF_data0[e,c] = OOF_data00[e,c,np.argmax(r2s00[e,c,good_fits_OOF[e,c]])]
            if sum(good_fits_PAF[e,c]) == 0: # no good PAF estimation
                PAF_data0[e,c] = [np.nan]*3
            else: # Save PAF associated with greatest r^2 that fulfilled criterias
                PAF_data0[e,c] = PAF_data00[e,c,np.argmax(r2s00[e,c,good_fits_PAF[e,c]])]
s200431's avatar
s200431 committed
            if sum(good_fits_PTF[e,c]) == 0: # no good PTF estimation
                PTF_data0[e,c] = [np.nan]*3
            else: # Save PTF associated with greatest r^2 that fulfilled criterias
                PTF_data0[e,c] = PTF_data00[e,c,np.argmax(r2s00[e,c,good_fits_PTF[e,c]])]
            if sum(good_fits_PBF[e,c]) == 0: # no good PBF estimation
                PBF_data0[e,c] = [np.nan]*3
            else: # Save PBF associated with greatest r^2 that fulfilled criterias
                PBF_data0[e,c] = PBF_data00[e,c,np.argmax(r2s00[e,c,good_fits_PBF[e,c]])]
glia's avatar
glia committed
    print("Finished {} out of {} subjects".format(i+1,n_subjects))
s200431's avatar
s200431 committed
    return i, PAF_data0, OOF_data0, PTF_data0, PBF_data0
glia's avatar
glia committed

# Get current time
c_time1 = time.localtime()
c_time1 = time.strftime("%a %d %b %Y %H:%M:%S", c_time1)
print(c_time1)

s200431's avatar
s200431 committed
# with concurrent.futures.ProcessPoolExecutor() as executor:
#     for i, PAF_result, OOF_result in executor.map(FOOOF_estimation, range(n_subjects)): # Function and arguments
#         PAF_data[i] = PAF_result
#         OOF_data[i] = OOF_result

for i in range(n_subjects):
    j, PAF_result, OOF_result, PTF_data0, PBF_data0 = FOOOF_estimation(i) # Function and arguments
    PAF_data[i] = PAF_result
    OOF_data[i] = OOF_result
    PTF_data[i] = PTF_data0
    PBF_data[i] = PBF_data0
glia's avatar
glia committed

# Save data
with open(Feature_savepath+"PAF_data_arr.pkl", "wb") as file:
    pickle.dump(PAF_data, file)
s200431's avatar
s200431 committed
with open(Feature_savepath+"PTF_data_arr.pkl", "wb") as file:
    pickle.dump(PTF_data, file)
with open(Feature_savepath+"PBF_data_arr.pkl", "wb") as file:
    pickle.dump(PBF_data, file)
# with open(Feature_savepath+"OOF_data_arr.pkl", "wb") as file:
#     pickle.dump(OOF_data, file)
glia's avatar
glia committed

# Get current time
c_time2 = time.localtime()
c_time2 = time.strftime("%a %d %b %Y %H:%M:%S", c_time2)
print("Started", c_time1, "\nFinished",c_time2)

# Convert to Pandas dataframe (only keep mean parameter for PAF)
# The dimensions will each be a column with numbers and the last column will be the actual values
ori = PAF_data[:,:,:,0]
s200431's avatar
s200431 committed
ori_2 = PTF_data[:,:,:,0]
ori_3 = PBF_data[:,:,:,0]
glia's avatar
glia committed
arr = np.column_stack(list(map(np.ravel, np.meshgrid(*map(np.arange, ori.shape), indexing="ij"))) + [ori.ravel()])
s200431's avatar
s200431 committed
arr_2 = np.column_stack(list(map(np.ravel, np.meshgrid(*map(np.arange, ori_2.shape), indexing="ij"))) + [ori_2.ravel()])
arr_3 = np.column_stack(list(map(np.ravel, np.meshgrid(*map(np.arange, ori_3.shape), indexing="ij"))) + [ori_3.ravel()])
glia's avatar
glia committed
PAF_data_df = pd.DataFrame(arr, columns = ["Subject_ID", "Eye_status", "Channel", "Value"])
s200431's avatar
s200431 committed
PTF_data_df = pd.DataFrame(arr_2, columns = ["Subject_ID", "Eye_status", "Channel", "Value"])
PBF_data_df = pd.DataFrame(arr_3, columns = ["Subject_ID", "Eye_status", "Channel", "Value"])
glia's avatar
glia committed
# Change from numerical coding to actual values

index_values = [Subject_id,eye_status,ch_names]
temp_df = PAF_data_df.copy() # make temp df to not sequential overwrite what is changed
s200431's avatar
s200431 committed
temp_df_2 = PTF_data_df.copy() # make temp df to not sequential overwrite what is changed
temp_df_3 = PBF_data_df.copy() # make temp df to not sequential overwrite what is changed
glia's avatar
glia committed
for col in range(len(index_values)):
    col_name = PAF_data_df.columns[col]
s200431's avatar
s200431 committed
    col_name_2 = PTF_data_df.columns[col]
    col_name_3 = PBF_data_df.columns[col]
glia's avatar
glia committed
    for shape in range(ori.shape[col]):
        temp_df.loc[PAF_data_df.iloc[:,col] == shape,col_name]\
        = index_values[col][shape]
s200431's avatar
s200431 committed
        temp_df_2.loc[PTF_data_df.iloc[:,col] == shape,col_name_2]\
        = index_values[col][shape]
        temp_df_3.loc[PBF_data_df.iloc[:,col] == shape,col_name_3]\
        = index_values[col][shape]
glia's avatar
glia committed
PAF_data_df = temp_df # replace original df 
s200431's avatar
s200431 committed
PTF_data_df = temp_df_2 # replace original df
PBF_data_df = temp_df_3 # replace original df
glia's avatar
glia committed

# Add group status
Group_status = np.array(["CTRL"]*len(PAF_data_df["Subject_ID"]))
Group_status[np.array([i in cases for i in PAF_data_df["Subject_ID"]])] = "PTSD"
# Add to dataframe
PAF_data_df.insert(3, "Group_status", Group_status)
s200431's avatar
s200431 committed
PTF_data_df.insert(3, "Group_status", Group_status)
PBF_data_df.insert(3, "Group_status", Group_status)
glia's avatar
glia committed

# Global peak alpha
PAF_data_df_global = PAF_data_df.groupby(["Subject_ID", "Group_status", "Eye_status"]).mean().reset_index() # by default pandas mean skip nan
s200431's avatar
s200431 committed
PTF_data_df_global = PTF_data_df.groupby(["Subject_ID", "Group_status", "Eye_status"]).mean().reset_index() # by default pandas mean skip nan
PBF_data_df_global = PBF_data_df.groupby(["Subject_ID", "Group_status", "Eye_status"]).mean().reset_index() # by default pandas mean skip nan

glia's avatar
glia committed
# Add dummy variable for re-using plot code
dummy_variable = ["Global Peak Alpha Frequency"]*PAF_data_df_global.shape[0]
s200431's avatar
s200431 committed
dummy_variable_2 = ["Global Peak Theta Frequency"]*PTF_data_df_global.shape[0]
dummy_variable_3 = ["Global Peak Beta Frequency"]*PBF_data_df_global.shape[0]
glia's avatar
glia committed
PAF_data_df_global.insert(3, "Measurement", dummy_variable )
s200431's avatar
s200431 committed
PTF_data_df_global.insert(3, "Measurement", dummy_variable_2 )
PBF_data_df_global.insert(3, "Measurement", dummy_variable_3 )
glia's avatar
glia committed

# Regional peak alpha
# A variable that codes the channels based on A/P localization is also made
Frontal_chs = ["Fp1", "Fpz", "Fp2", "AFz", "Fz", "F3", "F4", "F7", "F8"]
Central_chs = ["Cz", "C3", "C4", "T7", "T8", "FT7", "FC3", "FCz", "FC4", "FT8", "TP7", "CP3", "CPz", "CP4", "TP8"]
Posterior_chs = ["Pz", "P3", "P4", "P7", "P8", "POz", "O1", "O2", "Oz"]
s200431's avatar
s200431 committed
Parietal_chs = ["TP7", "CP3", "CPz", "CP4", "TP8", "P7", "P3", "Pz", "P4", "P8", "POz"]
glia's avatar
glia committed

s200431's avatar
s200431 committed
Brain_region_labels = ["Frontal","Central","Posterior","Parietal"]
glia's avatar
glia committed
Brain_region = np.array(ch_names, dtype = "<U9")
s200431's avatar
s200431 committed
Brain_region[np.array([i in Frontal_chs for i in ch_names])] = Brain_region_labels[0]
Brain_region[np.array([i in Central_chs for i in ch_names])] = Brain_region_labels[1]
Brain_region[np.array([i in Posterior_chs for i in ch_names])] = Brain_region_labels[2]
Brain_region[np.array([i in Parietal_chs for i in ch_names])] = Brain_region_labels[3]
glia's avatar
glia committed

s200431's avatar
s200431 committed
# Insert region type into dataframe
glia's avatar
glia committed
PAF_data_df.insert(4, "Brain_region", list(Brain_region)*int(PAF_data_df.shape[0]/len(Brain_region)))
s200431's avatar
s200431 committed
PTF_data_df.insert(4, "Brain_region", list(Brain_region)*int(PTF_data_df.shape[0]/len(Brain_region)))
PBF_data_df.insert(4, "Brain_region", list(Brain_region)*int(PBF_data_df.shape[0]/len(Brain_region)))
glia's avatar
glia committed

s200431's avatar
s200431 committed
# A variable that codes the channels based on M/L localization
Left_chs = ["Fp1", "F3", "F7", "FC3", "FT7", "C3", "T7", "CP3", "TP7", "P3", "P7", "O1"]
Right_chs = ["Fp2", "F4", "F8", "FC4", "FT8", "C4", "T8", "CP4", "TP8", "P4", "P8", "O2"]
Mid_chs = ["Fpz", "AFz", "Fz", "FCz", "Cz", "CPz", "Pz", "POz", "Oz"]
glia's avatar
glia committed

s200431's avatar
s200431 committed
Brain_side = np.array(ch_names, dtype = "<U5")
Brain_side[np.array([i in Left_chs for i in ch_names])] = "Left"
Brain_side[np.array([i in Right_chs for i in ch_names])] = "Right"
Brain_side[np.array([i in Mid_chs for i in ch_names])] = "Mid"
glia's avatar
glia committed

s200431's avatar
s200431 committed
# Insert side type into dataframe: 
PAF_data_df.insert(5, "Brain_side", list(Brain_side)*int(PAF_data_df.shape[0]/len(Brain_side)))
PTF_data_df.insert(5, "Brain_side", list(Brain_side)*int(PTF_data_df.shape[0]/len(Brain_side)))
PBF_data_df.insert(5, "Brain_side", list(Brain_side)*int(PBF_data_df.shape[0]/len(Brain_side)))

# Define region of interest before saving
PAF_data_df = PAF_data_df[(PAF_data_df["Brain_region"] == "Parietal")] # Parietal region in peak alpha frequencys
PTF_data_df = PTF_data_df[(PTF_data_df["Brain_region"] == "Frontal") & 
                          ((PTF_data_df["Brain_side"] == "Mid"))] # Frontal midline theta peak frequencys
PBF_data_df = PBF_data_df[(PBF_data_df["Brain_region"] == "Frontal")] # Frontal beta peak frequencys
glia's avatar
glia committed



# Save the dataframes
s200431's avatar
s200431 committed
PAF_data_df.to_pickle(os.path.join(Feature_savepath,"PAF_data_FOOOF_df.pkl"))
PAF_data_df_global.to_pickle(os.path.join(Feature_savepath,"PAF_data_FOOOF_global_df.pkl"))
PTF_data_df.to_pickle(os.path.join(Feature_savepath,"PTF_data_FOOOF_df.pkl"))
PTF_data_df_global.to_pickle(os.path.join(Feature_savepath,"PTF_data_FOOOF_global_df.pkl"))
PBF_data_df.to_pickle(os.path.join(Feature_savepath,"PBF_data_FOOOF_df.pkl"))
PBF_data_df_global.to_pickle(os.path.join(Feature_savepath,"PBF_data_FOOOF_global_df.pkl"))
s200431's avatar
s200431 committed
# # Convert to Pandas dataframe (only keep exponent parameter for OOF)
# # The dimensions will each be a column with numbers and the last column will be the actual values
# ori = OOF_data[:,:,:,1]
# arr = np.column_stack(list(map(np.ravel, np.meshgrid(*map(np.arange, ori.shape), indexing="ij"))) + [ori.ravel()])
# PAF_data_df = pd.DataFrame(arr, columns = ["Subject_ID", "Eye_status", "Channel", "Value"])
# # Change from numerical coding to actual values

# index_values = [Subject_id,eye_status,ch_names]
# temp_df = PAF_data_df.copy() # make temp df to not sequential overwrite what is changed
# for col in range(len(index_values)):
#     col_name = PAF_data_df.columns[col]
#     for shape in range(ori.shape[col]):
#         temp_df.loc[PAF_data_df.iloc[:,col] == shape,col_name]\
#         = index_values[col][shape]
# OOF_data_df = temp_df # replace original df 

# # Add group status
# Group_status = np.array(["CTRL"]*len(OOF_data_df["Subject_ID"]))
# Group_status[np.array([i in cases for i in OOF_data_df["Subject_ID"]])] = "PTSD"
# # Add to dataframe
# OOF_data_df.insert(3, "Group_status", Group_status)

# # Regional OOF
# OOF_data_df.insert(4, "Brain_region", list(Brain_region)*int(PAF_data_df.shape[0]/len(Brain_region)))

# # Save the dataframes
# OOF_data_df.to_pickle(os.path.join(Feature_savepath,"OOF_data_FOOOF_df.pkl"))
"""
glia's avatar
glia committed
# %% Microstate analysis
# The function takes the data as a numpy array (n_t, n_ch)
# The data is already re-referenced to common average
# Variables for the clustering function are extracted
sfreq = final_epochs[0].info["sfreq"]
eye_status = list(final_epochs[0].event_id.keys())
n_eye_status = len(eye_status)
ch_names = final_epochs[0].info["ch_names"]
n_channels = len(ch_names)
locs = np.zeros((n_channels,2)) # xy coordinates of the electrodes
for c in range(n_channels):
    locs[c] = final_epochs[0].info["chs"][c]["loc"][0:2]

# The epochs are transformed to numpy arrays
micro_data = []
EC_micro_data = []
EO_micro_data = []
for i in range(n_subjects):
    # Transform data to correct shape
    micro_data.append(final_epochs[i].get_data()) # get data
    arr_shape = micro_data[i].shape # get shape
    micro_data[i] = micro_data[i].swapaxes(1,2) # swap ch and time axis
    micro_data[i] = micro_data[i].reshape(arr_shape[0]*arr_shape[2],arr_shape[1]) # reshape by combining epochs and times
    # Get indices for eyes open and closed
    EC_index = final_epochs[i].events[:,2] == 1
    EO_index = final_epochs[i].events[:,2] == 2
    # Repeat with 4s * sample frequency to correct for concatenation of times and epochs
    EC_index = np.repeat(EC_index,4*sfreq)
    EO_index = np.repeat(EO_index,4*sfreq)
    # Save data where it is divided into eye status
    EC_micro_data.append(micro_data[i][EC_index])
    EO_micro_data.append(micro_data[i][EO_index])

# Global explained variance and Cross-validation criterion is used to determine number of microstates
# First all data is concatenated to find the optimal number of maps for all data
micro_data_all = np.vstack(micro_data)

# Determine the number of clusters
# I use a slightly modified kmeans function which returns the cv_min
glia's avatar
glia committed
global_gev = []
cv_criterion = []
for n_maps in range(2,7):
    maps, L, gfp_peaks, gev, cv_min = kmeans_return_all(micro_data_all, n_maps)
    global_gev.append(np.sum(gev))
    cv_criterion.append(cv_min)
# Save run results
cluster_results = np.array([global_gev,cv_criterion])
np.save("Microstate_n_cluster_test_results.npy", cluster_results) # (gev/cv_crit, n_maps from 2 to 6)

#cluster_results = np.load("Microstate_n_cluster_test_results.npy")
#global_gev = cluster_results[0,:]
#cv_criterion = cluster_results[1,:]

# Evaluate best n_maps
plt.figure()
plt.plot(np.linspace(2,6,len(cv_criterion)),(cv_criterion/np.sum(cv_criterion)), label="CV Criterion")
plt.plot(np.linspace(2,6,len(cv_criterion)),(global_gev/np.sum(global_gev)), label="GEV")
plt.legend()
plt.ylabel("Normalized to total")
glia's avatar
glia committed
# The lower CV the better.
# But the higher GEV the better.
# Based on the plots and the recommendation by vong Wegner & Laufs 2018
# we used 5 microstates
glia's avatar
glia committed

# In order to compare between groups, I fix the microstates by clustering on data from both groups
# Due to instability of maps when running multiple times, I increased n_maps from 4 to 6
glia's avatar
glia committed
mode = ["aahc", "kmeans", "kmedoids", "pca", "ica"][1]

# K-means is stochastic, thus I run it multiple times in order to find the maps with highest GEV
# Each K-means is run 5 times and best map is chosen. But I do this 10 times more, so in total 50 times!
n_run = 10
# Pre-allocate memory
microstate_cluster_results = []

# Parallel processing can only be implemented by ensuring different seeds
# Otherwise the iteration would be the same.
# However the k-means already use parallel processing so making outer loop with
# concurrent processes make it use too many processors
# Get current time
c_time1 = time.localtime()
c_time1 = time.strftime("%a %d %b %Y %H:%M:%S", c_time1)
print(c_time1)
# Change datatype due to error with computational power in clustering 
EC_down = np.array(EC_micro_data, dtype = object)
#EC_down = EC_down.astype('float32')
EO_down = np.array(EO_micro_data, dtype = object)
#EO_down = EO_down.astype('float32')
glia's avatar
glia committed

for r in range(n_run):
    maps = [0]*2
    m_labels = [0]*2
    gfp_peaks = [0]*2
    gev = [0]*2
    # Eyes closed
    counter = 0
    maps_, x_, gfp_peaks_, gev_ = clustering(
        np.vstack(EC_down), sfreq, ch_names, locs, mode, n_maps, doplot=False) # doplot=True is bugged
glia's avatar
glia committed
    maps[counter] = maps_
    m_labels[counter] = x_
    gfp_peaks[counter] = gfp_peaks_
    gev[counter] = gev_
    counter += 1
    # Eyes open
    maps_, x_, gfp_peaks_, gev_ = clustering(
        np.vstack(EO_down), sfreq, ch_names, locs, mode, n_maps, doplot=False) # doplot=True is bugged
glia's avatar
glia committed
    maps[counter] = maps_
    m_labels[counter] = x_
    gfp_peaks[counter] = gfp_peaks_
    gev[counter] = gev_
    counter += 1
    
    microstate_cluster_results.append([maps, m_labels, gfp_peaks, gev])
    print("Finished {} out of {}".format(r+1, n_run))

# Get current time
c_time2 = time.localtime()
c_time2 = time.strftime("%a %d %b %Y %H:%M:%S", c_time2)
print("Started", c_time1, "\nFinished",c_time2)

# Save the results
with open(Feature_savepath+"Microstate_5_maps_10x5_k_means_results.pkl", "wb") as file:
glia's avatar
glia committed
    pickle.dump(microstate_cluster_results, file)

# # Load
# with open(Feature_savepath+"Microstate_4_maps_10x5_k_means_results.pkl", "rb") as file:
#     microstate_cluster_results = pickle.load(file)

# Find the best maps (Highest GEV across all the K-means clusters)
EC_total_gevs = np.sum(np.vstack(np.array(microstate_cluster_results)[:,3,0]), axis=1) # (runs, maps/labels/gfp/gev, ec/eo)
EO_total_gevs = np.sum(np.vstack(np.array(microstate_cluster_results)[:,3,1]), axis=1)
Best_EC_idx = np.argmax(EC_total_gevs)
Best_EO_idx = np.argmax(EO_total_gevs)
# Update the variables for the best maps
maps = [microstate_cluster_results[Best_EC_idx][0][0],microstate_cluster_results[Best_EO_idx][0][1]]
m_labels = [microstate_cluster_results[Best_EC_idx][1][0],microstate_cluster_results[Best_EO_idx][1][1]]
gfp_peaks = [microstate_cluster_results[Best_EC_idx][2][0],microstate_cluster_results[Best_EO_idx][2][1]]
gev = [microstate_cluster_results[Best_EC_idx][3][0],microstate_cluster_results[Best_EO_idx][3][1]]

# Plot the maps
plt.style.use('default')
labels = ["EC", "EO"] #Eyes-closed, Eyes-open
glia's avatar
glia committed
for i in range(len(labels)):    
    fig, axarr = plt.subplots(1, n_maps, figsize=(20,5))
    fig.patch.set_facecolor('white')
    for imap in range(n_maps):
        mne.viz.plot_topomap(maps[i][imap,:], pos = final_epochs[0].info, axes = axarr[imap]) # plot
        axarr[imap].set_title("GEV: {:.2f}".format(gev[i][imap]), fontsize=16, fontweight="bold") # title
    fig.suptitle("Microstates: {}".format(labels[i]), fontsize=20, fontweight="bold")

# Manual re-order the maps
# Due the random initiation of K-means this have to be modified every time clusters are made!
# Assign map labels (e.g. 0, 2, 1, 3)
order = [0]*2
order[0] = [3,0,1,2,4] # EC
order[1] = [3,1,0,2,4] # EO
glia's avatar
glia committed
for i in range(len(order)):
    maps[i] = maps[i][order[i],:] # re-order maps
    gev[i] = gev[i][order[i]] # re-order GEV
    # Make directory to find and replace map labels
    dic0 = {value:key for key, value in enumerate(order[i])}
    m_labels[i][:] = [dic0.get(n, n) for n in m_labels[i]] # re-order labels

# The maps seems to be correlated both negatively and positively (see spatial correlation plots)
# Thus the sign of the map does not really reflect which areas are positive or negative (absolute)
# But more which areas are different during each state (relatively)
# I can therefore change the sign of the map for the visualizaiton
sign_swap = [[1,-1,1,1,1],[1,1,1,-1,1]]
glia's avatar
glia committed
for i in range(len(order)):
    for m in range(n_maps):
        maps[i][m] *= sign_swap[i][m]

# Plot the maps and save
save_path = "/home/s200431/Figures/Microstates"
glia's avatar
glia committed
labels = ["EC", "EO"]
for i in range(len(labels)):    
    fig, axarr = plt.subplots(1, n_maps, figsize=(20,5))
    fig.patch.set_facecolor('white')
    for imap in range(n_maps):
        mne.viz.plot_topomap(maps[i][imap,:], pos = final_epochs[0].info, axes = axarr[imap]) # plot
        axarr[imap].set_title("GEV: {:.2f}".format(gev[i][imap]), fontsize=16, fontweight="bold") # title
    fig.suptitle("Microstates: {} - Total GEV: {:.2f}".format(labels[i],sum(gev[i])), fontsize=20, fontweight="bold")
    # Save the figure
    fig.savefig(os.path.join(save_path,str("Microstates_{}".format(labels[i]) + ".png")))

# Calculate spatial correlation between maps and actual data points (topography)
# The sign of the map is changed so the correlation is positive
# By default the code looks for highest spatial correlation (regardless of sign)
# Thus depending on random initiation point the map might be opposite
plt.style.use('ggplot')
def spatial_correlation(data, maps):
    n_t = data.shape[0]
    n_ch = data.shape[1]
    data = data - data.mean(axis=1, keepdims=True)

    # GFP peaks
    gfp = np.std(data, axis=1)
    gfp_peaks = locmax(gfp)
    gfp_values = gfp[gfp_peaks]
    gfp2 = np.sum(gfp_values**2) # normalizing constant in GEV
    n_gfp = gfp_peaks.shape[0]

    # Spatial correlation
    C = np.dot(data, maps.T)
    C /= (n_ch*np.outer(gfp, np.std(maps, axis=1)))
    L = np.argmax(C**2, axis=1) # C is squared here which means the maps do no retain information about the sign of the correlation
    
    return C

C_EC = spatial_correlation(np.vstack(np.array(EC_micro_data)), maps[0])
C_EO = spatial_correlation(np.vstack(np.array(EO_micro_data)), maps[1])
C = [C_EC, C_EO]

# Plot the distribution of spatial correlation for each label and each map
labels = ["EC", "EO"]
for i in range(len(labels)):
    fig, axarr = plt.subplots(n_maps, n_maps, figsize=(16,16))
    for Lmap in range(n_maps):
        for Mmap in range(n_maps):
            sns.distplot(C[i][m_labels[i] == Lmap,Mmap], ax = axarr[Lmap,Mmap])
            axarr[Lmap,Mmap].set_xlabel("Spatial correlation")
    plt.suptitle("Distribution of spatial correlation_{}".format(labels[i]), fontsize=20, fontweight="bold")
    # Add common x and y axis labels by making one big axis
    fig.add_subplot(111, frameon=False)
    plt.tick_params(labelcolor="none", top="off", bottom="off", left="off", right="off") # hide tick labels and ticks
    plt.grid(False) # remove global grid
    plt.xlabel("Microstate number", labelpad=20)
    plt.ylabel("Label number", labelpad=10)
    fig.savefig(os.path.join(save_path,str("Microstates_Spatial_Correlation_Label_State_{}".format(labels[i]) + ".png")))

# Plot the distribution of spatial correlation for all data and each map
labels = ["EC", "EO"]
for i in range(len(labels)):
    fig, axarr = plt.subplots(1,n_maps, figsize=(20,5))
    for imap in range(n_maps):
        sns.distplot(C[i][:,imap], ax = axarr[imap])
        plt.xlabel("Spatial correlation")
    plt.suptitle("Distribution of spatial correlation", fontsize=20, fontweight="bold")
    # Add common x and y axis labels by making one big axis
    fig.add_subplot(111, frameon=False)
    plt.tick_params(labelcolor="none", top="off", bottom="off", left="off", right="off") # hide tick labels and ticks
    plt.grid(False) # remove global grid
    plt.xlabel("Microstate number", labelpad=20)
    plt.ylabel("Label number")

# Prepare for calculation of transition matrix
# I modified the function, so it takes the list argument gap_index
# gap_index should have the indices right before gaps in data

# Gaps: Between dropped epochs, trials (eo/ec) and subjects
# The between subjects gaps is removed by dividing the data into subjects
n_trials = 5
n_epoch_length = final_epochs[0].get_data().shape[2]

micro_labels = []
micro_subject_EC_idx = [0]
micro_subject_EO_idx = [0]
gaps_idx = []
gaps_trials_idx = []
for i in range(n_subjects):
    # Get indices for subject
    micro_subject_EC_idx.append(micro_subject_EC_idx[i]+EC_micro_data[i].shape[0])
    temp_EC = m_labels[0][micro_subject_EC_idx[i]:micro_subject_EC_idx[i+1]]
    # Get labels for subject i EO
    micro_subject_EO_idx.append(micro_subject_EO_idx[i]+EO_micro_data[i].shape[0])
    temp_EO = m_labels[1][micro_subject_EO_idx[i]:micro_subject_EO_idx[i+1]]
    # Save
    micro_labels.append([temp_EC,temp_EO]) # (subject, eye)
    
    # Get indices with gaps
    # Dropped epochs are first considered
    # Each epoch last 4s, which correspond to 2000 samples and a trial is 15 epochs - dropped epochs
    # Get epochs for each condition
    EC_drop_epochs = Drop_epochs_df.iloc[i,1:][Drop_epochs_df.iloc[i,1:] <= 75].to_numpy()
    EO_drop_epochs = Drop_epochs_df.iloc[i,1:][(Drop_epochs_df.iloc[i,1:] >= 75)&
                                            (Drop_epochs_df.iloc[i,1:] <= 150)].to_numpy()
    # Get indices for the epochs for EC that were dropped and correct for changing index due to drop
    EC_drop_epochs_gaps_idx = []
    counter = 0
    for d in range(len(EC_drop_epochs)):
        drop_epoch_number = EC_drop_epochs[d]
        Drop_epoch_idx = (drop_epoch_number-counter)*n_epoch_length # counter subtracted as the drop index is before dropped
        EC_drop_epochs_gaps_idx.append(Drop_epoch_idx-1) # -1 for point just before gap
        counter += 1
    # Negative index might occur if the first epochs were removed. This index is not needed for transition matrix
    if len(EC_drop_epochs_gaps_idx) > 0:
        for d in range(len(EC_drop_epochs_gaps_idx)): # check all, e.g. if epoch 0,1,2,3 are dropped then all should be caught
            if EC_drop_epochs_gaps_idx[0] == -1:
                EC_drop_epochs_gaps_idx = EC_drop_epochs_gaps_idx[1:len(EC_drop_epochs)]
    
    # Get indices for the epochs for EO that were dropped and correct for changing index due to drop
    EO_drop_epochs_gaps_idx = []
    counter = 0
    for d in range(len(EO_drop_epochs)):
        drop_epoch_number = EO_drop_epochs[d]-75
        Drop_epoch_idx = (drop_epoch_number-counter)*n_epoch_length # counter subtracted as the drop index is before dropped
        EO_drop_epochs_gaps_idx.append(Drop_epoch_idx-1) # -1 for point just before gap
        counter += 1
    # Negative index might occur if the first epoch was removed. This index is not needed for transition matrix
    if len(EO_drop_epochs_gaps_idx) > 0:
        for d in range(len(EO_drop_epochs_gaps_idx)): # check all, e.g. if epoch 0,1,2,3 are dropped then all should be caught
            if EO_drop_epochs_gaps_idx[0] == -1:
                EO_drop_epochs_gaps_idx = EO_drop_epochs_gaps_idx[1:len(EO_drop_epochs)]
    
    # Gaps between trials
    Trial_indices = [0, 15, 30, 45, 60, 75] # all the indices for start and end of the 5 trials
    EC_trial_gaps_idx = []
    EO_trial_gaps_idx = []
    counter_EC = 0
    counter_EO = 0
    for t in range(len(Trial_indices)-2): # -2 as start and end is not used in transition matrix
        temp_drop = EC_drop_epochs[(EC_drop_epochs >= Trial_indices[t])&
                            (EC_drop_epochs < Trial_indices[t+1])]
        # Correct the trial id for any potential drops within that trial
        counter_EC += len(temp_drop)
        trial_idx_corrected_for_drops = 15*(t+1)-counter_EC
        EC_trial_gaps_idx.append((trial_idx_corrected_for_drops*n_epoch_length)-1) # multiply id with length of epoch and subtract 1
        
        temp_drop = EO_drop_epochs[(EO_drop_epochs >= Trial_indices[t]+75)&
                            (EO_drop_epochs < Trial_indices[t+1]+75)]
        # Correct the trial id for any potential drops within that trial
        counter_EO += len(temp_drop)
        trial_idx_corrected_for_drops = 15*(t+1)-counter_EO
        EO_trial_gaps_idx.append((trial_idx_corrected_for_drops*n_epoch_length)-1) # multiply id with length of epoch and subtract 1
    
    # Concatenate all drop indices
    gaps_idx.append([np.unique(np.sort(EC_drop_epochs_gaps_idx+EC_trial_gaps_idx)),
                    np.unique(np.sort(EO_drop_epochs_gaps_idx+EO_trial_gaps_idx))])
    # Make on with trial gaps only for use in LRTC analysis
    gaps_trials_idx.append([EC_trial_gaps_idx,EO_trial_gaps_idx])

# Save the gap idx files
np.save("Gaps_idx.npy",np.array(gaps_idx))
np.save("Gaps_trials_idx.npy",np.array(gaps_trials_idx))

# %% Calculate microstate features
# Symbol distribution (also called ratio of time covered RTT)
# Transition matrix
# Shannon entropy
EC_p_hat = p_empirical(m_labels[0], n_maps)
EO_p_hat = p_empirical(m_labels[1], n_maps)
# Sanity check: Overall between EC and EO

microstate_time_data = np.zeros((n_subjects,n_eye_status,n_maps))
microstate_transition_data = np.zeros((n_subjects,n_eye_status,n_maps,n_maps))
microstate_entropy_data = np.zeros((n_subjects,n_eye_status))
s200431's avatar
s200431 committed
microstate_orrurence_data = np.zeros((n_subjects,n_eye_status,n_maps))
microstate_mean_duration_data = np.zeros((n_subjects,n_eye_status,n_maps))
glia's avatar
glia committed
for i in range(n_subjects):
    # Calculate ratio of time covered
    temp_EC_p_hat = p_empirical(micro_labels[i][0], n_maps)
    temp_EO_p_hat = p_empirical(micro_labels[i][1], n_maps)
s200431's avatar
s200431 committed

    # Calcuate number of occurences for each microstate
    for j in range(len(micro_labels[i][0])-1):
       if micro_labels[i][0][j] != micro_labels[i][0][j+1]:
            microstate_orrurence_data[i][0][micro_labels[i][0][j]] += 1
    for j in range(len(micro_labels[i][1])-1):
        if micro_labels[i][1][j] != micro_labels[i][1][j+1]:
            microstate_orrurence_data[i][1][micro_labels[i][1][j]] += 1

    # Calculate mean duration of each microstate
    for j in range(n_maps):
        microstate_mean_duration_data[i][0][j] = sum(micro_labels[i][0] == j)/microstate_orrurence_data[i][0][j]
        microstate_mean_duration_data[i][1][j] = sum(micro_labels[i][1] == j)/microstate_orrurence_data[i][1][j]

glia's avatar
glia committed
    # Calculate transition matrix
glia's avatar
glia committed
    temp_EC_T_hat = T_empirical(micro_labels[i][0], n_maps, gaps_idx[i][0])
    temp_EO_T_hat = T_empirical(micro_labels[i][1], n_maps, gaps_idx[i][1])
    """
    temp_EC_T_hat = T_empirical(micro_labels[i][0], n_maps)
    temp_EO_T_hat = T_empirical(micro_labels[i][1], n_maps)
glia's avatar
glia committed
    # Calculate Shannon entropy
    temp_EC_h_hat = H_1(micro_labels[i][0], n_maps)
    temp_EO_h_hat = H_1(micro_labels[i][1], n_maps)
    
    # Save the data
    microstate_time_data[i,0,:] = temp_EC_p_hat
    microstate_time_data[i,1,:] = temp_EO_p_hat
    microstate_transition_data[i,0,:,:] = temp_EC_T_hat
    microstate_transition_data[i,1,:,:] = temp_EO_T_hat
    microstate_entropy_data[i,0] = temp_EC_h_hat/max_entropy(n_maps) # ratio of max entropy
    microstate_entropy_data[i,1] = temp_EO_h_hat/max_entropy(n_maps) # ratio of max entropy

# Save transition data
np.save(Feature_savepath+"microstate_transition_data.npy", microstate_transition_data)
# Convert transition data to dataframe for further processing with other features
# Transition matrix should be read as probability of row to column
microstate_transition_data_arr =\
s200431's avatar
s200431 committed
     microstate_transition_data.reshape((n_subjects,n_eye_status,n_maps*n_maps)) # flatten 5 x 5 matrix to 1D
transition_info = ["M1->M1", "M1->M2", "M1->M3", "M1->M4", "M1->M5",
                   "M2->M1", "M2->M2", "M2->M3", "M2->M4", "M2-M5",
                   "M3->M1", "M3->M2", "M3->M3", "M3->M4", "M3->M5",
                   "M4->M1", "M4->M2", "M4->M3", "M4->M4", "M4->M5",
                   "M5->M1", "M5->M2", "M5->M3", "M5->M4", "M5->M5"]
glia's avatar
glia committed

arr = np.column_stack(list(map(np.ravel, np.meshgrid(*map(np.arange, microstate_transition_data_arr.shape), indexing="ij"))) + [microstate_transition_data_arr.ravel()])
microstate_transition_data_df = pd.DataFrame(arr, columns = ["Subject_ID", "Eye_status", "Transition", "Value"])
# Change from numerical coding to actual values
eye_status = list(final_epochs[0].event_id.keys())

index_values = [Subject_id,eye_status,transition_info]
for col in range(len(index_values)):
    col_name = microstate_transition_data_df.columns[col]
    for shape in reversed(range(microstate_transition_data_arr.shape[col])): # notice this is the shape of original numpy array. Not shape of DF
        microstate_transition_data_df.loc[microstate_transition_data_df.iloc[:,col] == shape,col_name]\
        = index_values[col][shape]

# Add group status
Group_status = np.array(["CTRL"]*len(microstate_transition_data_df["Subject_ID"]))
Group_status[np.array([i in cases for i in microstate_transition_data_df["Subject_ID"]])] = "PTSD"
# Add to dataframe
microstate_transition_data_df.insert(2, "Group_status", Group_status)

# Save df
microstate_transition_data_df.to_pickle(os.path.join(Feature_savepath,"microstate_transition_data_df.pkl"))

# Convert time covered data to Pandas dataframe
s200431's avatar
s200431 committed
# Convert orrurence data to Pandas dataframe
# Convert mean duration data to Pandas dataframe
glia's avatar
glia committed
# The dimensions will each be a column with numbers and the last column will be the actual values
arr = np.column_stack(list(map(np.ravel, np.meshgrid(*map(np.arange, microstate_time_data.shape), indexing="ij"))) + [microstate_time_data.ravel()])
s200431's avatar
s200431 committed
arr_2 = np.column_stack(list(map(np.ravel, np.meshgrid(*map(np.arange, microstate_orrurence_data.shape), indexing="ij"))) + [microstate_orrurence_data.ravel()])
arr_3 = np.column_stack(list(map(np.ravel, np.meshgrid(*map(np.arange, microstate_mean_duration_data.shape), indexing="ij"))) + [microstate_mean_duration_data.ravel()])
glia's avatar
glia committed
microstate_time_df = pd.DataFrame(arr, columns = ["Subject_ID", "Eye_status", "Microstate", "Value"])
s200431's avatar
s200431 committed
microstate_orrurence_df = pd.DataFrame(arr_2, columns = ["Subject_ID", "Eye_status", "Microstate", "Value"])
microstate_mean_duration_df = pd.DataFrame(arr_3, columns = ["Subject_ID", "Eye_status", "Microstate", "Value"])

glia's avatar
glia committed
# Change from numerical coding to actual values
eye_status = list(final_epochs[0].event_id.keys())
glia's avatar
glia committed

index_values = [Subject_id,eye_status,microstates]
for col in range(len(index_values)):
    col_name = microstate_time_df.columns[col]
s200431's avatar
s200431 committed
    col_name_2 = microstate_orrurence_df.columns[col]
    col_name_3 = microstate_mean_duration_df.columns[col]
glia's avatar
glia committed
    for shape in reversed(range(microstate_time_data.shape[col])): # notice this is the shape of original numpy array. Not shape of DF
        microstate_time_df.loc[microstate_time_df.iloc[:,col] == shape,col_name]\
        = index_values[col][shape]
s200431's avatar
s200431 committed
        microstate_orrurence_df.loc[microstate_orrurence_df.iloc[:,col] == shape,col_name_2]\
        = index_values[col][shape]
        microstate_mean_duration_df.loc[microstate_mean_duration_df.iloc[:,col] == shape,col_name_3]\
        = index_values[col][shape]
glia's avatar
glia committed
# Reversed in inner loop is used to avoid sequencial data being overwritten.
# E.g. if 0 is renamed to 1, then the next loop all 1's will be renamed to 2

# Add group status
Group_status = np.array(["CTRL"]*len(microstate_time_df["Subject_ID"]))
Group_status[np.array([i in cases for i in microstate_time_df["Subject_ID"]])] = "PTSD"
s200431's avatar
s200431 committed
Group_status_2 = np.array(["CTRL"]*len(microstate_orrurence_df["Subject_ID"]))
Group_status_2[np.array([i in cases for i in microstate_orrurence_df["Subject_ID"]])] = "PTSD"
Group_status_3 = np.array(["CTRL"]*len(microstate_mean_duration_df["Subject_ID"]))
Group_status_3[np.array([i in cases for i in microstate_mean_duration_df["Subject_ID"]])] = "PTSD"

glia's avatar
glia committed
# Add to dataframe
microstate_time_df.insert(2, "Group_status", Group_status)
s200431's avatar
s200431 committed
microstate_orrurence_df.insert(2, "Group_status", Group_status_2)
microstate_mean_duration_df.insert(2, "Group_status", Group_status_3)
glia's avatar
glia committed

# Save df
microstate_time_df.to_pickle(os.path.join(Feature_savepath,"microstate_time_df.pkl"))
s200431's avatar
s200431 committed
microstate_orrurence_df.to_pickle(os.path.join(Feature_savepath,"microstate_orrurence_df.pkl"))
microstate_mean_duration_df.to_pickle(os.path.join(Feature_savepath,"microstate_mean_duration_df.pkl"))
glia's avatar
glia committed

# Transition data - mean
# Get index for groups
PTSD_idx = np.array([i in cases for i in Subject_id])
CTRL_idx = np.array([not i in cases for i in Subject_id])
n_groups = 2

microstate_transition_data_mean = np.zeros((n_groups,n_eye_status,n_maps,n_maps))
microstate_transition_data_mean[0,:,:,:] = np.mean(microstate_transition_data[PTSD_idx,:,:,:], axis=0)
microstate_transition_data_mean[1,:,:,:] = np.mean(microstate_transition_data[CTRL_idx,:,:,:], axis=0)

# Convert entropy data to Pandas dataframe
# The dimensions will each be a column with numbers and the last column will be the actual values
arr = np.column_stack(list(map(np.ravel, np.meshgrid(*map(np.arange, microstate_entropy_data.shape), indexing="ij"))) + [microstate_entropy_data.ravel()])
microstate_entropy_df = pd.DataFrame(arr, columns = ["Subject_ID", "Eye_status", "Value"])
# Change from numerical coding to actual values
eye_status = list(final_epochs[0].event_id.keys())

index_values = [Subject_id,eye_status]
for col in range(len(index_values)):
    col_name = microstate_entropy_df.columns[col]
    for shape in reversed(range(microstate_entropy_data.shape[col])): # notice this is the shape of original numpy array. Not shape of DF
        microstate_entropy_df.loc[microstate_entropy_df.iloc[:,col] == shape,col_name]\
        = index_values[col][shape]
# Reversed in inner loop is used to avoid sequencial data being overwritten.
# E.g. if 0 is renamed to 1, then the next loop all 1's will be renamed to 2

# Add group status
Group_status = np.array(["CTRL"]*len(microstate_entropy_df["Subject_ID"]))
Group_status[np.array([i in cases for i in microstate_entropy_df["Subject_ID"]])] = "PTSD"
# Add to dataframe
microstate_entropy_df.insert(2, "Group_status", Group_status)
# Add dummy variable for re-using plot code
dummy_variable = ["Entropy"]*len(Group_status)
microstate_entropy_df.insert(3, "Measurement", dummy_variable)

# Save df
microstate_entropy_df.to_pickle(os.path.join(Feature_savepath,"microstate_entropy_df.pkl"))

# # %% Long-range temporal correlations (LRTC)
# """
# See Hardstone et al, 2012
# Hurst exponent estimation steps:
#     1. Preprocess
#     2. Band-pass filter for frequency band of interest
#     3. Hilbert transform to obtain amplitude envelope
#     4. Perform DFA
#         4.1 Compute cumulative sum of time series to create signal profile
#         4.2 Define set of window sizes (see below)
#         4.3 Remove the linear trend using least-squares for each window
#         4.4 Calculate standard deviation for each window and take the mean
#         4.5 Plot fluctuation function (Standard deviation) as function
#             for all window sizes, on double logarithmic scale
#         4.6 The DFA exponent alpha correspond to Hurst exponent
#             f(L) = sd = L^alpha (with alpha as linear coefficient in log plot)

# If 0 < alpha < 0.5: The process exhibits anti-correlations
# If 0.5 < alpha < 1: The process exhibits positive correlations
# If alpha = 0.5: The process is indistinguishable from a random process
# If 1.0 < alpha < 2.0: The process is non-stationary. H = alpha - 1

# Window sizes should be equally spaced on a logarithmic scale
# Sizes should be at least 4 samples and up to 10% of total signal length
# Filters can influence neighboring samples, thus filters should be tested
# on white noise to estimate window sizes that are unaffected by filters

# filter_length=str(2*1/fmin)+"s" # cannot be used with default transition bandwidth

# """
# # From simulations with white noise I determined window size thresholds for the 5 frequency bands:
# thresholds = [7,7,7,6.5,6.5]
# # And their corresponding log step sizes
# with open("LRTC_log_win_sizes.pkl", "rb") as filehandle:
#     log_win_sizes = pickle.load(filehandle)

# # Variables for the the different conditions
# # Sampling frequency
# sfreq = final_epochs[0].info["sfreq"]
# # Channels
# ch_names = final_epochs[0].info["ch_names"]
# n_channels = len(ch_names)
# # Frequency
# Freq_Bands = {"delta": [1.25, 4.0],
#               "theta": [4.0, 8.0],
#               "alpha": [8.0, 13.0],
#               "beta": [13.0, 30.0],
#               "gamma": [30.0, 49.0]}
# n_freq_bands = len(Freq_Bands)
# # Eye status
# eye_status = list(final_epochs[0].event_id.keys())
# n_eye_status = len(eye_status)

# ### Estimating Hurst exponent for the data
# # The data should be re-referenced to common average (Already done)

# # Data are transformed to numpy arrays
# # Then divided into EO and EC and further into each of the 5 trials
# # So DFA is estimated for each trial separately, which was concluded from simulations
# gaps_trials_idx = np.load("Gaps_trials_idx.npy") # re-used from microstate analysis
# n_trials = 5

# H_data = []
# for i in range(n_subjects):
#     # Transform data to correct shape
#     temp_arr = final_epochs[i].get_data() # get data
#     arr_shape = temp_arr.shape # get shape
#     temp_arr = temp_arr.swapaxes(1,2) # swap ch and time axis
#     temp_arr = temp_arr.reshape(arr_shape[0]*arr_shape[2],arr_shape[1]) # reshape by combining epochs and times
#     # Get indices for eyes open and closed
#     EC_index = final_epochs[i].events[:,2] == 1
#     EO_index = final_epochs[i].events[:,2] == 2
#     # Repeat with 4s * sample frequency to correct for concatenation of times and epochs
#     EC_index = np.repeat(EC_index,4*sfreq)
#     EO_index = np.repeat(EO_index,4*sfreq)
#     # Divide into eye status
#     EC_data = temp_arr[EC_index]
#     EO_data = temp_arr[EO_index]
#     # Divide into trials
#     EC_gap_idx = np.array([0]+list(gaps_trials_idx[i,0])+[len(EC_data)])
#     EO_gap_idx = np.array([0]+list(gaps_trials_idx[i,1])+[len(EO_data)])
glia's avatar
glia committed
    
#     EC_trial_data = []
#     EO_trial_data = []
#     for t in range(n_trials):
#         EC_trial_data.append(EC_data[EC_gap_idx[t]:EC_gap_idx[t+1]])
#         EO_trial_data.append(EO_data[EO_gap_idx[t]:EO_gap_idx[t+1]])
glia's avatar
glia committed
        
#     # Save data
#     H_data.append([EC_trial_data,EO_trial_data]) # output [subject][eye][trial][time,ch]

# # Calculate H for each subject, eye status, trial, freq and channel
# H_arr = np.zeros((n_subjects,n_eye_status,n_trials,n_channels,n_freq_bands))
# w_len = [len(ele) for ele in log_win_sizes]
# DFA_arr = np.empty((n_subjects,n_eye_status,n_trials,n_channels,n_freq_bands,2,np.max(w_len)))
# DFA_arr[:] = np.nan

# # Get current time
# c_time1 = time.localtime()
# c_time1 = time.strftime("%a %d %b %Y %H:%M:%S", c_time1)
# print("Started",c_time1)

# # Nolds are already using all cores so multiprocessing with make it slower
# # Warning occurs when R2 is estimated during detrending - but R2 is not used
# warnings.simplefilter("ignore")
# for i in range(n_subjects):
#     # Pre-allocate memory
#     DFA_temp = np.empty((n_eye_status,n_trials,n_channels,n_freq_bands,2,np.max(w_len)))
#     DFA_temp[:] = np.nan
#     H_temp = np.empty((n_eye_status,n_trials,n_channels,n_freq_bands))
#     for e in range(n_eye_status):
#         for trial in range(n_trials):
#             for c in range(n_channels):
#                 # Get the data
#                 signal = H_data[i][e][trial][:,c]
glia's avatar
glia committed
                
#                 counter = 0 # prepare counter
#                 for fmin, fmax in Freq_Bands.values():
#                     # Filter for each freq band
#                     signal_filtered = mne.filter.filter_data(signal, sfreq=sfreq, verbose=0,
#                                                   l_freq=fmin, h_freq=fmax)
#                     # Hilbert transform
#                     analytic_signal = scipy.signal.hilbert(signal_filtered)
#                     # Get Amplitude envelope
#                     # np.abs is the same as np.linalg.norm, i.e. the length for complex input which is the amplitude
#                     ampltude_envelope = np.abs(analytic_signal)
#                     # Perform DFA using predefined window sizes from simulation
#                     a, dfa_data = nolds.dfa(ampltude_envelope,
#                                             nvals=np.exp(log_win_sizes[counter]).astype("int"),
#                                             debug_data=True)
#                     # Save DFA results
#                     DFA_temp[e,trial,c,counter,:,0:w_len[counter]] = dfa_data[0:2]
#                     H_temp[e,trial,c,counter] = a
#                     # Update counter
#                     counter += 1

#     # Print run status
#     print("Finished {} out of {}".format(i+1,n_subjects))
#     # Save the results
#     H_arr[i] = H_temp
#     DFA_arr[i] = DFA_temp

# warnings.simplefilter("default")

# # Get current time
# c_time2 = time.localtime()
# c_time2 = time.strftime("%a %d %b %Y %H:%M:%S", c_time2)
# print("Started", c_time1, "\nCurrent Time",c_time2)

# # Save the DFA analysis data 
# np.save(Feature_savepath+"DFA_arr.npy", DFA_arr)
# np.save(Feature_savepath+"H_arr.npy", H_arr)
glia's avatar
glia committed

1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200
# # Load
# DFA_arr = np.load(Feature_savepath+"DFA_arr.npy")
# H_arr = np.load(Feature_savepath+"H_arr.npy")

# # Average the Hurst Exponent across trials
# H_arr = np.mean(H_arr, axis=2)

# # Convert to Pandas dataframe (Hurst exponent)
# # The dimensions will each be a column with numbers and the last column will be the actual values
# arr = np.column_stack(list(map(np.ravel, np.meshgrid(*map(np.arange, H_arr.shape), indexing="ij"))) + [H_arr.ravel()])
# H_data_df = pd.DataFrame(arr, columns = ["Subject_ID", "Eye_status", "Channel", "Freq_band", "Value"])
# # Change from numerical coding to actual values
# eye_status = list(final_epochs[0].event_id.keys())
# ch_name = final_epochs[0].info["ch_names"]

# index_values = [Subject_id,eye_status,ch_name,list(Freq_Bands.keys())]
# for col in range(len(index_values)):
#     col_name = H_data_df.columns[col]
#     for shape in range(H_arr.shape[col]): # notice this is the shape of original numpy array. Not shape of DF
#         H_data_df.loc[H_data_df.iloc[:,col] == shape,col_name]\
#         = index_values[col][shape]

# # Add group status
# Group_status = np.array(["CTRL"]*len(H_data_df["Subject_ID"]))
# Group_status[np.array([i in cases for i in H_data_df["Subject_ID"]])] = "PTSD"
# # Add to dataframe
# H_data_df.insert(2, "Group_status", Group_status)

# # Fix Freq_band categorical order
# H_data_df["Freq_band"] = H_data_df["Freq_band"].astype("category").\
#             cat.reorder_categories(list(Freq_Bands.keys()), ordered=True)

# # Global Hurst exponent
# H_data_df_global = H_data_df.groupby(["Subject_ID", "Eye_status", "Freq_band"]).mean().reset_index() # by default pandas mean skip nan
# # Add group status (cannot use group_by as each subject only have 1 group, not both)
# Group_status = np.array(["CTRL"]*len(H_data_df_global["Subject_ID"]))
# Group_status[np.array([i in cases for i in H_data_df_global["Subject_ID"]])] = "PTSD"
# # Add to dataframe
# H_data_df_global.insert(2, "Group_status", Group_status)
# # Add dummy variable for re-using plot code
# dummy_variable = ["Global Hurst Exponent"]*H_data_df_global.shape[0]
# H_data_df_global.insert(3, "Measurement", dummy_variable )

# # Save the data
# H_data_df.to_pickle(os.path.join(Feature_savepath,"H_data_df.pkl"))
# H_data_df_global.to_pickle(os.path.join(Feature_savepath,"H_data_global_df.pkl"))

# # %% Source localization of sensor data
# # Using non-interpolated channels
# # Even interpolated channels during preprocessing and visual inspection
# # are dropped

# # Prepare epochs for estimation of source connectivity
# source_epochs = [0]*n_subjects
# for i in range(n_subjects):
#     source_epochs[i] = final_epochs[i].copy()

# ### Make forward solutions
# # A forward solution is first made for all individuals with no dropped channels
# # Afterwards individual forward solutions are made for subjects with bad
# # channels that were interpolated in preprocessing and these are dropped
# # First forward operator is computed using a template MRI for each dataset
# fs_dir = "/home/glia/MNE-fsaverage-data/fsaverage"
# subjects_dir = os.path.dirname(fs_dir)
# trans = "fsaverage"
# src = os.path.join(fs_dir, "bem", "fsaverage-ico-5-src.fif")
# bem = os.path.join(fs_dir, "bem", "fsaverage-5120-5120-5120-bem-sol.fif")

# # Read the template sourcespace
# sourcespace = mne.read_source_spaces(src)

# temp_idx = 0 # Index with subject that had no bad channels
# subject_eeg = source_epochs[temp_idx].copy()
# subject_eeg.set_eeg_reference(projection=True) # needed for inverse modelling
# # Make forward solution
# fwd = mne.make_forward_solution(subject_eeg.info, trans=trans, src=src,
#                             bem=bem, eeg=True, mindist=5.0, n_jobs=1)
# # Save forward operator
# fname_fwd = "./Source_fwd/fsaverage-fwd.fif"
# mne.write_forward_solution(fname_fwd, fwd, overwrite=True)

# # A specific forward solution is also made for each subject with bad channels
# with open("./Preprocessing/bad_ch.pkl", "rb") as file:
#    bad_ch = pickle.load(file)

# All_bad_ch = bad_ch
# All_drop_epochs = dropped_epochs_df
# All_dropped_ch = []

# Bad_ch_idx = [idx for idx, item in enumerate(All_bad_ch) if item != 0]
# Bad_ch_subjects = All_drop_epochs["Subject_ID"][Bad_ch_idx]
# # For each subject with bad channels, drop the channels and make forward operator
# for n in range(len(Bad_ch_subjects)):
#     Subject = Bad_ch_subjects.iloc[n]
#     try:
#         Subject_idx = Subject_id.index(Subject)
#         # Get unique bad channels
#         Bad_ch0 = All_bad_ch[Bad_ch_idx[n]]
#         Bad_ch1 = []
#         for i2 in range(len(Bad_ch0)):
#             if type(Bad_ch0[i2]) == list:
#                 for i3 in range(len(Bad_ch0[i2])):
#                     Bad_ch1.append(Bad_ch0[i2][i3])
#             elif type(Bad_ch0[i2]) == str:
#                 Bad_ch1.append(Bad_ch0[i2])
#         Bad_ch1 = np.unique(Bad_ch1)
#         # Drop the bad channels
#         source_epochs[Subject_idx].drop_channels(Bad_ch1)
#         # Save the overview of dropped channels
#         All_dropped_ch.append([Subject,Subject_idx,Bad_ch1])
#         # Make forward operator
#         subject_eeg = source_epochs[Subject_idx].copy()
#         subject_eeg.set_eeg_reference(projection=True) # needed for inverse modelling
#         # Make forward solution
#         fwd = mne.make_forward_solution(subject_eeg.info, trans=trans, src=src,
#                                     bem=bem, eeg=True, mindist=5.0, n_jobs=1)
#         # Save forward operator
#         fname_fwd = "./Source_fwd/fsaverage_{}-fwd.fif".format(Subject)
#         mne.write_forward_solution(fname_fwd, fwd, overwrite=True)
#     except:
#         print(Subject,"was already dropped")

# with open("./Preprocessing/All_datasets_bad_ch.pkl", "wb") as filehandle:
#     pickle.dump(All_dropped_ch, filehandle)


# # %% Load forward operators
# # Re-use for all subjects without dropped channels
# fname_fwd = "./Source_fwd/fsaverage-fwd.fif"
# fwd = mne.read_forward_solution(fname_fwd)

# fwd_list = [fwd]*n_subjects

# # Use specific forward solutions for subjects with dropped channels
# with open("./Preprocessing/All_datasets_bad_ch.pkl", "rb") as file:
#    All_dropped_ch = pickle.load(file)

# for i in range(len(All_dropped_ch)):
#     Subject = All_dropped_ch[i][0]
#     Subject_idx = All_dropped_ch[i][1]
#     fname_fwd = "./Source_fwd/fsaverage_{}-fwd.fif".format(Subject)
#     fwd = mne.read_forward_solution(fname_fwd)
#     fwd_list[Subject_idx] = fwd

# # Check the correct number of channels are present in fwd
# random_point = int(np.random.randint(0,len(All_dropped_ch)-1,1))
# assert len(fwds[All_dropped_ch[random_point][1]].ch_names) == source_epochs[All_dropped_ch[random_point][1]].info["nchan"]

# # %% Make parcellation
# # After mapping to source space, I end up with 20484 vertices
# # but I wanted to map to fewer sources and not many more
# # Thus I need to perform parcellation
# # Get labels for FreeSurfer "aparc" cortical parcellation (example with 74 labels/hemi - Destriuex)
# labels_aparc = mne.read_labels_from_annot("fsaverage", parc="aparc.a2009s",
#                                     subjects_dir=subjects_dir)
# labels_aparc = labels_aparc[:-2] # remove unknowns

# labels_aparc_names = [label.name for label in labels_aparc]

# # Manually adding the 31 ROIs (14-lh/rh + 3 in midline) from Toll et al, 2020
# # Making fuction to take subset of a label
# def label_subset(label, subset, name="ROI_name"):
#     label_subset = mne.Label(label.vertices[subset], label.pos[subset,:],
#                          label.values[subset], label.hemi,
#                          name = "{}-{}".format(name,label.hemi),
#                          subject = label.subject, color = None)
#     return label_subset

# ### Visual area 1 (V1 and somatosensory cortex BA1-3)
# label_filenames = ["lh.V1.label", "rh.V1.label",
#                    "lh.BA1.label", "rh.BA1.label",
#                    "lh.BA2.label", "rh.BA2.label",
#                    "lh.BA3a.label", "rh.BA3a.label",
#                    "lh.BA3b.label", "rh.BA3b.label"]
# labels0 = [0]*len(label_filenames)
# for i, filename in enumerate(label_filenames):
#     labels0[i] = mne.read_label(os.path.join(fs_dir, "label", filename), subject="fsaverage")
# # Add V1 to final label variable
# labels = labels0[:2]
# # Rename to remove redundant hemi information
# labels[0].name = "V1-{}".format(labels[0].hemi)
# labels[1].name = "V1-{}".format(labels[1].hemi)
# # Assign a color
# labels[0].color = matplotlib.colors.to_rgba("salmon")
# labels[1].color = matplotlib.colors.to_rgba("salmon")
# # Combine Brodmann Areas for SMC. Only use vertices ones to avoid duplication error
# SMC_labels = labels0[2:]
# for hem in range(2):
#     SMC_p1 = SMC_labels[hem]
#     for i in range(1,len(SMC_labels)//2):
#         SMC_p2 = SMC_labels[hem+2*i]
#         p2_idx = np.isin(SMC_p2.vertices, SMC_p1.vertices, invert=True)
#         SMC_p21 = label_subset(SMC_p2, p2_idx, "SMC")
#         SMC_p1 = SMC_p1.__add__(SMC_p21)
#     SMC_p1.name = SMC_p21.name
#     # Assign a color
#     SMC_p1.color = matplotlib.colors.to_rgba("orange")
#     labels.append(SMC_p1)

# ### Inferior frontal junction
# # Located at junction between inferior frontal and inferior precentral sulcus
# label_aparc_names0 = ["S_front_inf","S_precentral-inf-part"]
# temp_labels = []
# for i in range(len(label_aparc_names0)):
#     labels_aparc_idx = [labels_aparc_names.index(l) for l in labels_aparc_names if l.startswith(label_aparc_names0[i])]
#     for i2 in range(len(labels_aparc_idx)):
#         temp_labels.append(labels_aparc[labels_aparc_idx[i2]].copy())

# pos1 = temp_labels[0].pos
# pos2 = temp_labels[2].pos
# distm = scipy.spatial.distance.cdist(pos1,pos2)
# # Find the closest points between the 2 ROIs
# l1_idx = np.unique(np.where(distm<np.quantile(distm, 0.001))[0]) # q chosen to correspond to around 10% of ROI
# l2_idx = np.unique(np.where(distm<np.quantile(distm, 0.0005))[1]) # q chosen to correspond to around 10% of ROI

# IFJ_label_p1 = label_subset(temp_labels[0], l1_idx, "IFJ")
# IFJ_label_p2 = label_subset(temp_labels[2], l2_idx, "IFJ")
# # Combine the 2 parts
# IFJ_label = IFJ_label_p1.__add__(IFJ_label_p2)
# IFJ_label.name = IFJ_label_p1.name
# # Assign a color
# IFJ_label.color = matplotlib.colors.to_rgba("chartreuse")
# # Append to final list
# labels.append(IFJ_label)

# # Do the same for the right hemisphere
# pos1 = temp_labels[1].pos
# pos2 = temp_labels[3].pos
# distm = scipy.spatial.distance.cdist(pos1,pos2)
# # Find the closest points between the 2 ROIs
# l1_idx = np.unique(np.where(distm<np.quantile(distm, 0.00075))[0]) # q chosen to correspond to around 10% of ROI
# l2_idx = np.unique(np.where(distm<np.quantile(distm, 0.0005))[1]) # q chosen to correspond to around 10% of ROI
# IFJ_label_p1 = label_subset(temp_labels[1], l1_idx, "IFJ")
# IFJ_label_p2 = label_subset(temp_labels[3], l2_idx, "IFJ")
# # Combine the 2 parts
# IFJ_label = IFJ_label_p1.__add__(IFJ_label_p2)
# IFJ_label.name = IFJ_label_p1.name
# # Assign a color
# IFJ_label.color = matplotlib.colors.to_rgba("chartreuse")
# # Append to final list
# labels.append(IFJ_label)

# ### Intraparietal sulcus
# label_aparc_names0 = ["S_intrapariet_and_P_trans"]
# labels_aparc_idx = [labels_aparc_names.index(l) for l in labels_aparc_names if l.startswith(label_aparc_names0[0])]
# for i in range(len(labels_aparc_idx)):
#     labels.append(labels_aparc[labels_aparc_idx[i]].copy())
#     labels[-1].name = "IPS-{}".format(labels[-1].hemi)

# ### Frontal eye field as intersection between middle frontal gyrus and precentral gyrus
# label_aparc_names0 = ["G_front_middle","G_precentral"]
# temp_labels = []
# for i in range(len(label_aparc_names0)):
#     labels_aparc_idx = [labels_aparc_names.index(l) for l in labels_aparc_names if l.startswith(label_aparc_names0[i])]
#     for i2 in range(len(labels_aparc_idx)):
#         temp_labels.append(labels_aparc[labels_aparc_idx[i2]].copy())

# # Take 10% of middle frontal gyrus closest to precentral gyrus (most posterior)
# temp_label0 = temp_labels[0]
# G_fm_y = temp_label0.pos[:,1]
# thres_G_fm_y = np.sort(G_fm_y)[len(G_fm_y)//10]
# idx_p1 = np.where(G_fm_y<thres_G_fm_y)[0]
# FEF_label_p1 = label_subset(temp_label0, idx_p1, "FEF")
# # Take 10% closest for precentral gyrus (most anterior)
# temp_label0 = temp_labels[2]
# # I cannot only use y (anterior/posterior) but also need to restrict z-position
# G_pre_cen_z = temp_label0.pos[:,2]
# thres_G_pre_cen_z = 0.04 # visually inspected threshold
# G_pre_cen_y = temp_label0.pos[:,1]
# thres_G_pre_cen_y = np.sort(G_pre_cen_y[G_pre_cen_z>thres_G_pre_cen_z])[-len(G_pre_cen_y)//10] # notice - for anterior
# idx_p2 = np.where((G_pre_cen_y>thres_G_pre_cen_y) & (G_pre_cen_z>thres_G_pre_cen_z))[0]
# FEF_label_p2 = label_subset(temp_label0, idx_p2, "FEF")
# # Combine the 2 parts
# FEF_label = FEF_label_p1.__add__(FEF_label_p2)
# FEF_label.name = FEF_label_p1.name
# # Assign a color
# FEF_label.color = matplotlib.colors.to_rgba("aqua")
# # Append to final list
# labels.append(FEF_label)

# # Do the same for the right hemisphere
# temp_label0 = temp_labels[1]
# G_fm_y = temp_label0.pos[:,1]
# thres_G_fm_y = np.sort(G_fm_y)[len(G_fm_y)//10]
# idx_p1 = np.where(G_fm_y<thres_G_fm_y)[0]
# FEF_label_p1 = label_subset(temp_label0, idx_p1, "FEF")

# temp_label0 = temp_labels[3]
# G_pre_cen_z = temp_label0.pos[:,2]
# thres_G_pre_cen_z = 0.04 # visually inspected threshold
# G_pre_cen_y = temp_label0.pos[:,1]
# thres_G_pre_cen_y = np.sort(G_pre_cen_y[G_pre_cen_z>thres_G_pre_cen_z])[-len(G_pre_cen_y)//10] # notice - for anterior
# idx_p2 = np.where((G_pre_cen_y>thres_G_pre_cen_y) & (G_pre_cen_z>thres_G_pre_cen_z))[0]
# FEF_label_p2 = label_subset(temp_label0, idx_p2, "FEF")
# # Combine the 2 parts
# FEF_label = FEF_label_p1.__add__(FEF_label_p2)
# FEF_label.name = FEF_label_p1.name
# # Assign a color
# FEF_label.color = matplotlib.colors.to_rgba("aqua")
# # Append to final list
# labels.append(FEF_label)

# ### Supplementary eye fields
# # Located at caudal end of frontal gyrus and upper part of paracentral sulcus
# label_aparc_names0 = ["G_and_S_paracentral","G_front_sup"]
# temp_labels = []
# for i in range(len(label_aparc_names0)):
#     labels_aparc_idx = [labels_aparc_names.index(l) for l in labels_aparc_names if l.startswith(label_aparc_names0[i])]
#     for i2 in range(len(labels_aparc_idx)):
#         temp_labels.append(labels_aparc[labels_aparc_idx[i2]].copy())

# pos1 = temp_labels[0].pos
# pos2 = temp_labels[2].pos
# distm = scipy.spatial.distance.cdist(pos1,pos2)
# # Find the closest points between the 2 ROIs
# l1_idx = np.unique(np.where(distm<np.quantile(distm, 0.0005))[0]) # q chosen to correspond to around 15% of ROI
# l2_idx = np.unique(np.where(distm<np.quantile(distm, 0.005))[1]) # q chosen to correspond to around 10% of ROI
# # Notice that superior frontal gyrus is around 4 times bigger than paracentral
# len(l1_idx)/pos1.shape[0]
# len(l2_idx)/pos2.shape[0]
# # Only use upper part
# z_threshold = 0.06 # visually inspected
# l1_idx = l1_idx[pos1[l1_idx,2] > z_threshold]
# l2_idx = l2_idx[pos2[l2_idx,2] > z_threshold]

# SEF_label_p1 = label_subset(temp_labels[0], l1_idx, "SEF")
# SEF_label_p2 = label_subset(temp_labels[2], l2_idx, "SEF")
# # Combine the 2 parts
# SEF_label = SEF_label_p1.__add__(SEF_label_p2)
# SEF_label.name = SEF_label_p1.name
# # Assign a color
# SEF_label.color = matplotlib.colors.to_rgba("royalblue")
# # Append to final list
# labels.append(SEF_label)

# # Do the same for the right hemisphere
# pos1 = temp_labels[1].pos
# pos2 = temp_labels[3].pos
# distm = scipy.spatial.distance.cdist(pos1,pos2)
# # Find the closest points between the 2 ROIs
# l1_idx = np.unique(np.where(distm<np.quantile(distm, 0.0005))[0]) # q chosen to correspond to around 15% of ROI
# l2_idx = np.unique(np.where(distm<np.quantile(distm, 0.005))[1]) # q chosen to correspond to around 10% of ROI
# # Notice that superior frontal gyrus is around 4 times bigger than paracentral
# len(l1_idx)/pos1.shape[0]
# len(l2_idx)/pos2.shape[0]
# # Only use upper part
# z_threshold = 0.06 # visually inspected
# l1_idx = l1_idx[pos1[l1_idx,2] > z_threshold]
# l2_idx = l2_idx[pos2[l2_idx,2] > z_threshold]

# SEF_label_p1 = label_subset(temp_labels[1], l1_idx, "SEF")
# SEF_label_p2 = label_subset(temp_labels[3], l2_idx, "SEF")
# # Combine the 2 parts
# SEF_label = SEF_label_p1.__add__(SEF_label_p2)
# SEF_label.name = SEF_label_p1.name
# # Assign a color
# SEF_label.color = matplotlib.colors.to_rgba("royalblue")
# # Append to final list
# labels.append(SEF_label)

# ### Posterior cingulate cortex
# label_aparc_names0 = ["G_cingul-Post-dorsal", "G_cingul-Post-ventral"]
# temp_labels = []
# for i in range(len(label_aparc_names0)):
#     labels_aparc_idx = [labels_aparc_names.index(l) for l in labels_aparc_names if l.startswith(label_aparc_names0[i])]
#     for i2 in range(len(labels_aparc_idx)):
#         temp_labels.append(labels_aparc[labels_aparc_idx[i2]].copy())
# labels0 = []
# for hem in range(2):
#     PCC_p1 = temp_labels[hem]
#     for i in range(1,len(temp_labels)//2):
#         PCC_p2 = temp_labels[hem+2*i]
#         PCC_p1 = PCC_p1.__add__(PCC_p2)
#     PCC_p1.name = "PCC-{}".format(PCC_p1.hemi)
#     labels0.append(PCC_p1)
# # Combine the 2 hemisphere in 1 label
# labels.append(labels0[0].__add__(labels0[1]))

# ### Medial prefrontal cortex
# # From their schematic it looks like rostral 1/4 of superior frontal gyrus
# label_aparc_names0 = ["G_front_sup"]
# temp_labels = []
# for i in range(len(label_aparc_names0)):
#     labels_aparc_idx = [labels_aparc_names.index(l) for l in labels_aparc_names if l.startswith(label_aparc_names0[i])]
#     for i2 in range(len(labels_aparc_idx)):
#         temp_labels0 = labels_aparc[labels_aparc_idx[i2]].copy()
#         temp_labels0 = temp_labels0.split(4, subjects_dir=subjects_dir)[3]
#         temp_labels0.name = "mPFC-{}".format(temp_labels0.hemi)
#         temp_labels.append(temp_labels0)
# # Combine the 2 hemisphere in 1 label
# labels.append(temp_labels[0].__add__(temp_labels[1]))

# ### Angular gyrus
# label_aparc_names0 = ["G_pariet_inf-Angular"]
# for i in range(len(label_aparc_names0)):
#     labels_aparc_idx = [labels_aparc_names.index(l) for l in labels_aparc_names if l.startswith(label_aparc_names0[i])]
#     for i2 in range(len(labels_aparc_idx)):
#         temp_labels = labels_aparc[labels_aparc_idx[i2]].copy()
#         temp_labels.name = "ANG-{}".format(temp_labels.hemi)
#         labels.append(temp_labels)

# ### Posterior middle frontal gyrus
# label_aparc_names0 = ["G_front_middle"]
# for i in range(len(label_aparc_names0)):
#     labels_aparc_idx = [labels_aparc_names.index(l) for l in labels_aparc_names if l.startswith(label_aparc_names0[i])]
#     for i2 in range(len(labels_aparc_idx)):
#         temp_labels = labels_aparc[labels_aparc_idx[i2]].copy()
#         temp_labels = temp_labels.split(2, subjects_dir=subjects_dir)[0]
#         temp_labels.name = "PMFG-{}".format(temp_labels.hemi)
#         labels.append(temp_labels)

# ### Inferior parietal lobule
# # From their parcellation figure seems to be rostral angular gyrus and posterior supramarginal gyrus
# label_aparc_names0 = ["G_pariet_inf-Angular","G_pariet_inf-Supramar"]
# temp_labels = []
# for i in range(len(label_aparc_names0)):
#     labels_aparc_idx = [labels_aparc_names.index(l) for l in labels_aparc_names if l.startswith(label_aparc_names0[i])]
#     for i2 in range(len(labels_aparc_idx)):
#         temp_labels.append(labels_aparc[labels_aparc_idx[i2]].copy())
# # Split angular in 2 and get rostral part
# temp_labels[0] = temp_labels[0].split(2, subjects_dir=subjects_dir)[1]
# temp_labels[1] = temp_labels[1].split(2, subjects_dir=subjects_dir)[1]
# # Split supramarginal in 2 and get posterior part
# temp_labels[2] = temp_labels[2].split(2, subjects_dir=subjects_dir)[0]
# temp_labels[3] = temp_labels[3].split(2, subjects_dir=subjects_dir)[0]

# for hem in range(2):
#     PCC_p1 = temp_labels[hem]
#     for i in range(1,len(temp_labels)//2):
#         PCC_p2 = temp_labels[hem+2*i]
#         PCC_p1 = PCC_p1.__add__(PCC_p2)
#     PCC_p1.name = "IPL-{}".format(PCC_p1.hemi)
#     labels.append(PCC_p1)

# ### Orbital gyrus
# # From their figure it seems to correspond to orbital part of inferior frontal gyrus
# label_aparc_names0 = ["G_front_inf-Orbital"]
# for i in range(len(label_aparc_names0)):
#     labels_aparc_idx = [labels_aparc_names.index(l) for l in labels_aparc_names if l.startswith(label_aparc_names0[i])]
#     for i2 in range(len(labels_aparc_idx)):
#         temp_labels = labels_aparc[labels_aparc_idx[i2]].copy()
#         temp_labels.name = "ORB-{}".format(temp_labels.hemi)
#         labels.append(temp_labels)

# ### Middle temporal gyrus
# # From their figure it seems to only be 1/4 of MTG at the 2nd to last caudal part
# label_aparc_names0 = ["G_temporal_middle"]
# for i in range(len(label_aparc_names0)):
#     labels_aparc_idx = [labels_aparc_names.index(l) for l in labels_aparc_names if l.startswith(label_aparc_names0[i])]
#     for i2 in range(len(labels_aparc_idx)):
#         temp_labels = labels_aparc[labels_aparc_idx[i2]].copy()
#         temp_labels = temp_labels.split(4, subjects_dir=subjects_dir)[1]
#         temp_labels.name = "MTG-{}".format(temp_labels.hemi)
#         labels.append(temp_labels)

# ### Anterior middle frontal gyrus
# label_aparc_names0 = ["G_front_middle"]
# for i in range(len(label_aparc_names0)):
#     labels_aparc_idx = [labels_aparc_names.index(l) for l in labels_aparc_names if l.startswith(label_aparc_names0[i])]
#     for i2 in range(len(labels_aparc_idx)):
#         temp_labels = labels_aparc[labels_aparc_idx[i2]].copy()
#         temp_labels = temp_labels.split(2, subjects_dir=subjects_dir)[1]
#         temp_labels.name = "AMFG-{}".format(temp_labels.hemi)
#         labels.append(temp_labels)

# ### Insula
# label_aparc_names0 = ["G_Ins_lg_and_S_cent_ins","G_insular_short"]
# temp_labels = []
# for i in range(len(label_aparc_names0)):
#     labels_aparc_idx = [labels_aparc_names.index(l) for l in labels_aparc_names if l.startswith(label_aparc_names0[i])]
#     for i2 in range(len(labels_aparc_idx)):
#         temp_labels.append(labels_aparc[labels_aparc_idx[i2]].copy())
# for hem in range(2):
#     PCC_p1 = temp_labels[hem]
#     for i in range(1,len(temp_labels)//2):
#         PCC_p2 = temp_labels[hem+2*i]
#         PCC_p1 = PCC_p1.__add__(PCC_p2)
#     PCC_p1.name = "INS-{}".format(PCC_p1.hemi)
#     labels.append(PCC_p1)

# ### (Dorsal) Anterior Cingulate Cortex
# label_aparc_names0 = ["G_and_S_cingul-Ant"]
# temp_labels = []
# for i in range(len(label_aparc_names0)):
#     labels_aparc_idx = [labels_aparc_names.index(l) for l in labels_aparc_names if l.startswith(label_aparc_names0[i])]
#     for i2 in range(len(labels_aparc_idx)):
#         temp_labels.append(labels_aparc[labels_aparc_idx[i2]].copy())
#         temp_labels[-1].name = "ACC-{}".format(temp_labels[-1].hemi)
# # Combine the 2 hemisphere in 1 label
# labels.append(temp_labels[0].__add__(temp_labels[1]))

# ### Supramarginal Gyrus
# label_aparc_names0 = ["G_pariet_inf-Supramar"]
# for i in range(len(label_aparc_names0)):
#     labels_aparc_idx = [labels_aparc_names.index(l) for l in labels_aparc_names if l.startswith(label_aparc_names0[i])]
#     for i2 in range(len(labels_aparc_idx)):
#         temp_labels = labels_aparc[labels_aparc_idx[i2]].copy()
#         temp_labels.name = "SUP-{}".format(temp_labels.hemi)
#         labels.append(temp_labels)

Loading
Loading full blame...