Newer
Older
# -*- coding: utf-8 -*-
"""
Updated Oct 18 2022
@author: Qianliang Li (glia@dtu.dk)
This script contains the code to estimate the following EEG features:
1. Power Spectral Density
2. Frontal Theta/Beta Ratio
3. Asymmetry
4. Peak Alpha Frequency
5. 1/f Exponents
6. Microstates
7. Long-Range Temporal Correlation (DFA Exponent)
Source localization and functional connectivity
8. Imaginary part of Coherence
9. Weighted Phase Lag Index
10. (Orthogonalized) Power Envelope Correlations
11. Granger Causality
It should be run after Preprocessing.py
All features are saved in pandas DataFrame format for the machine learning
pipeline
Note that the code has not been changed to fit the demonstration dataset,
thus just running it might introduce some errors.
The code is provided to show how we performed the feature estimation
and if you are adapting the code, you should check if it fits your dataset
e.g. the questionnaire data, sensors and source parcellation etc
The script was written in Spyder. The outline panel can be used to navigate
the different parts easier (Default shortcut: Ctrl + Shift + O)
"""
wkdir = "/home/s200431"
os.chdir(wkdir)
# Load all libraries from the Preamble
from Preamble import *
# %% Load preprocessed epochs and questionnaire data
load_path = "/home/s200431/PreprocessedData"
# Get filenames
files = []
for r, d, f in os.walk(load_path):
for file in f:
if ".fif" in file:
files.append(os.path.join(r, file))
files.sort()
# Subject IDs
Subject_id = [0] * len(files)
for i in range(len(files)):
temp = files[i].split("/")
temp = temp[-1].split(".")
temp = temp[0].split("_")
Subject_id[i] = int(temp[0])
# Should exclude subject 100326 due to 7 bad channels
# Exclude 200013 and 200015 due to too many dropped epochs
# (200001, 200004, 200053 and 200072 were already excluded prior to preprocessing)
# Exclude 302215, 302224, 302227, 302233, 302264, 302268, 302275 due to too many dropped epochs
# 13 subjects excluded in total + 4 I did not receive because they were marked as bad from Helse
bad_subjects = [100326, 200013, 200015, 302224, 302227, 302233, 302264, 302268, 302275]
good_subject_idx = [not i in bad_subjects for i in Subject_id]
Subject_id = list(np.array(Subject_id)[good_subject_idx])
files = list(np.array(files)[good_subject_idx])
# Load ISAF
n_ISAF = 51-1
ISAF7_final_epochs = [0]*n_ISAF
for n in range(len(ISAF7_final_epochs)):
ISAF7_final_epochs[n] = mne.read_epochs(fname = os.path.join(files[n]),
verbose=0)
# Load HELSE
n_HELSE = 70-2
HELSE_final_epochs = [0]*n_HELSE
for n in range(len(HELSE_final_epochs)):
HELSE_final_epochs[n] = mne.read_epochs(fname = os.path.join(files[n+n_ISAF]),
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
# Rename channels to match ISAF (Using 10-20 MCN)
mne.rename_channels(HELSE_final_epochs[n].info, {"T3":"T7",
"T4":"T8",
"T5":"P7",
"T6":"P8"})
# Warning about chronological order is due to interleaved EO->EC->EO->EC being concatenated as 5xEC->5xEO
# Load Baseline
n_Base = 91-6
Base_final_epochs = [0]*n_Base
for n in range(len(Base_final_epochs)):
Base_final_epochs [n] = mne.read_epochs(fname = os.path.join(files[n+n_ISAF+n_HELSE]),
verbose=0)
# I will use the union of the channels in both dataset (except mastoids)
# This means I add empty channels and interpolate when it is missing
# Helsefond montage has wrong calibration, head size are too big.
# Thus I will need to re-calibrate by comparing with ISAF7
# Notice I already used the final dig montage for Baseline data
# Get channel names
ISAF7_chs = ISAF7_final_epochs[0].copy().info["ch_names"]
Helse_chs = HELSE_final_epochs[0].copy().info["ch_names"]
Base_chs = Base_final_epochs[0].copy().info["ch_names"]
# Get intersection of channels
intersect_ch = list(set(Helse_chs) & set(ISAF7_chs))
intersect_ch_ratio = [0]*len(intersect_ch)
for i in range(len(intersect_ch)):
# Get channel name
ch_name0 = intersect_ch[i]
# Get index and electrode location
ISAF7_ch_idx = np.where(np.array(ISAF7_chs) == ch_name0)[0]
ISAF7_ch_loc = ISAF7_final_epochs[0].info["chs"][int(ISAF7_ch_idx)]["loc"]
Helse_ch_idx = np.where(np.array(Helse_chs) == ch_name0)[0]
Helse_ch_loc = HELSE_final_epochs[0].info["chs"][int(Helse_ch_idx)]["loc"]
# Calculate ratio
intersect_ch_ratio[i] = [ch_name0,ISAF7_ch_loc[0:3]/Helse_ch_loc[0:3]]
# Most of the ratios are either around 0.095 or 0/Inf when division with 0
# We also see that Cz for ISAF is defined as (0,0,0.095m). For Helse Cz is (0,0,1m)
Helse_to_ISAF7_cal = 0.095
# Now we are ready to make a combined montage (info["dig"])
# Get list of channels to add
ISAF7_add_ch_list = list(set(Helse_chs)-set(ISAF7_chs))
Helse_add_ch_list = list(set(ISAF7_chs)-set(Helse_chs))
combined_ch_list = Helse_chs + ISAF7_chs
# Remove duplicates while maintaining A-P order
duplicate = set()
final_ch_list = [x for x in combined_ch_list if not (x in duplicate or duplicate.add(x))]
# Move AFz and POz to correct position
final_ch_list.insert(3,final_ch_list.pop(-2)) # from second last to 3
final_ch_list.insert(-5,final_ch_list.pop(-1)) # from last to seventh from last
# The order of DigPoints in info are based on sorted ch names
Helse_dig = HELSE_final_epochs[0].copy().info["dig"]
Helse_chs_sorted = Helse_chs.copy()
Helse_chs_sorted.sort()
ISAF7_dig = ISAF7_final_epochs[0].copy().info["dig"]
ISAF7_chs_sorted = ISAF7_chs.copy()
ISAF7_chs_sorted.sort()
# Make one list with DigPoints from Helse + unique channels from ISAF7
ch_idx = [i for i, item in enumerate(ISAF7_chs_sorted) if item in set(Helse_add_ch_list)] # indices of unique channels
final_ch_list_sorted = final_ch_list.copy()
final_ch_list_sorted.sort()
dig_insert_idx = [i for i, item in enumerate(final_ch_list_sorted) if item in set(Helse_add_ch_list)] # find where ISAF7 channels should be inserted
# Prepare combined dig montage
final_dig = Helse_dig.copy()
# Calibrate Helse digpoints
for i in range(len(final_dig)):
final_dig[i]["r"] = final_dig[i]["r"]*Helse_to_ISAF7_cal
# Insert ISAF7 digpoints
for i in range(len(ch_idx)):
final_dig.insert(dig_insert_idx[i],ISAF7_dig[ch_idx[i]])
# Remove mastoids
Mastoid_ch = ["M1", "M2"]
M_idx = [i for i, item in enumerate(final_ch_list_sorted) if item in set(Mastoid_ch)] # find mastoids ch
M_idx2 = [i for i, item in enumerate(final_ch_list) if item in set(Mastoid_ch)] # find mastoids ch
M_idx3 = [i for i, item in enumerate(Helse_add_ch_list) if item in set(Mastoid_ch)] # find mastoids ch
for i in reversed(range(len(M_idx))):
del final_ch_list_sorted[M_idx[i]]
del final_dig[M_idx[i]]
# Mastoids are placed in the back of final_ch_list and Helse_add_ch_list and are also removed
del final_ch_list[M_idx2[i]]
del Helse_add_ch_list[M_idx3[i]]
# T7, T8, Pz, P8 and P7 are placed wrongly (probably due to renaming)
# This is fixed manually
final_dig.insert(-7,final_dig.pop(-4)) # swap between P8 and T7
final_dig.insert(-6,final_dig.pop(-3)) # swap between T7 and T8
final_dig.insert(-4,final_dig.pop(-4)) # swap between Pz and T7
final_dig.insert(-5,final_dig.pop(-5)) # swap between Pz and POz
# Update EEG identity number
for i in range(len(final_dig)):
final_dig[i]["ident"] = i+1
# Make final digital montage
final_digmon = mne.channels.DigMontage(dig=final_dig, ch_names=final_ch_list_sorted)
# final_digmon.plot() # visually inspect topographical positions
# final_digmon.plot(kind="3d") # visually inspect 3D positions
# final_digmon.save("final_digmon.fif") # Save digital montage
with open("final_digmon_ch_names.pkl", "wb") as filehandle:
# The data is stored as binary data stream
pickle.dump(final_digmon.ch_names, filehandle)
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
# Remove mastoids from ISAF, add channels from Helse and interpolate
for n in range(len(ISAF7_final_epochs)):
# Remove mastoid channels
ISAF7_final_epochs[n].drop_channels(Mastoid_ch)
# Add empty channels to interpolate - notice that the locations are set to 0
mne.add_reference_channels(ISAF7_final_epochs[n],ISAF7_add_ch_list,copy=False)
# Fix channel info (both after removal of mastoids and newly added chs)
# Ch info loc are linked for all reference channels and this link is removed
for c in range(ISAF7_final_epochs[n].info["nchan"]):
ISAF7_final_epochs[n].info["chs"][c]["loc"] = ISAF7_final_epochs[n].info["chs"][c]["loc"].copy()
ISAF7_final_epochs[n].info["chs"][c]["scanno"] = c+1
ISAF7_final_epochs[n].info["chs"][c]["logno"] = c+1
# Set new combined montage
ISAF7_final_epochs[n].set_montage(final_digmon)
# Set newly added channels as "bad" and interpolate
ISAF7_final_epochs[n].info["bads"] = ISAF7_add_ch_list
ISAF7_final_epochs[n].interpolate_bads(reset_bads=True)
# Fix "picks" in order to reorder channels
ISAF7_final_epochs[n].picks = np.array(range(ISAF7_final_epochs[n].info["nchan"]))
# Reorder channel
ISAF7_final_epochs[n].reorder_channels(final_ch_list)
# Add channels from ISAF to Helse and interpolate
for n in range(len(HELSE_final_epochs)):
# Add empty channels to interpolate
mne.add_reference_channels(HELSE_final_epochs[n],Helse_add_ch_list,copy=False)
# Fix channel info (both after removal of mastoids and newly added chs)
# Ch info loc are linked for all reference channels and this link is removed
for c in range(HELSE_final_epochs[n].info["nchan"]):
HELSE_final_epochs[n].info["chs"][c]["loc"] = HELSE_final_epochs[n].info["chs"][c]["loc"].copy()
HELSE_final_epochs[n].info["chs"][c]["scanno"] = c+1
HELSE_final_epochs[n].info["chs"][c]["logno"] = c+1
# Set new combined montage
HELSE_final_epochs[n].set_montage(final_digmon)
# Set newly added channels as "bad" and interpolate
HELSE_final_epochs[n].info["bads"] = Helse_add_ch_list
HELSE_final_epochs[n].interpolate_bads(reset_bads=True)
# Fix "picks" in order to reorder channels
HELSE_final_epochs[n].picks = np.array(range(HELSE_final_epochs[n].info["nchan"]))
# Reorder channels
HELSE_final_epochs[n].reorder_channels(final_ch_list)
# Add missing channels to Baseline and interpolate
Base_add_ch_list = list(set(final_ch_list)-set(Base_chs))
for n in range(len(Base_final_epochs)):
# Add empty channels to interpolate
mne.add_reference_channels(Base_final_epochs[n],Base_add_ch_list,copy=False)
# Fix channel info (both after removal of mastoids and newly added chs)
# Ch info loc are linked for all reference channels and this link is removed
for c in range(Base_final_epochs[n].info["nchan"]):
Base_final_epochs[n].info["chs"][c]["loc"] = Base_final_epochs[n].info["chs"][c]["loc"].copy()
Base_final_epochs[n].info["chs"][c]["scanno"] = c+1
Base_final_epochs[n].info["chs"][c]["logno"] = c+1
# Set new combined montage
Base_final_epochs[n].set_montage(final_digmon)
# Set newly added channels as "bad" and interpolate
Base_final_epochs[n].info["bads"] = Base_add_ch_list
Base_final_epochs[n].interpolate_bads(reset_bads=True)
# Fix "picks" in order to reorder channels
Base_final_epochs[n].picks = np.array(range(Base_final_epochs[n].info["nchan"]))
# Reorder channels
Base_final_epochs[n].reorder_channels(final_ch_list)
# Combine both dataset in one list
final_epochs = ISAF7_final_epochs+HELSE_final_epochs+Base_final_epochs
# Check number of epochs
file_lengths = [0]*len(final_epochs)
for i in range(len(final_epochs)):
file_lengths[i] = len(final_epochs[i])
# sns.distplot(file_lengths) # visualize
np.min(file_lengths)/150*100 # Max 20% epochs dropped. Above and the subjects were excluded
n_subjects = len(final_epochs)
# Re-sample files to 200Hz (Data was already lowpass filtered at 100, so above 200 is oversampling)
for i in range(len(final_epochs)):
final_epochs[i].resample(sfreq=200, verbose=2)
# # Save final epochs data
# save_path = "/home/glia/Analysis/Final_epochs_data"
# for n in range(len(final_epochs)):
# # Make file writeable
# final_epochs[n]._times_readonly.flags["WRITEABLE"] = False
# # Save file
# final_epochs[n].save(fname = os.path.join(save_path,str("{}_final_epoch".format(Subject_id[n]) + "-epo.fif")),
# overwrite=True, verbose=0)
ISAF7_dropped_epochs_df = pd.read_pickle("ISAF7_dropped_epochs.pkl")
Helse_dropped_epochs_df = pd.read_pickle("HELSE_dropped_epochs.pkl")
Base_dropped_epochs_df = pd.read_pickle("Base_dropped_epochs.pkl")
Drop_epochs_df = pd.concat([ISAF7_dropped_epochs_df,Helse_dropped_epochs_df,
Base_dropped_epochs_df]).reset_index(drop=True)
good_subject_df_idx = [not i in bad_subjects for i in Drop_epochs_df["Subject_ID"]]
Drop_epochs_df = Drop_epochs_df.loc[good_subject_df_idx,:]
Drop_epochs_df = Drop_epochs_df.sort_values(by=["Subject_ID"]).reset_index(drop=True)
### Load questionnaire data
# ISAF
qdf_ISAF7 = pd.read_csv("/data/raw/FOR_DTU/Questionnaires_for_DTU.csv",
# Rename Subject_ID column
qdf_ISAF7.rename({"ID_number": "Subject_ID"}, axis=1, inplace=True)
# Sort Subject_id to match Subject_id for files
qdf_ISAF7 = qdf_ISAF7.sort_values(by=["Subject_ID"], ignore_index=True)
# Get column idx for PCL_t7 columns
PCL_idx = qdf_ISAF7.columns.str.contains("PCL") & np.invert(qdf_ISAF7.columns.str.contains("PCL_"))
# Keep subject id
PCL_idx[qdf_ISAF7.columns=="Subject_ID"] = True
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
# Make a final df and exclude dropped subjects
final_qdf0 = qdf_ISAF7.loc[qdf_ISAF7["Subject_ID"].isin(Subject_id),PCL_idx].reset_index(drop=True)
# Make column that is sum of all PCL
final_qdf0.insert(len(final_qdf0.columns),"PCL_total",np.sum(final_qdf0.iloc[:,1:],axis=1))
# Helse
qdf_helse = pd.read_csv("/data/may2020/Questionnaires/HelsfondenQuestData_nytLbn.csv",
sep=",", na_values=' ')
# Rename subject ID column
qdf_helse.rename(columns={"Nyt_lbn":"Subject_ID"}, inplace=True)
Helse_ID_modifier = 200000
# Add 200000 to id
qdf_helse["Subject_ID"] += Helse_ID_modifier
# Sort Subject_id to match Subject_id for files
qdf_helse = qdf_helse.sort_values(by=["Subject_ID"], ignore_index=True)
# Get column idx for PCL columns (don't use summarized columns with _)
PCL_idx = qdf_helse.columns.str.contains("PCL") & np.invert(qdf_helse.columns.str.contains("PCL_"))
# Keep subject id
PCL_idx[qdf_helse.columns=="Subject_ID"] = True
# Make a final df and exclude dropped subjects
final_qdf1 = qdf_helse.loc[qdf_helse["Subject_ID"].isin(Subject_id),PCL_idx].reset_index(drop=True)
# Make column that is sum of all PCL
final_qdf1.insert(len(final_qdf1.columns),"PCL_total",np.sum(final_qdf1.iloc[:,1:],axis=1))
# Baseline
# antal_børm renamed to antal_boern
qdf_base = pd.read_csv("/data/sep2020/BaselineForLi.csv", sep=",", na_values=' ')
# Rename subject ID column
qdf_base.rename(columns={"LbnRand":"Subject_ID"}, inplace=True)
Base_ID_modifier = 300000
# Add 300000 to id
qdf_base["Subject_ID"] += Base_ID_modifier
# Sort Subject_id to match Subject_id for files
qdf_base = qdf_base.sort_values(by=["Subject_ID"], ignore_index=True)
# Get column idx for PCL columns (don't use summarized columns with _)
PCL_idx = qdf_base.columns.str.contains("PCL") & np.invert(qdf_base.columns.str.contains("PCL_"))
# Keep subject id
PCL_idx[qdf_base.columns=="Subject_ID"] = True
# Make a final df and exclude dropped subjects
final_qdf2 = qdf_base.loc[qdf_base["Subject_ID"].isin(Subject_id),PCL_idx].reset_index(drop=True)
# Make column that is sum of all PCL
final_qdf2.insert(len(final_qdf2.columns),"PCL_total",np.sum(final_qdf2.iloc[:,1:],axis=1))
# Find NaN
nan_idx = np.where(final_qdf2.isna()==True)
final_qdf2.iloc[nan_idx[0],np.concatenate([np.array([0]),nan_idx[1]])] # 2252 has NaN for PCL3 and 12
# Interpolate with mean of column
final_qdf2 = final_qdf2.fillna(final_qdf2.mean())
# Combine the 3 datasets
final_qdf0.columns = final_qdf1.columns # fix colnames with t7
final_qdf = pd.concat([final_qdf0,final_qdf1,final_qdf2], ignore_index=True)
# Define folder for saving features
Feature_savepath = "./Features/"
Stat_savepath = "./Statistics/"
Model_savepath = "./Model/"
# Ensure all columns are integers
final_qdf = final_qdf.astype("int")
final_qdf.to_pickle(os.path.join(Feature_savepath,"final_qdf.pkl"))
# Define cases as >= 44 total PCL
# Type: numpy array with subject id
cases = np.array(final_qdf["Subject_ID"][final_qdf["PCL_total"]>=44])
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
# Check percentage of cases in both datasets
len(np.where((cases>100000)&(cases<200000))[0])/n_ISAF # around 32%
len(np.where((cases>200000)&(cases<300000))[0])/n_HELSE # around 51%
len(np.where((cases>300000)&(cases<400000))[0])/n_Base # around 66%
# There is clearly class imbalance between studies!
### Get depression scores as binary above threshold
# BDI >= 20 is moderate depression
# DASS-42 >= 14 is moderate depression for depression subscale
dep_cases = np.concatenate([np.array(qdf_ISAF7["Subject_ID"][qdf_ISAF7["BDI_t7"] >= 20]),
np.array(qdf_helse["Subject_ID"][qdf_helse["DASS_D_t0"] >= 14]),
np.array(qdf_base["Subject_ID"][qdf_base["DASS_D_t0"] >= 14])])
dep_cases.sort()
dep_cases = dep_cases[np.isin(dep_cases,Subject_id)] # only keep those that we received and not excluded
# Check percentage of dep cases in both datasets
len(np.where((dep_cases>100000)&(dep_cases<200000))[0])/n_ISAF # around 34%
len(np.where((dep_cases>200000)&(dep_cases<300000))[0])/n_HELSE # around 53%
len(np.where((dep_cases>300000)&(dep_cases<400000))[0])/n_Base # around 72%
# Make normalized to max depression score to combine from both scales
# Relative score seem to be consistent between BDI-II and DASS-42 and clinical label
max_BDI = 63
max_DASS = 42
# Get normalized depression scores for each dataset
ISAF7_dep_score = qdf_ISAF7["BDI_t7"][qdf_ISAF7["Subject_ID"].isin(Subject_id)]/max_BDI
Helse_dep_score = qdf_helse["DASS_D_t0"][qdf_helse["Subject_ID"].isin(Subject_id)]/max_DASS
Base_dep_score = qdf_base["DASS_D_t0"][qdf_base["Subject_ID"].isin(Subject_id)]/max_DASS
Norm_dep_score = np.concatenate([ISAF7_dep_score.to_numpy(),Helse_dep_score.to_numpy(),Base_dep_score.to_numpy()])
# Check if subject id match when using concat
test_d1 = qdf_ISAF7["Subject_ID"][qdf_ISAF7["Subject_ID"].isin(Subject_id)]
test_d2 = qdf_helse["Subject_ID"][qdf_helse["Subject_ID"].isin(Subject_id)]
test_d3 = qdf_base["Subject_ID"][qdf_base["Subject_ID"].isin(Subject_id)]
test_d4 = np.concatenate([test_d1.to_numpy(),test_d2.to_numpy(),test_d3.to_numpy()])
assert all(np.equal(Subject_id,test_d4))
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
# %% Power spectrum features
Freq_Bands = {"delta": [1.25, 4.0],
"theta": [4.0, 8.0],
"alpha": [8.0, 13.0],
"beta": [13.0, 30.0],
"gamma": [30.0, 49.0]}
ch_names = final_epochs[0].info["ch_names"]
n_channels = final_epochs[0].info["nchan"]
# Pre-allocate memory
power_bands = [0]*len(final_epochs)
def power_band_estimation(n):
# Get index for eyes open and eyes closed
EC_index = final_epochs[n].events[:,2] == 1
EO_index = final_epochs[n].events[:,2] == 2
# Calculate the power spectral density
psds, freqs = psd_multitaper(final_epochs[n], fmin = 1, fmax = 50) # output (epochs, channels, freqs)
temp_power_band = []
for fmin, fmax in Freq_Bands.values():
# Calculate the power each frequency band
psds_band = psds[:, :, (freqs >= fmin) & (freqs < fmax)].sum(axis=-1)
# Calculate the mean for each eye status
psds_band_eye = np.array([psds_band[EC_index,:].mean(axis=0),
psds_band[EO_index,:].mean(axis=0)])
# Append for each freq band
temp_power_band.append(psds_band_eye)
# Output: List with the 5 bands, and each element is a 2D array with eye status as 1st dimension and channels as 2nd dimension
# The list is reshaped and absolute and relative power are calculated
abs_power_band = np.reshape(temp_power_band, (5, 2, n_channels))
abs_power_band = 10.*np.log10(abs_power_band) # Convert to decibel scale
rel_power_band = np.reshape(temp_power_band, (5, 2, n_channels))
rel_power_band = rel_power_band/np.sum(rel_power_band, axis=0, keepdims=True)
# each eye condition and channel have been normalized to power in all 5 frequencies for that given eye condition and channel
# Make one list in 1 dimension
abs_power_values = np.concatenate(np.concatenate(abs_power_band, axis=0), axis=0)
rel_power_values = np.concatenate(np.concatenate(rel_power_band, axis=0), axis=0)
## Output: First the channels, then the eye status and finally the frequency bands are concatenated
## E.g. element 26 is 3rd channel, eyes open, first frequency band
#assert abs_power_values[26] == abs_power_band[0,1,2]
#assert abs_power_values[47] == abs_power_band[0,1,23] # +21 channels to last
#assert abs_power_values[50] == abs_power_band[1,0,2] # once all channels have been changed then the freq is changed and eye status
# Get result
res = np.concatenate([abs_power_values,rel_power_values],axis=0)
return n, res
with concurrent.futures.ProcessPoolExecutor() as executor:
for n, result in executor.map(power_band_estimation, range(len(final_epochs))): # Function and arguments
power_bands[n] = result
for i in range(len(power_bands)):
n, results = power_band_estimation(i)
power_bands[i] = results
# Combine all data into one dataframe
# First the columns are prepared
n_subjects = len(Subject_id)
# The group status (PTSD/CTRL) is made using the information about the cases
Group_status = np.array(["CTRL"]*n_subjects)
Group_status[np.array([i in cases for i in Subject_id])] = "PTSD"
# A variable that codes the channels based on A/P localization is also made
Frontal_chs = ["Fp1", "Fpz", "Fp2", "AFz", "Fz", "F3", "F4", "F7", "F8"]
Central_chs = ["Cz", "C3", "C4", "T7", "T8", "FT7", "FC3", "FCz", "FC4", "FT8", "TP7", "CP3", "CPz", "CP4", "TP8"]
Posterior_chs = ["Pz", "P3", "P4", "P7", "P8", "POz", "O1", "O2", "Oz"]
Parietal_chs = ["TP7", "CP3", "CPz", "CP4", "TP8", "P7", "P3", "Pz", "P4", "P8", "POz"]
Brain_region_labels = ["Frontal","Central","Posterior","Parietal"]
Brain_region = np.array(ch_names, dtype = "<U9")
Brain_region[np.array([i in Frontal_chs for i in ch_names])] = Brain_region_labels[0]
Brain_region[np.array([i in Central_chs for i in ch_names])] = Brain_region_labels[1]
Brain_region[np.array([i in Posterior_chs for i in ch_names])] = Brain_region_labels[2]
Brain_region[np.array([i in Parietal_chs for i in ch_names])] = Brain_region_labels[3]
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
# A variable that codes the channels based on M/L localization
Left_chs = ["Fp1", "F3", "F7", "FC3", "FT7", "C3", "T7", "CP3", "TP7", "P3", "P7", "O1"]
Right_chs = ["Fp2", "F4", "F8", "FC4", "FT8", "C4", "T8", "CP4", "TP8", "P4", "P8", "O2"]
Mid_chs = ["Fpz", "AFz", "Fz", "FCz", "Cz", "CPz", "Pz", "POz", "Oz"]
Brain_side = np.array(ch_names, dtype = "<U5")
Brain_side[np.array([i in Left_chs for i in ch_names])] = "Left"
Brain_side[np.array([i in Right_chs for i in ch_names])] = "Right"
Brain_side[np.array([i in Mid_chs for i in ch_names])] = "Mid"
# Eye status is added
eye_status = list(final_epochs[0].event_id.keys())
n_eye_status = len(eye_status)
# Frequency bands
freq_bands_name = list(Freq_Bands.keys())
n_freq_bands = len(freq_bands_name)
# Quantification (Abs/Rel)
quant_status = ["Absolute", "Relative"]
n_quant_status = len(quant_status)
# The dataframe is made by combining all the unlisted pds values
# Each row correspond to a different channel. It is reset after all channel names have been used
# Each eye status element is repeated n_channel times, before it is reset
# Each freq_band element is repeated n_channel * n_eye_status times, before it is reset
# Each quantification status element is repeated n_channel * n_eye_status * n_freq_bands times, before it is reset
power_df = pd.DataFrame(data = {"Subject_ID": [ele for ele in Subject_id for i in range(n_eye_status*n_quant_status*n_freq_bands*n_channels)],
"Group_status": [ele for ele in Group_status for i in range(n_eye_status*n_quant_status*n_freq_bands*n_channels)],
"Channel": ch_names*(n_eye_status*n_quant_status*n_freq_bands*n_subjects),
"Brain_region": list(Brain_region)*(n_eye_status*n_quant_status*n_freq_bands*n_subjects),
"Brain_side": list(Brain_side)*(n_eye_status*n_quant_status*n_freq_bands*n_subjects),
"Eye_status": [ele for ele in eye_status for i in range(n_channels)]*n_quant_status*n_freq_bands*n_subjects,
"Freq_band": [ele for ele in freq_bands_name for i in range(n_channels*n_eye_status)]*n_quant_status*n_subjects,
"Quant_status": [ele for ele in quant_status for i in range(n_channels*n_eye_status*n_freq_bands)]*n_subjects,
"PSD": list(np.concatenate(power_bands, axis=0))
})
# Absolute power is in decibels (10*log10(power))
# Fix Freq_band categorical order
power_df["Freq_band"] = power_df["Freq_band"].astype("category").\
cat.reorder_categories(list(Freq_Bands.keys()), ordered=True)
# Fix Brain_region categorical order
power_df["Brain_region"] = power_df["Brain_region"].astype("category").\
cat.reorder_categories(Brain_region_labels, ordered=True)
# power_df.to_pickle(os.path.join(Feature_savepath,"Power_df.pkl"))
# %% Theta-beta ratio
# Frontal theta/beta ratio has been implicated in cognitive control of attention
power_df = pd.read_pickle(os.path.join(Feature_savepath,"Power_df.pkl"))
eye_status = list(final_epochs[0].event_id)
n_eye_status = len(eye_status)
# Subset frontal absolute power
power_df_sub1 = power_df[(power_df["Quant_status"] == "Absolute")&
(power_df["Brain_region"] == "Frontal")]
# Subset frontal, midline absolute power
power_df_sub2 = power_df[(power_df["Quant_status"] == "Absolute")&
(power_df["Brain_region"] == "Frontal")&
(power_df["Brain_side"] == "Mid")]
# Subset posterior absolute power
power_df_sub3 = power_df[(power_df["Quant_status"] == "Absolute")&
(power_df["Brain_region"] == "Posterior")]
# Calculate average frontal power theta
frontal_theta_mean_subject = power_df_sub1[power_df_sub1["Freq_band"] == "theta"].\
groupby(["Subject_ID","Group_status","Eye_status"]).mean().reset_index()
# Calculate average frontal power beta
frontal_beta_mean_subject = power_df_sub1[power_df_sub1["Freq_band"] == "beta"].\
groupby(["Subject_ID","Group_status","Eye_status"]).mean().reset_index()
# Extract all values
frontal_beta_subject_values = power_df_sub1[power_df_sub1["Freq_band"] == "beta"]
# Calculate average frontal, midline power theta
frontal_midline_theta_mean_subject = power_df_sub2[power_df_sub2["Freq_band"] == "theta"].\
groupby(["Subject_ID","Group_status","Eye_status"]).mean().reset_index()
# Extract all values
frontal_midline_theta_subject_values = power_df_sub2[power_df_sub2["Freq_band"] == "theta"]
# Calculate average parietal alpha power
parietal_alpha_mean_subject = power_df_sub3[power_df_sub3["Freq_band"] == "alpha"].\
groupby(["Subject_ID","Group_status","Eye_status"]).mean().reset_index()
# Extract all values
parietal_alpha_subject_values = power_df_sub3[power_df_sub3["Freq_band"] == "alpha"]
# Convert from dB to raw power
frontal_theta_mean_subject["PSD"] = 10**(frontal_theta_mean_subject["PSD"]/10)
frontal_beta_mean_subject["PSD"] = 10**(frontal_beta_mean_subject["PSD"]/10)
frontal_midline_theta_mean_subject["PSD"] = 10**(frontal_midline_theta_mean_subject["PSD"]/10)
frontal_beta_subject_values["PSD"] = 10**(frontal_beta_subject_values["PSD"]/10)
frontal_midline_theta_subject_values["PSD"] = 10**(frontal_midline_theta_subject_values["PSD"]/10)
parietal_alpha_mean_subject["PSD"] = 10**(parietal_alpha_mean_subject["PSD"]/10)
parietal_alpha_subject_values["PSD"] = 10**(parietal_alpha_subject_values["PSD"]/10)
frontal_beta_mean_subject.to_pickle(os.path.join(Feature_savepath,"fBMS_df.pkl"))
frontal_midline_theta_mean_subject.to_pickle(os.path.join(Feature_savepath,"fMTMS_df.pkl"))
frontal_beta_subject_values.to_pickle(os.path.join(Feature_savepath,"fBSV_df.pkl"))
frontal_midline_theta_subject_values.to_pickle(os.path.join(Feature_savepath,"fMTSV_df.pkl"))
parietal_alpha_mean_subject.to_pickle(os.path.join(Feature_savepath,"pAMS_df.pkl"))
parietal_alpha_subject_values.to_pickle(os.path.join(Feature_savepath,"pASV_df.pkl"))
# Calculate mean for each group and take ratio for whole group
# To confirm trend observed in PSD plots
mean_group_f_theta = frontal_theta_mean_subject.iloc[:,1:].groupby(["Group_status","Eye_status"]).mean()
mean_group_f_beta = frontal_beta_mean_subject.iloc[:,1:].groupby(["Group_status","Eye_status"]).mean()
mean_group_f_theta_beta_ratio = mean_group_f_theta/mean_group_f_beta
# Calculate ratio for each subject
frontal_theta_beta_ratio = frontal_theta_mean_subject.copy()
frontal_theta_beta_ratio["PSD"] = frontal_theta_mean_subject["PSD"]/frontal_beta_mean_subject["PSD"]
# Take the natural log of ratio
frontal_theta_beta_ratio["PSD"] = np.log(frontal_theta_beta_ratio["PSD"])
# Rename and save feature
frontal_theta_beta_ratio.rename(columns={"PSD":"TBR"},inplace=True)
# Add dummy variable for re-using plot code
dummy_variable = ["Frontal Theta Beta Ratio"]*frontal_theta_beta_ratio.shape[0]
frontal_theta_beta_ratio.insert(3, "Measurement", dummy_variable )
# frontal_theta_beta_ratio.to_pickle(os.path.join(Feature_savepath,"fTBR_df.pkl"))
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
# %% Frequency bands asymmetry
# Defined as ln(right) - ln(left)
# Thus we should only work with the absolute values and undo the dB transformation
# Here I avg over all areas. I.e. mean((ln(F4)-ln(F3),(ln(F8)-ln(F7),(ln(Fp2)-ln(Fp1))) for frontal
ROI = ["Frontal", "Central", "Posterior"]
qq = "Absolute" # only calculate asymmetry for absolute
# Pre-allocate memory
asymmetry = np.zeros(shape=(len(np.unique(power_df["Subject_ID"])),
len(np.unique(power_df["Eye_status"])),
len(list(Freq_Bands.keys())),
len(ROI)))
def calculate_asymmetry(i):
ii = np.unique(power_df["Subject_ID"])[i]
temp_asymmetry = np.zeros(shape=(len(np.unique(power_df["Eye_status"])),
len(list(Freq_Bands.keys())),
len(ROI)))
for e in range(len(np.unique(power_df["Eye_status"]))):
ee = np.unique(power_df["Eye_status"])[e]
for f in range(len(list(Freq_Bands.keys()))):
ff = list(Freq_Bands.keys())[f]
# Get the specific part of the df
temp_power_df = power_df[(power_df["Quant_status"] == qq) &
(power_df["Eye_status"] == ee) &
(power_df["Subject_ID"] == ii) &
(power_df["Freq_band"] == ff)].copy()
# Convert from dB to raw power
temp_power_df.loc[:,"PSD"] = np.array(10**(temp_power_df["PSD"]/10))
# Calculate the power asymmetry
for r in range(len(ROI)):
rr = ROI[r]
temp_power_roi_df = temp_power_df[(temp_power_df["Brain_region"] == rr)&
~(temp_power_df["Brain_side"] == "Mid")]
# Sort using channel names to make sure F8-F7 and not F4-F7 etc.
temp_power_roi_df = temp_power_roi_df.sort_values("Channel").reset_index(drop=True)
# Get the log power
R_power = temp_power_roi_df[(temp_power_roi_df["Brain_side"] == "Right")]["PSD"]
ln_R_power = np.log(R_power) # get log power
L_power = temp_power_roi_df[(temp_power_roi_df["Brain_side"] == "Left")]["PSD"]
ln_L_power = np.log(L_power) # get log power
# Pairwise subtraction followed by averaging
asymmetry_value = np.mean(np.array(ln_R_power) - np.array(ln_L_power))
# Save it to the array
temp_asymmetry[e,f,r] = asymmetry_value
# Print progress
print("{} out of {} finished testing".format(i+1,n_subjects))
return i, temp_asymmetry
with concurrent.futures.ProcessPoolExecutor() as executor:
for i, res in executor.map(calculate_asymmetry, range(len(np.unique(power_df["Subject_ID"])))): # Function and arguments
asymmetry[i,:,:,:] = res
# Prepare conversion of array to df using flatten
n_subjects = len(Subject_id)
# The group status (PTSD/CTRL) is made using the information about the cases
Group_status = np.array(["CTRL"]*n_subjects)
Group_status[np.array([i in cases for i in Subject_id])] = "PTSD"
# Eye status is added
eye_status = list(final_epochs[0].event_id.keys())
n_eye_status = len(eye_status)
# Frequency bands
freq_bands_name = list(Freq_Bands.keys())
n_freq_bands = len(freq_bands_name)
# ROIs
n_ROI = len(ROI)
# Make the dataframe
asymmetry_df = pd.DataFrame(data = {"Subject_ID": [ele for ele in Subject_id for i in range(n_eye_status*n_freq_bands*n_ROI)],
"Group_status": [ele for ele in Group_status for i in range(n_eye_status*n_freq_bands*n_ROI)],
"Eye_status": [ele for ele in eye_status for i in range(n_freq_bands*n_ROI)]*(n_subjects),
"Freq_band": [ele for ele in freq_bands_name for i in range(n_ROI)]*(n_subjects*n_eye_status),
"ROI": list(ROI)*(n_subjects*n_eye_status*n_freq_bands),
"Asymmetry_score": asymmetry.flatten(order="C")
})
# Flatten with order=C means that it first goes through last axis,
# then repeat along 2nd last axis, and then repeat along 3rd last etc
# Asymmetry numpy to pandas conversion check
random_point=321
asymmetry_df.iloc[random_point]
i = np.where(np.unique(power_df["Subject_ID"]) == asymmetry_df.iloc[random_point]["Subject_ID"])[0]
e = np.where(np.unique(power_df["Eye_status"]) == asymmetry_df.iloc[random_point]["Eye_status"])[0]
f = np.where(np.array(list(Freq_Bands.keys())) == asymmetry_df.iloc[random_point]["Freq_band"])[0]
r = np.where(np.array(ROI) == asymmetry_df.iloc[random_point]["ROI"])[0]
assert asymmetry[i,e,f,r] == asymmetry_df.iloc[random_point]["Asymmetry_score"]
# Save the dataframe
asymmetry_df.to_pickle(os.path.join(Feature_savepath,"asymmetry_df.pkl"))
# %% Using FOOOF
# Peak alpha frequency (PAF) and 1/f exponent (OOF)
# Using the FOOOF algorithm (Fitting oscillations and one over f)
# Published by Donoghue et al, 2020 in Nature Neuroscience
# To start, FOOOF takes the freqs and power spectra as input
n_channels = final_epochs[0].info["nchan"]
ch_names = final_epochs[0].info["ch_names"]
sfreq = final_epochs[0].info["sfreq"]
Freq_Bands = {"delta": [1.25, 4.0],
"theta": [4.0, 8.0],
"alpha": [8.0, 13.0],
"beta": [13.0, 30.0],
"gamma": [30.0, 49.0]}
n_freq_bands = len(Freq_Bands)
# From visual inspection there seems to be problem if PSD is too steep at the start
# To overcome this problem, we try multiple start freq
OOF_r2_thres = 0.95 # a high threshold as we allow for overfitting
PAF_r2_thres = 0.90 # a more lenient threshold for PAF, as it is usually still captured even if fit for 1/f is not perfect
PTF_r2_thres = 0.90 # a more lenient threshold for PTF, as it is usually still captured even if fit for 1/f is not perfect
PBF_r2_thres = 0.90 # a more lenient threshold for PBF, as it is usually still captured even if fit for 1/f is not perfect
freq_start_it_range = [2,3,4,5,6]
freq_end = 40 # Stop freq at 40Hz to not be influenced by the Notch Filter
eye_status = list(final_epochs[0].event_id.keys())
n_eye_status = len(eye_status)
PAF_data = np.zeros((n_subjects,n_eye_status,n_channels,3)) # CF, power, band_width
PTF_data = np.zeros((n_subjects,n_eye_status,n_channels,3)) # CF, power, band_width
PBF_data = np.zeros((n_subjects,n_eye_status,n_channels,3)) # CF, power, band_width
OOF_data = np.zeros((n_subjects,n_eye_status,n_channels,2)) # offset and exponent
def FOOOF_estimation(i):
PAF_data0 = np.zeros((n_eye_status,n_channels,3)) # CF, power, band_width
PTF_data0 = np.zeros((n_eye_status,n_channels,3)) # CF, power, band_width
PBF_data0 = np.zeros((n_eye_status,n_channels,3)) # CF, power, band_width
OOF_data0 = np.zeros((n_eye_status,n_channels,2)) # offset and exponent
# Get Eye status
eye_idx = [final_epochs[i].events[:,2] == 1, final_epochs[i].events[:,2] == 2] # EC and EO
# Calculate the power spectral density
psd, freqs = psd_multitaper(final_epochs[i], fmin = 1, fmax = 50) # output (epochs, channels, freqs)
# Retrieve psds for the 2 conditions and calculate mean across epochs
psds = []
for e in range(n_eye_status):
# Get the epochs for specific eye condition
temp_psd = psd[eye_idx[e],:,:]
# Calculate the mean across epochs
temp_psd = np.mean(temp_psd, axis=0)
# Save
psds.append(temp_psd)
# Try multiple start freq
PAF_data00 = np.zeros((n_eye_status,n_channels,len(freq_start_it_range),3)) # CF, power, band_width
PTF_data00 = np.zeros((n_eye_status,n_channels,len(freq_start_it_range),3)) # CF, power, band_width
PBF_data00 = np.zeros((n_eye_status,n_channels,len(freq_start_it_range),3)) # CF, power, band_width
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
OOF_data00 = np.zeros((n_eye_status,n_channels,len(freq_start_it_range),2)) # offset and exponent
r2s00 = np.zeros((n_eye_status,n_channels,len(freq_start_it_range)))
for e in range(n_eye_status):
psds_avg = psds[e]
for f in range(len(freq_start_it_range)):
# Initiate FOOOF group for analysis of multiple PSD
fg = fooof.FOOOFGroup()
# Set the frequency range to fit the model
freq_range = [freq_start_it_range[f], freq_end] # variable freq start to 49Hz
# Fit to each source PSD separately, but in parallel
fg.fit(freqs,psds_avg,freq_range,n_jobs=1)
# Extract aperiodic parameters
aps = fg.get_params('aperiodic_params')
# Extract peak parameters
peaks = fg.get_params('peak_params')
# Extract goodness-of-fit metrics
r2s = fg.get_params('r_squared')
# Save OOF and r2s
OOF_data00[e,:,f] = aps
r2s00[e,:,f] = r2s
# Find the alpha peak with greatest power
for c in range(n_channels):
peaks0 = peaks[peaks[:,3] == c]
# Subset the peaks within the alpha band
in_alpha_band = (peaks0[:,0] >= Freq_Bands["alpha"][0]) & (peaks0[:,0] <= Freq_Bands["alpha"][1])
if sum(in_alpha_band) > 0: # Any alpha peaks?
# Choose the peak with the highest power
max_alpha_idx = np.argmax(peaks0[in_alpha_band,1])
# Save results
PAF_data00[e,c,f] = peaks0[in_alpha_band][max_alpha_idx,:-1]
else:
# No alpha peaks
PAF_data00[e,c,f] = [np.nan]*3
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
# Find the theta peak with greatest power
for c in range(n_channels):
peaks0 = peaks[peaks[:,3] == c]
# Subset the peaks within the theta band
in_theta_band = (peaks0[:,0] >= Freq_Bands["theta"][0]) & (peaks0[:,0] <= Freq_Bands["theta"][1])
if sum(in_theta_band) > 0:
# Choose the peak with the highest power
max_theta_idx = np.argmax(peaks0[in_theta_band,1])
# Save results
PTF_data00[e,c,f] = peaks0[in_theta_band][max_theta_idx,:-1]
else:
# No theta peaks
PTF_data00[e,c,f] = [np.nan]*3
# Find the beta peak with greatest power
for c in range(n_channels):
peaks0 = peaks[peaks[:,3] == c]
# Subset the peaks within the beta band
in_beta_band = (peaks0[:,0] >= Freq_Bands["beta"][0]) & (peaks0[:,0] <= Freq_Bands["beta"][1])
if sum(in_beta_band) > 0:
# Choose the peak with the highest power
max_beta_idx = np.argmax(peaks0[in_beta_band,1])
# Save results
PBF_data00[e,c,f] = peaks0[in_beta_band][max_beta_idx,:-1]
else:
# No beta peaks
PBF_data00[e,c,f] = [np.nan]*3
# Check criterias
good_fits_OOF = (r2s00 > OOF_r2_thres) & (OOF_data00[:,:,:,1] > 0) # r^2 > 0.95 and exponent > 0
good_fits_PAF = (r2s00 > PAF_r2_thres) & (np.isfinite(PAF_data00[:,:,:,0])) # r^2 > 0.90 and detected peak in alpha band
good_fits_PTF = (r2s00 > PTF_r2_thres) & (np.isfinite(PTF_data00[:,:,:,0])) # r^2 > 0.90 and detected peak in theta band
good_fits_PBF = (r2s00 > PBF_r2_thres) & (np.isfinite(PBF_data00[:,:,:,0])) # r^2 > 0.90 and detected peak in beta band
# Save the data or NaN if criterias were not fulfilled
for e in range(n_eye_status):
for c in range(n_channels):
if sum(good_fits_OOF[e,c]) == 0: # no good OOF estimation
OOF_data0[e,c] = [np.nan]*2
else: # Save OOF associated with greatest r^2 that fulfilled criterias
OOF_data0[e,c] = OOF_data00[e,c,np.argmax(r2s00[e,c,good_fits_OOF[e,c]])]
if sum(good_fits_PAF[e,c]) == 0: # no good PAF estimation
PAF_data0[e,c] = [np.nan]*3
else: # Save PAF associated with greatest r^2 that fulfilled criterias
PAF_data0[e,c] = PAF_data00[e,c,np.argmax(r2s00[e,c,good_fits_PAF[e,c]])]
if sum(good_fits_PTF[e,c]) == 0: # no good PTF estimation
PTF_data0[e,c] = [np.nan]*3
else: # Save PTF associated with greatest r^2 that fulfilled criterias
PTF_data0[e,c] = PTF_data00[e,c,np.argmax(r2s00[e,c,good_fits_PTF[e,c]])]
if sum(good_fits_PBF[e,c]) == 0: # no good PBF estimation
PBF_data0[e,c] = [np.nan]*3
else: # Save PBF associated with greatest r^2 that fulfilled criterias
PBF_data0[e,c] = PBF_data00[e,c,np.argmax(r2s00[e,c,good_fits_PBF[e,c]])]
print("Finished {} out of {} subjects".format(i+1,n_subjects))
# Get current time
c_time1 = time.localtime()
c_time1 = time.strftime("%a %d %b %Y %H:%M:%S", c_time1)
print(c_time1)
# with concurrent.futures.ProcessPoolExecutor() as executor:
# for i, PAF_result, OOF_result in executor.map(FOOOF_estimation, range(n_subjects)): # Function and arguments
# PAF_data[i] = PAF_result
# OOF_data[i] = OOF_result
for i in range(n_subjects):
j, PAF_result, OOF_result, PTF_data0, PBF_data0 = FOOOF_estimation(i) # Function and arguments
PAF_data[i] = PAF_result
OOF_data[i] = OOF_result
PTF_data[i] = PTF_data0
PBF_data[i] = PBF_data0
# Save data
with open(Feature_savepath+"PAF_data_arr.pkl", "wb") as file:
pickle.dump(PAF_data, file)
with open(Feature_savepath+"PTF_data_arr.pkl", "wb") as file:
pickle.dump(PTF_data, file)
with open(Feature_savepath+"PBF_data_arr.pkl", "wb") as file:
pickle.dump(PBF_data, file)
# with open(Feature_savepath+"OOF_data_arr.pkl", "wb") as file:
# pickle.dump(OOF_data, file)
# Get current time
c_time2 = time.localtime()
c_time2 = time.strftime("%a %d %b %Y %H:%M:%S", c_time2)
print("Started", c_time1, "\nFinished",c_time2)
# Convert to Pandas dataframe (only keep mean parameter for PAF)
# The dimensions will each be a column with numbers and the last column will be the actual values
ori = PAF_data[:,:,:,0]
arr = np.column_stack(list(map(np.ravel, np.meshgrid(*map(np.arange, ori.shape), indexing="ij"))) + [ori.ravel()])
arr_2 = np.column_stack(list(map(np.ravel, np.meshgrid(*map(np.arange, ori_2.shape), indexing="ij"))) + [ori_2.ravel()])
arr_3 = np.column_stack(list(map(np.ravel, np.meshgrid(*map(np.arange, ori_3.shape), indexing="ij"))) + [ori_3.ravel()])
PAF_data_df = pd.DataFrame(arr, columns = ["Subject_ID", "Eye_status", "Channel", "Value"])
PTF_data_df = pd.DataFrame(arr_2, columns = ["Subject_ID", "Eye_status", "Channel", "Value"])
PBF_data_df = pd.DataFrame(arr_3, columns = ["Subject_ID", "Eye_status", "Channel", "Value"])
# Change from numerical coding to actual values
index_values = [Subject_id,eye_status,ch_names]
temp_df = PAF_data_df.copy() # make temp df to not sequential overwrite what is changed
temp_df_2 = PTF_data_df.copy() # make temp df to not sequential overwrite what is changed
temp_df_3 = PBF_data_df.copy() # make temp df to not sequential overwrite what is changed
for col in range(len(index_values)):
col_name = PAF_data_df.columns[col]
col_name_2 = PTF_data_df.columns[col]
col_name_3 = PBF_data_df.columns[col]
for shape in range(ori.shape[col]):
temp_df.loc[PAF_data_df.iloc[:,col] == shape,col_name]\
= index_values[col][shape]
temp_df_2.loc[PTF_data_df.iloc[:,col] == shape,col_name_2]\
= index_values[col][shape]
temp_df_3.loc[PBF_data_df.iloc[:,col] == shape,col_name_3]\
= index_values[col][shape]
PTF_data_df = temp_df_2 # replace original df
PBF_data_df = temp_df_3 # replace original df
# Add group status
Group_status = np.array(["CTRL"]*len(PAF_data_df["Subject_ID"]))
Group_status[np.array([i in cases for i in PAF_data_df["Subject_ID"]])] = "PTSD"
# Add to dataframe
PAF_data_df.insert(3, "Group_status", Group_status)
PTF_data_df.insert(3, "Group_status", Group_status)
PBF_data_df.insert(3, "Group_status", Group_status)
# Global peak alpha
PAF_data_df_global = PAF_data_df.groupby(["Subject_ID", "Group_status", "Eye_status"]).mean().reset_index() # by default pandas mean skip nan
PTF_data_df_global = PTF_data_df.groupby(["Subject_ID", "Group_status", "Eye_status"]).mean().reset_index() # by default pandas mean skip nan
PBF_data_df_global = PBF_data_df.groupby(["Subject_ID", "Group_status", "Eye_status"]).mean().reset_index() # by default pandas mean skip nan
# Add dummy variable for re-using plot code
dummy_variable = ["Global Peak Alpha Frequency"]*PAF_data_df_global.shape[0]
dummy_variable_2 = ["Global Peak Theta Frequency"]*PTF_data_df_global.shape[0]
dummy_variable_3 = ["Global Peak Beta Frequency"]*PBF_data_df_global.shape[0]
PTF_data_df_global.insert(3, "Measurement", dummy_variable_2 )
PBF_data_df_global.insert(3, "Measurement", dummy_variable_3 )
# Regional peak alpha
# A variable that codes the channels based on A/P localization is also made
Frontal_chs = ["Fp1", "Fpz", "Fp2", "AFz", "Fz", "F3", "F4", "F7", "F8"]
Central_chs = ["Cz", "C3", "C4", "T7", "T8", "FT7", "FC3", "FCz", "FC4", "FT8", "TP7", "CP3", "CPz", "CP4", "TP8"]
Posterior_chs = ["Pz", "P3", "P4", "P7", "P8", "POz", "O1", "O2", "Oz"]
Parietal_chs = ["TP7", "CP3", "CPz", "CP4", "TP8", "P7", "P3", "Pz", "P4", "P8", "POz"]
Brain_region_labels = ["Frontal","Central","Posterior","Parietal"]
Brain_region[np.array([i in Frontal_chs for i in ch_names])] = Brain_region_labels[0]
Brain_region[np.array([i in Central_chs for i in ch_names])] = Brain_region_labels[1]
Brain_region[np.array([i in Posterior_chs for i in ch_names])] = Brain_region_labels[2]
Brain_region[np.array([i in Parietal_chs for i in ch_names])] = Brain_region_labels[3]
PAF_data_df.insert(4, "Brain_region", list(Brain_region)*int(PAF_data_df.shape[0]/len(Brain_region)))
PTF_data_df.insert(4, "Brain_region", list(Brain_region)*int(PTF_data_df.shape[0]/len(Brain_region)))
PBF_data_df.insert(4, "Brain_region", list(Brain_region)*int(PBF_data_df.shape[0]/len(Brain_region)))
# A variable that codes the channels based on M/L localization
Left_chs = ["Fp1", "F3", "F7", "FC3", "FT7", "C3", "T7", "CP3", "TP7", "P3", "P7", "O1"]
Right_chs = ["Fp2", "F4", "F8", "FC4", "FT8", "C4", "T8", "CP4", "TP8", "P4", "P8", "O2"]
Mid_chs = ["Fpz", "AFz", "Fz", "FCz", "Cz", "CPz", "Pz", "POz", "Oz"]
Brain_side = np.array(ch_names, dtype = "<U5")
Brain_side[np.array([i in Left_chs for i in ch_names])] = "Left"
Brain_side[np.array([i in Right_chs for i in ch_names])] = "Right"
Brain_side[np.array([i in Mid_chs for i in ch_names])] = "Mid"
# Insert side type into dataframe:
PAF_data_df.insert(5, "Brain_side", list(Brain_side)*int(PAF_data_df.shape[0]/len(Brain_side)))
PTF_data_df.insert(5, "Brain_side", list(Brain_side)*int(PTF_data_df.shape[0]/len(Brain_side)))
PBF_data_df.insert(5, "Brain_side", list(Brain_side)*int(PBF_data_df.shape[0]/len(Brain_side)))
# Define region of interest before saving
PAF_data_df = PAF_data_df[(PAF_data_df["Brain_region"] == "Parietal")] # Parietal region in peak alpha frequencys
PTF_data_df = PTF_data_df[(PTF_data_df["Brain_region"] == "Frontal") &
((PTF_data_df["Brain_side"] == "Mid"))] # Frontal midline theta peak frequencys
PBF_data_df = PBF_data_df[(PBF_data_df["Brain_region"] == "Frontal")] # Frontal beta peak frequencys
PAF_data_df.to_pickle(os.path.join(Feature_savepath,"PAF_data_FOOOF_df.pkl"))
PAF_data_df_global.to_pickle(os.path.join(Feature_savepath,"PAF_data_FOOOF_global_df.pkl"))
PTF_data_df.to_pickle(os.path.join(Feature_savepath,"PTF_data_FOOOF_df.pkl"))
PTF_data_df_global.to_pickle(os.path.join(Feature_savepath,"PTF_data_FOOOF_global_df.pkl"))
PBF_data_df.to_pickle(os.path.join(Feature_savepath,"PBF_data_FOOOF_df.pkl"))
PBF_data_df_global.to_pickle(os.path.join(Feature_savepath,"PBF_data_FOOOF_global_df.pkl"))
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
# # Convert to Pandas dataframe (only keep exponent parameter for OOF)
# # The dimensions will each be a column with numbers and the last column will be the actual values
# ori = OOF_data[:,:,:,1]
# arr = np.column_stack(list(map(np.ravel, np.meshgrid(*map(np.arange, ori.shape), indexing="ij"))) + [ori.ravel()])
# PAF_data_df = pd.DataFrame(arr, columns = ["Subject_ID", "Eye_status", "Channel", "Value"])
# # Change from numerical coding to actual values
# index_values = [Subject_id,eye_status,ch_names]
# temp_df = PAF_data_df.copy() # make temp df to not sequential overwrite what is changed
# for col in range(len(index_values)):
# col_name = PAF_data_df.columns[col]
# for shape in range(ori.shape[col]):
# temp_df.loc[PAF_data_df.iloc[:,col] == shape,col_name]\
# = index_values[col][shape]
# OOF_data_df = temp_df # replace original df
# # Add group status
# Group_status = np.array(["CTRL"]*len(OOF_data_df["Subject_ID"]))
# Group_status[np.array([i in cases for i in OOF_data_df["Subject_ID"]])] = "PTSD"
# # Add to dataframe
# OOF_data_df.insert(3, "Group_status", Group_status)
# # Regional OOF
# OOF_data_df.insert(4, "Brain_region", list(Brain_region)*int(PAF_data_df.shape[0]/len(Brain_region)))
# # Save the dataframes
# OOF_data_df.to_pickle(os.path.join(Feature_savepath,"OOF_data_FOOOF_df.pkl"))
"""
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
# %% Microstate analysis
# The function takes the data as a numpy array (n_t, n_ch)
# The data is already re-referenced to common average
# Variables for the clustering function are extracted
sfreq = final_epochs[0].info["sfreq"]
eye_status = list(final_epochs[0].event_id.keys())
n_eye_status = len(eye_status)
ch_names = final_epochs[0].info["ch_names"]
n_channels = len(ch_names)
locs = np.zeros((n_channels,2)) # xy coordinates of the electrodes
for c in range(n_channels):
locs[c] = final_epochs[0].info["chs"][c]["loc"][0:2]
# The epochs are transformed to numpy arrays
micro_data = []
EC_micro_data = []
EO_micro_data = []
for i in range(n_subjects):
# Transform data to correct shape
micro_data.append(final_epochs[i].get_data()) # get data
arr_shape = micro_data[i].shape # get shape
micro_data[i] = micro_data[i].swapaxes(1,2) # swap ch and time axis
micro_data[i] = micro_data[i].reshape(arr_shape[0]*arr_shape[2],arr_shape[1]) # reshape by combining epochs and times
# Get indices for eyes open and closed
EC_index = final_epochs[i].events[:,2] == 1
EO_index = final_epochs[i].events[:,2] == 2
# Repeat with 4s * sample frequency to correct for concatenation of times and epochs
EC_index = np.repeat(EC_index,4*sfreq)
EO_index = np.repeat(EO_index,4*sfreq)
# Save data where it is divided into eye status
EC_micro_data.append(micro_data[i][EC_index])
EO_micro_data.append(micro_data[i][EO_index])
# Global explained variance and Cross-validation criterion is used to determine number of microstates
# First all data is concatenated to find the optimal number of maps for all data
micro_data_all = np.vstack(micro_data)
# Determine the number of clusters
# I use a slightly modified kmeans function which returns the cv_min
global_gev = []
cv_criterion = []
for n_maps in range(2,7):
maps, L, gfp_peaks, gev, cv_min = kmeans_return_all(micro_data_all, n_maps)
global_gev.append(np.sum(gev))
cv_criterion.append(cv_min)
# Save run results
cluster_results = np.array([global_gev,cv_criterion])
np.save("Microstate_n_cluster_test_results.npy", cluster_results) # (gev/cv_crit, n_maps from 2 to 6)
#cluster_results = np.load("Microstate_n_cluster_test_results.npy")
#global_gev = cluster_results[0,:]
#cv_criterion = cluster_results[1,:]
# Evaluate best n_maps
plt.figure()
plt.plot(np.linspace(2,6,len(cv_criterion)),(cv_criterion/np.sum(cv_criterion)), label="CV Criterion")
plt.plot(np.linspace(2,6,len(cv_criterion)),(global_gev/np.sum(global_gev)), label="GEV")
plt.legend()
plt.ylabel("Normalized to total")
# The lower CV the better.
# But the higher GEV the better.
# Based on the plots and the recommendation by vong Wegner & Laufs 2018
# In order to compare between groups, I fix the microstates by clustering on data from both groups
# Due to instability of maps when running multiple times, I increased n_maps from 4 to 6
mode = ["aahc", "kmeans", "kmedoids", "pca", "ica"][1]
# K-means is stochastic, thus I run it multiple times in order to find the maps with highest GEV
# Each K-means is run 5 times and best map is chosen. But I do this 10 times more, so in total 50 times!
n_run = 10
# Pre-allocate memory
microstate_cluster_results = []
# Parallel processing can only be implemented by ensuring different seeds
# Otherwise the iteration would be the same.
# However the k-means already use parallel processing so making outer loop with
# concurrent processes make it use too many processors
# Get current time
c_time1 = time.localtime()
c_time1 = time.strftime("%a %d %b %Y %H:%M:%S", c_time1)
print(c_time1)
# Change datatype due to error with computational power in clustering
EC_down = np.array(EC_micro_data, dtype = object)
#EC_down = EC_down.astype('float32')
EO_down = np.array(EO_micro_data, dtype = object)
#EO_down = EO_down.astype('float32')
for r in range(n_run):
maps = [0]*2
m_labels = [0]*2
gfp_peaks = [0]*2
gev = [0]*2
# Eyes closed
counter = 0
maps_, x_, gfp_peaks_, gev_ = clustering(
np.vstack(EC_down), sfreq, ch_names, locs, mode, n_maps, doplot=False) # doplot=True is bugged
maps[counter] = maps_
m_labels[counter] = x_
gfp_peaks[counter] = gfp_peaks_
gev[counter] = gev_
counter += 1
# Eyes open
maps_, x_, gfp_peaks_, gev_ = clustering(
np.vstack(EO_down), sfreq, ch_names, locs, mode, n_maps, doplot=False) # doplot=True is bugged
maps[counter] = maps_
m_labels[counter] = x_
gfp_peaks[counter] = gfp_peaks_
gev[counter] = gev_
counter += 1
microstate_cluster_results.append([maps, m_labels, gfp_peaks, gev])
print("Finished {} out of {}".format(r+1, n_run))
# Get current time
c_time2 = time.localtime()
c_time2 = time.strftime("%a %d %b %Y %H:%M:%S", c_time2)
print("Started", c_time1, "\nFinished",c_time2)
# Save the results
with open(Feature_savepath+"Microstate_5_maps_10x5_k_means_results.pkl", "wb") as file:
pickle.dump(microstate_cluster_results, file)
# # Load
# with open(Feature_savepath+"Microstate_4_maps_10x5_k_means_results.pkl", "rb") as file:
# microstate_cluster_results = pickle.load(file)
# Find the best maps (Highest GEV across all the K-means clusters)
EC_total_gevs = np.sum(np.vstack(np.array(microstate_cluster_results)[:,3,0]), axis=1) # (runs, maps/labels/gfp/gev, ec/eo)
EO_total_gevs = np.sum(np.vstack(np.array(microstate_cluster_results)[:,3,1]), axis=1)
Best_EC_idx = np.argmax(EC_total_gevs)
Best_EO_idx = np.argmax(EO_total_gevs)
# Update the variables for the best maps
maps = [microstate_cluster_results[Best_EC_idx][0][0],microstate_cluster_results[Best_EO_idx][0][1]]
m_labels = [microstate_cluster_results[Best_EC_idx][1][0],microstate_cluster_results[Best_EO_idx][1][1]]
gfp_peaks = [microstate_cluster_results[Best_EC_idx][2][0],microstate_cluster_results[Best_EO_idx][2][1]]
gev = [microstate_cluster_results[Best_EC_idx][3][0],microstate_cluster_results[Best_EO_idx][3][1]]
# Plot the maps
plt.style.use('default')
labels = ["EC", "EO"] #Eyes-closed, Eyes-open
for i in range(len(labels)):
fig, axarr = plt.subplots(1, n_maps, figsize=(20,5))
fig.patch.set_facecolor('white')
for imap in range(n_maps):
mne.viz.plot_topomap(maps[i][imap,:], pos = final_epochs[0].info, axes = axarr[imap]) # plot
axarr[imap].set_title("GEV: {:.2f}".format(gev[i][imap]), fontsize=16, fontweight="bold") # title
fig.suptitle("Microstates: {}".format(labels[i]), fontsize=20, fontweight="bold")
# Manual re-order the maps
# Due the random initiation of K-means this have to be modified every time clusters are made!
# Assign map labels (e.g. 0, 2, 1, 3)
order = [0]*2
order[0] = [3,0,1,2,4] # EC
order[1] = [3,1,0,2,4] # EO
for i in range(len(order)):
maps[i] = maps[i][order[i],:] # re-order maps
gev[i] = gev[i][order[i]] # re-order GEV
# Make directory to find and replace map labels
dic0 = {value:key for key, value in enumerate(order[i])}
m_labels[i][:] = [dic0.get(n, n) for n in m_labels[i]] # re-order labels
# The maps seems to be correlated both negatively and positively (see spatial correlation plots)
# Thus the sign of the map does not really reflect which areas are positive or negative (absolute)
# But more which areas are different during each state (relatively)
# I can therefore change the sign of the map for the visualizaiton
sign_swap = [[1,-1,1,1,1],[1,1,1,-1,1]]
for i in range(len(order)):
for m in range(n_maps):
maps[i][m] *= sign_swap[i][m]
# Plot the maps and save
save_path = "/home/s200431/Figures/Microstates"
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
labels = ["EC", "EO"]
for i in range(len(labels)):
fig, axarr = plt.subplots(1, n_maps, figsize=(20,5))
fig.patch.set_facecolor('white')
for imap in range(n_maps):
mne.viz.plot_topomap(maps[i][imap,:], pos = final_epochs[0].info, axes = axarr[imap]) # plot
axarr[imap].set_title("GEV: {:.2f}".format(gev[i][imap]), fontsize=16, fontweight="bold") # title
fig.suptitle("Microstates: {} - Total GEV: {:.2f}".format(labels[i],sum(gev[i])), fontsize=20, fontweight="bold")
# Save the figure
fig.savefig(os.path.join(save_path,str("Microstates_{}".format(labels[i]) + ".png")))
# Calculate spatial correlation between maps and actual data points (topography)
# The sign of the map is changed so the correlation is positive
# By default the code looks for highest spatial correlation (regardless of sign)
# Thus depending on random initiation point the map might be opposite
plt.style.use('ggplot')
def spatial_correlation(data, maps):
n_t = data.shape[0]
n_ch = data.shape[1]
data = data - data.mean(axis=1, keepdims=True)
# GFP peaks
gfp = np.std(data, axis=1)
gfp_peaks = locmax(gfp)
gfp_values = gfp[gfp_peaks]
gfp2 = np.sum(gfp_values**2) # normalizing constant in GEV
n_gfp = gfp_peaks.shape[0]
# Spatial correlation
C = np.dot(data, maps.T)
C /= (n_ch*np.outer(gfp, np.std(maps, axis=1)))
L = np.argmax(C**2, axis=1) # C is squared here which means the maps do no retain information about the sign of the correlation
return C
C_EC = spatial_correlation(np.vstack(np.array(EC_micro_data)), maps[0])
C_EO = spatial_correlation(np.vstack(np.array(EO_micro_data)), maps[1])
C = [C_EC, C_EO]
# Plot the distribution of spatial correlation for each label and each map
labels = ["EC", "EO"]
for i in range(len(labels)):
fig, axarr = plt.subplots(n_maps, n_maps, figsize=(16,16))
for Lmap in range(n_maps):
for Mmap in range(n_maps):
sns.distplot(C[i][m_labels[i] == Lmap,Mmap], ax = axarr[Lmap,Mmap])
axarr[Lmap,Mmap].set_xlabel("Spatial correlation")
plt.suptitle("Distribution of spatial correlation_{}".format(labels[i]), fontsize=20, fontweight="bold")
# Add common x and y axis labels by making one big axis
fig.add_subplot(111, frameon=False)
plt.tick_params(labelcolor="none", top="off", bottom="off", left="off", right="off") # hide tick labels and ticks
plt.grid(False) # remove global grid
plt.xlabel("Microstate number", labelpad=20)
plt.ylabel("Label number", labelpad=10)
fig.savefig(os.path.join(save_path,str("Microstates_Spatial_Correlation_Label_State_{}".format(labels[i]) + ".png")))
# Plot the distribution of spatial correlation for all data and each map
labels = ["EC", "EO"]
for i in range(len(labels)):
fig, axarr = plt.subplots(1,n_maps, figsize=(20,5))
for imap in range(n_maps):
sns.distplot(C[i][:,imap], ax = axarr[imap])
plt.xlabel("Spatial correlation")
plt.suptitle("Distribution of spatial correlation", fontsize=20, fontweight="bold")
# Add common x and y axis labels by making one big axis
fig.add_subplot(111, frameon=False)
plt.tick_params(labelcolor="none", top="off", bottom="off", left="off", right="off") # hide tick labels and ticks
plt.grid(False) # remove global grid
plt.xlabel("Microstate number", labelpad=20)
plt.ylabel("Label number")
# Prepare for calculation of transition matrix
# I modified the function, so it takes the list argument gap_index
# gap_index should have the indices right before gaps in data
# Gaps: Between dropped epochs, trials (eo/ec) and subjects
# The between subjects gaps is removed by dividing the data into subjects
n_trials = 5
n_epoch_length = final_epochs[0].get_data().shape[2]
micro_labels = []
micro_subject_EC_idx = [0]
micro_subject_EO_idx = [0]
gaps_idx = []
gaps_trials_idx = []
for i in range(n_subjects):
# Get indices for subject
micro_subject_EC_idx.append(micro_subject_EC_idx[i]+EC_micro_data[i].shape[0])
temp_EC = m_labels[0][micro_subject_EC_idx[i]:micro_subject_EC_idx[i+1]]
# Get labels for subject i EO
micro_subject_EO_idx.append(micro_subject_EO_idx[i]+EO_micro_data[i].shape[0])
temp_EO = m_labels[1][micro_subject_EO_idx[i]:micro_subject_EO_idx[i+1]]
# Save
micro_labels.append([temp_EC,temp_EO]) # (subject, eye)
# Get indices with gaps
# Dropped epochs are first considered
# Each epoch last 4s, which correspond to 2000 samples and a trial is 15 epochs - dropped epochs
# Get epochs for each condition
EC_drop_epochs = Drop_epochs_df.iloc[i,1:][Drop_epochs_df.iloc[i,1:] <= 75].to_numpy()
EO_drop_epochs = Drop_epochs_df.iloc[i,1:][(Drop_epochs_df.iloc[i,1:] >= 75)&
(Drop_epochs_df.iloc[i,1:] <= 150)].to_numpy()
# Get indices for the epochs for EC that were dropped and correct for changing index due to drop
EC_drop_epochs_gaps_idx = []
counter = 0
for d in range(len(EC_drop_epochs)):
drop_epoch_number = EC_drop_epochs[d]
Drop_epoch_idx = (drop_epoch_number-counter)*n_epoch_length # counter subtracted as the drop index is before dropped
EC_drop_epochs_gaps_idx.append(Drop_epoch_idx-1) # -1 for point just before gap
counter += 1
# Negative index might occur if the first epochs were removed. This index is not needed for transition matrix
if len(EC_drop_epochs_gaps_idx) > 0:
for d in range(len(EC_drop_epochs_gaps_idx)): # check all, e.g. if epoch 0,1,2,3 are dropped then all should be caught
if EC_drop_epochs_gaps_idx[0] == -1:
EC_drop_epochs_gaps_idx = EC_drop_epochs_gaps_idx[1:len(EC_drop_epochs)]
# Get indices for the epochs for EO that were dropped and correct for changing index due to drop
EO_drop_epochs_gaps_idx = []
counter = 0
for d in range(len(EO_drop_epochs)):
drop_epoch_number = EO_drop_epochs[d]-75
Drop_epoch_idx = (drop_epoch_number-counter)*n_epoch_length # counter subtracted as the drop index is before dropped
EO_drop_epochs_gaps_idx.append(Drop_epoch_idx-1) # -1 for point just before gap
counter += 1
# Negative index might occur if the first epoch was removed. This index is not needed for transition matrix
if len(EO_drop_epochs_gaps_idx) > 0:
for d in range(len(EO_drop_epochs_gaps_idx)): # check all, e.g. if epoch 0,1,2,3 are dropped then all should be caught
if EO_drop_epochs_gaps_idx[0] == -1:
EO_drop_epochs_gaps_idx = EO_drop_epochs_gaps_idx[1:len(EO_drop_epochs)]
# Gaps between trials
Trial_indices = [0, 15, 30, 45, 60, 75] # all the indices for start and end of the 5 trials
EC_trial_gaps_idx = []
EO_trial_gaps_idx = []
counter_EC = 0
counter_EO = 0
for t in range(len(Trial_indices)-2): # -2 as start and end is not used in transition matrix
temp_drop = EC_drop_epochs[(EC_drop_epochs >= Trial_indices[t])&
(EC_drop_epochs < Trial_indices[t+1])]
# Correct the trial id for any potential drops within that trial
counter_EC += len(temp_drop)
trial_idx_corrected_for_drops = 15*(t+1)-counter_EC
EC_trial_gaps_idx.append((trial_idx_corrected_for_drops*n_epoch_length)-1) # multiply id with length of epoch and subtract 1
temp_drop = EO_drop_epochs[(EO_drop_epochs >= Trial_indices[t]+75)&
(EO_drop_epochs < Trial_indices[t+1]+75)]
# Correct the trial id for any potential drops within that trial
counter_EO += len(temp_drop)
trial_idx_corrected_for_drops = 15*(t+1)-counter_EO
EO_trial_gaps_idx.append((trial_idx_corrected_for_drops*n_epoch_length)-1) # multiply id with length of epoch and subtract 1
# Concatenate all drop indices
gaps_idx.append([np.unique(np.sort(EC_drop_epochs_gaps_idx+EC_trial_gaps_idx)),
np.unique(np.sort(EO_drop_epochs_gaps_idx+EO_trial_gaps_idx))])
# Make on with trial gaps only for use in LRTC analysis
gaps_trials_idx.append([EC_trial_gaps_idx,EO_trial_gaps_idx])
# Save the gap idx files
np.save("Gaps_idx.npy",np.array(gaps_idx))
np.save("Gaps_trials_idx.npy",np.array(gaps_trials_idx))
# %% Calculate microstate features
# Symbol distribution (also called ratio of time covered RTT)
# Transition matrix
# Shannon entropy
EC_p_hat = p_empirical(m_labels[0], n_maps)
EO_p_hat = p_empirical(m_labels[1], n_maps)
# Sanity check: Overall between EC and EO
microstate_time_data = np.zeros((n_subjects,n_eye_status,n_maps))
microstate_transition_data = np.zeros((n_subjects,n_eye_status,n_maps,n_maps))
microstate_entropy_data = np.zeros((n_subjects,n_eye_status))
microstate_orrurence_data = np.zeros((n_subjects,n_eye_status,n_maps))
microstate_mean_duration_data = np.zeros((n_subjects,n_eye_status,n_maps))
for i in range(n_subjects):
# Calculate ratio of time covered
temp_EC_p_hat = p_empirical(micro_labels[i][0], n_maps)
temp_EO_p_hat = p_empirical(micro_labels[i][1], n_maps)
# Calcuate number of occurences for each microstate
for j in range(len(micro_labels[i][0])-1):
if micro_labels[i][0][j] != micro_labels[i][0][j+1]:
microstate_orrurence_data[i][0][micro_labels[i][0][j]] += 1
for j in range(len(micro_labels[i][1])-1):
if micro_labels[i][1][j] != micro_labels[i][1][j+1]:
microstate_orrurence_data[i][1][micro_labels[i][1][j]] += 1
# Calculate mean duration of each microstate
for j in range(n_maps):
microstate_mean_duration_data[i][0][j] = sum(micro_labels[i][0] == j)/microstate_orrurence_data[i][0][j]
microstate_mean_duration_data[i][1][j] = sum(micro_labels[i][1] == j)/microstate_orrurence_data[i][1][j]
temp_EC_T_hat = T_empirical(micro_labels[i][0], n_maps, gaps_idx[i][0])
temp_EO_T_hat = T_empirical(micro_labels[i][1], n_maps, gaps_idx[i][1])
"""
temp_EC_T_hat = T_empirical(micro_labels[i][0], n_maps)
temp_EO_T_hat = T_empirical(micro_labels[i][1], n_maps)
# Calculate Shannon entropy
temp_EC_h_hat = H_1(micro_labels[i][0], n_maps)
temp_EO_h_hat = H_1(micro_labels[i][1], n_maps)
# Save the data
microstate_time_data[i,0,:] = temp_EC_p_hat
microstate_time_data[i,1,:] = temp_EO_p_hat
microstate_transition_data[i,0,:,:] = temp_EC_T_hat
microstate_transition_data[i,1,:,:] = temp_EO_T_hat
microstate_entropy_data[i,0] = temp_EC_h_hat/max_entropy(n_maps) # ratio of max entropy
microstate_entropy_data[i,1] = temp_EO_h_hat/max_entropy(n_maps) # ratio of max entropy
# Save transition data
np.save(Feature_savepath+"microstate_transition_data.npy", microstate_transition_data)
# Convert transition data to dataframe for further processing with other features
# Transition matrix should be read as probability of row to column
microstate_transition_data_arr =\
microstate_transition_data.reshape((n_subjects,n_eye_status,n_maps*n_maps)) # flatten 5 x 5 matrix to 1D
transition_info = ["M1->M1", "M1->M2", "M1->M3", "M1->M4", "M1->M5",
"M2->M1", "M2->M2", "M2->M3", "M2->M4", "M2-M5",
"M3->M1", "M3->M2", "M3->M3", "M3->M4", "M3->M5",
"M4->M1", "M4->M2", "M4->M3", "M4->M4", "M4->M5",
"M5->M1", "M5->M2", "M5->M3", "M5->M4", "M5->M5"]
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
arr = np.column_stack(list(map(np.ravel, np.meshgrid(*map(np.arange, microstate_transition_data_arr.shape), indexing="ij"))) + [microstate_transition_data_arr.ravel()])
microstate_transition_data_df = pd.DataFrame(arr, columns = ["Subject_ID", "Eye_status", "Transition", "Value"])
# Change from numerical coding to actual values
eye_status = list(final_epochs[0].event_id.keys())
index_values = [Subject_id,eye_status,transition_info]
for col in range(len(index_values)):
col_name = microstate_transition_data_df.columns[col]
for shape in reversed(range(microstate_transition_data_arr.shape[col])): # notice this is the shape of original numpy array. Not shape of DF
microstate_transition_data_df.loc[microstate_transition_data_df.iloc[:,col] == shape,col_name]\
= index_values[col][shape]
# Add group status
Group_status = np.array(["CTRL"]*len(microstate_transition_data_df["Subject_ID"]))
Group_status[np.array([i in cases for i in microstate_transition_data_df["Subject_ID"]])] = "PTSD"
# Add to dataframe
microstate_transition_data_df.insert(2, "Group_status", Group_status)
# Save df
microstate_transition_data_df.to_pickle(os.path.join(Feature_savepath,"microstate_transition_data_df.pkl"))
# Convert time covered data to Pandas dataframe
# Convert orrurence data to Pandas dataframe
# Convert mean duration data to Pandas dataframe
# The dimensions will each be a column with numbers and the last column will be the actual values
arr = np.column_stack(list(map(np.ravel, np.meshgrid(*map(np.arange, microstate_time_data.shape), indexing="ij"))) + [microstate_time_data.ravel()])
arr_2 = np.column_stack(list(map(np.ravel, np.meshgrid(*map(np.arange, microstate_orrurence_data.shape), indexing="ij"))) + [microstate_orrurence_data.ravel()])
arr_3 = np.column_stack(list(map(np.ravel, np.meshgrid(*map(np.arange, microstate_mean_duration_data.shape), indexing="ij"))) + [microstate_mean_duration_data.ravel()])
microstate_time_df = pd.DataFrame(arr, columns = ["Subject_ID", "Eye_status", "Microstate", "Value"])
microstate_orrurence_df = pd.DataFrame(arr_2, columns = ["Subject_ID", "Eye_status", "Microstate", "Value"])
microstate_mean_duration_df = pd.DataFrame(arr_3, columns = ["Subject_ID", "Eye_status", "Microstate", "Value"])
# Change from numerical coding to actual values
eye_status = list(final_epochs[0].event_id.keys())
microstates = [1,2,3,4,5]
index_values = [Subject_id,eye_status,microstates]
for col in range(len(index_values)):
col_name = microstate_time_df.columns[col]
col_name_2 = microstate_orrurence_df.columns[col]
col_name_3 = microstate_mean_duration_df.columns[col]
for shape in reversed(range(microstate_time_data.shape[col])): # notice this is the shape of original numpy array. Not shape of DF
microstate_time_df.loc[microstate_time_df.iloc[:,col] == shape,col_name]\
= index_values[col][shape]
microstate_orrurence_df.loc[microstate_orrurence_df.iloc[:,col] == shape,col_name_2]\
= index_values[col][shape]
microstate_mean_duration_df.loc[microstate_mean_duration_df.iloc[:,col] == shape,col_name_3]\
= index_values[col][shape]
# Reversed in inner loop is used to avoid sequencial data being overwritten.
# E.g. if 0 is renamed to 1, then the next loop all 1's will be renamed to 2
# Add group status
Group_status = np.array(["CTRL"]*len(microstate_time_df["Subject_ID"]))
Group_status[np.array([i in cases for i in microstate_time_df["Subject_ID"]])] = "PTSD"
Group_status_2 = np.array(["CTRL"]*len(microstate_orrurence_df["Subject_ID"]))
Group_status_2[np.array([i in cases for i in microstate_orrurence_df["Subject_ID"]])] = "PTSD"
Group_status_3 = np.array(["CTRL"]*len(microstate_mean_duration_df["Subject_ID"]))
Group_status_3[np.array([i in cases for i in microstate_mean_duration_df["Subject_ID"]])] = "PTSD"
# Add to dataframe
microstate_time_df.insert(2, "Group_status", Group_status)
microstate_orrurence_df.insert(2, "Group_status", Group_status_2)
microstate_mean_duration_df.insert(2, "Group_status", Group_status_3)
# Save df
microstate_time_df.to_pickle(os.path.join(Feature_savepath,"microstate_time_df.pkl"))
microstate_orrurence_df.to_pickle(os.path.join(Feature_savepath,"microstate_orrurence_df.pkl"))
microstate_mean_duration_df.to_pickle(os.path.join(Feature_savepath,"microstate_mean_duration_df.pkl"))
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
# Transition data - mean
# Get index for groups
PTSD_idx = np.array([i in cases for i in Subject_id])
CTRL_idx = np.array([not i in cases for i in Subject_id])
n_groups = 2
microstate_transition_data_mean = np.zeros((n_groups,n_eye_status,n_maps,n_maps))
microstate_transition_data_mean[0,:,:,:] = np.mean(microstate_transition_data[PTSD_idx,:,:,:], axis=0)
microstate_transition_data_mean[1,:,:,:] = np.mean(microstate_transition_data[CTRL_idx,:,:,:], axis=0)
# Convert entropy data to Pandas dataframe
# The dimensions will each be a column with numbers and the last column will be the actual values
arr = np.column_stack(list(map(np.ravel, np.meshgrid(*map(np.arange, microstate_entropy_data.shape), indexing="ij"))) + [microstate_entropy_data.ravel()])
microstate_entropy_df = pd.DataFrame(arr, columns = ["Subject_ID", "Eye_status", "Value"])
# Change from numerical coding to actual values
eye_status = list(final_epochs[0].event_id.keys())
index_values = [Subject_id,eye_status]
for col in range(len(index_values)):
col_name = microstate_entropy_df.columns[col]
for shape in reversed(range(microstate_entropy_data.shape[col])): # notice this is the shape of original numpy array. Not shape of DF
microstate_entropy_df.loc[microstate_entropy_df.iloc[:,col] == shape,col_name]\
= index_values[col][shape]
# Reversed in inner loop is used to avoid sequencial data being overwritten.
# E.g. if 0 is renamed to 1, then the next loop all 1's will be renamed to 2
# Add group status
Group_status = np.array(["CTRL"]*len(microstate_entropy_df["Subject_ID"]))
Group_status[np.array([i in cases for i in microstate_entropy_df["Subject_ID"]])] = "PTSD"
# Add to dataframe
microstate_entropy_df.insert(2, "Group_status", Group_status)
# Add dummy variable for re-using plot code
dummy_variable = ["Entropy"]*len(Group_status)
microstate_entropy_df.insert(3, "Measurement", dummy_variable)
# Save df
microstate_entropy_df.to_pickle(os.path.join(Feature_savepath,"microstate_entropy_df.pkl"))
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
# # %% Long-range temporal correlations (LRTC)
# """
# See Hardstone et al, 2012
# Hurst exponent estimation steps:
# 1. Preprocess
# 2. Band-pass filter for frequency band of interest
# 3. Hilbert transform to obtain amplitude envelope
# 4. Perform DFA
# 4.1 Compute cumulative sum of time series to create signal profile
# 4.2 Define set of window sizes (see below)
# 4.3 Remove the linear trend using least-squares for each window
# 4.4 Calculate standard deviation for each window and take the mean
# 4.5 Plot fluctuation function (Standard deviation) as function
# for all window sizes, on double logarithmic scale
# 4.6 The DFA exponent alpha correspond to Hurst exponent
# f(L) = sd = L^alpha (with alpha as linear coefficient in log plot)
# If 0 < alpha < 0.5: The process exhibits anti-correlations
# If 0.5 < alpha < 1: The process exhibits positive correlations
# If alpha = 0.5: The process is indistinguishable from a random process
# If 1.0 < alpha < 2.0: The process is non-stationary. H = alpha - 1
# Window sizes should be equally spaced on a logarithmic scale
# Sizes should be at least 4 samples and up to 10% of total signal length
# Filters can influence neighboring samples, thus filters should be tested
# on white noise to estimate window sizes that are unaffected by filters
# filter_length=str(2*1/fmin)+"s" # cannot be used with default transition bandwidth
# """
# # From simulations with white noise I determined window size thresholds for the 5 frequency bands:
# thresholds = [7,7,7,6.5,6.5]
# # And their corresponding log step sizes
# with open("LRTC_log_win_sizes.pkl", "rb") as filehandle:
# log_win_sizes = pickle.load(filehandle)
# # Variables for the the different conditions
# # Sampling frequency
# sfreq = final_epochs[0].info["sfreq"]
# # Channels
# ch_names = final_epochs[0].info["ch_names"]
# n_channels = len(ch_names)
# # Frequency
# Freq_Bands = {"delta": [1.25, 4.0],
# "theta": [4.0, 8.0],
# "alpha": [8.0, 13.0],
# "beta": [13.0, 30.0],
# "gamma": [30.0, 49.0]}
# n_freq_bands = len(Freq_Bands)
# # Eye status
# eye_status = list(final_epochs[0].event_id.keys())
# n_eye_status = len(eye_status)
# ### Estimating Hurst exponent for the data
# # The data should be re-referenced to common average (Already done)
# # Data are transformed to numpy arrays
# # Then divided into EO and EC and further into each of the 5 trials
# # So DFA is estimated for each trial separately, which was concluded from simulations
# gaps_trials_idx = np.load("Gaps_trials_idx.npy") # re-used from microstate analysis
# n_trials = 5
# H_data = []
# for i in range(n_subjects):
# # Transform data to correct shape
# temp_arr = final_epochs[i].get_data() # get data
# arr_shape = temp_arr.shape # get shape
# temp_arr = temp_arr.swapaxes(1,2) # swap ch and time axis
# temp_arr = temp_arr.reshape(arr_shape[0]*arr_shape[2],arr_shape[1]) # reshape by combining epochs and times
# # Get indices for eyes open and closed
# EC_index = final_epochs[i].events[:,2] == 1
# EO_index = final_epochs[i].events[:,2] == 2
# # Repeat with 4s * sample frequency to correct for concatenation of times and epochs
# EC_index = np.repeat(EC_index,4*sfreq)
# EO_index = np.repeat(EO_index,4*sfreq)
# # Divide into eye status
# EC_data = temp_arr[EC_index]
# EO_data = temp_arr[EO_index]
# # Divide into trials
# EC_gap_idx = np.array([0]+list(gaps_trials_idx[i,0])+[len(EC_data)])
# EO_gap_idx = np.array([0]+list(gaps_trials_idx[i,1])+[len(EO_data)])
# EC_trial_data = []
# EO_trial_data = []
# for t in range(n_trials):
# EC_trial_data.append(EC_data[EC_gap_idx[t]:EC_gap_idx[t+1]])
# EO_trial_data.append(EO_data[EO_gap_idx[t]:EO_gap_idx[t+1]])
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
# # Save data
# H_data.append([EC_trial_data,EO_trial_data]) # output [subject][eye][trial][time,ch]
# # Calculate H for each subject, eye status, trial, freq and channel
# H_arr = np.zeros((n_subjects,n_eye_status,n_trials,n_channels,n_freq_bands))
# w_len = [len(ele) for ele in log_win_sizes]
# DFA_arr = np.empty((n_subjects,n_eye_status,n_trials,n_channels,n_freq_bands,2,np.max(w_len)))
# DFA_arr[:] = np.nan
# # Get current time
# c_time1 = time.localtime()
# c_time1 = time.strftime("%a %d %b %Y %H:%M:%S", c_time1)
# print("Started",c_time1)
# # Nolds are already using all cores so multiprocessing with make it slower
# # Warning occurs when R2 is estimated during detrending - but R2 is not used
# warnings.simplefilter("ignore")
# for i in range(n_subjects):
# # Pre-allocate memory
# DFA_temp = np.empty((n_eye_status,n_trials,n_channels,n_freq_bands,2,np.max(w_len)))
# DFA_temp[:] = np.nan
# H_temp = np.empty((n_eye_status,n_trials,n_channels,n_freq_bands))
# for e in range(n_eye_status):
# for trial in range(n_trials):
# for c in range(n_channels):
# # Get the data
# signal = H_data[i][e][trial][:,c]
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
# counter = 0 # prepare counter
# for fmin, fmax in Freq_Bands.values():
# # Filter for each freq band
# signal_filtered = mne.filter.filter_data(signal, sfreq=sfreq, verbose=0,
# l_freq=fmin, h_freq=fmax)
# # Hilbert transform
# analytic_signal = scipy.signal.hilbert(signal_filtered)
# # Get Amplitude envelope
# # np.abs is the same as np.linalg.norm, i.e. the length for complex input which is the amplitude
# ampltude_envelope = np.abs(analytic_signal)
# # Perform DFA using predefined window sizes from simulation
# a, dfa_data = nolds.dfa(ampltude_envelope,
# nvals=np.exp(log_win_sizes[counter]).astype("int"),
# debug_data=True)
# # Save DFA results
# DFA_temp[e,trial,c,counter,:,0:w_len[counter]] = dfa_data[0:2]
# H_temp[e,trial,c,counter] = a
# # Update counter
# counter += 1
# # Print run status
# print("Finished {} out of {}".format(i+1,n_subjects))
# # Save the results
# H_arr[i] = H_temp
# DFA_arr[i] = DFA_temp
# warnings.simplefilter("default")
# # Get current time
# c_time2 = time.localtime()
# c_time2 = time.strftime("%a %d %b %Y %H:%M:%S", c_time2)
# print("Started", c_time1, "\nCurrent Time",c_time2)
# # Save the DFA analysis data
# np.save(Feature_savepath+"DFA_arr.npy", DFA_arr)
# np.save(Feature_savepath+"H_arr.npy", H_arr)
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
# # Load
# DFA_arr = np.load(Feature_savepath+"DFA_arr.npy")
# H_arr = np.load(Feature_savepath+"H_arr.npy")
# # Average the Hurst Exponent across trials
# H_arr = np.mean(H_arr, axis=2)
# # Convert to Pandas dataframe (Hurst exponent)
# # The dimensions will each be a column with numbers and the last column will be the actual values
# arr = np.column_stack(list(map(np.ravel, np.meshgrid(*map(np.arange, H_arr.shape), indexing="ij"))) + [H_arr.ravel()])
# H_data_df = pd.DataFrame(arr, columns = ["Subject_ID", "Eye_status", "Channel", "Freq_band", "Value"])
# # Change from numerical coding to actual values
# eye_status = list(final_epochs[0].event_id.keys())
# ch_name = final_epochs[0].info["ch_names"]
# index_values = [Subject_id,eye_status,ch_name,list(Freq_Bands.keys())]
# for col in range(len(index_values)):
# col_name = H_data_df.columns[col]
# for shape in range(H_arr.shape[col]): # notice this is the shape of original numpy array. Not shape of DF
# H_data_df.loc[H_data_df.iloc[:,col] == shape,col_name]\
# = index_values[col][shape]
# # Add group status
# Group_status = np.array(["CTRL"]*len(H_data_df["Subject_ID"]))
# Group_status[np.array([i in cases for i in H_data_df["Subject_ID"]])] = "PTSD"
# # Add to dataframe
# H_data_df.insert(2, "Group_status", Group_status)
# # Fix Freq_band categorical order
# H_data_df["Freq_band"] = H_data_df["Freq_band"].astype("category").\
# cat.reorder_categories(list(Freq_Bands.keys()), ordered=True)
# # Global Hurst exponent
# H_data_df_global = H_data_df.groupby(["Subject_ID", "Eye_status", "Freq_band"]).mean().reset_index() # by default pandas mean skip nan
# # Add group status (cannot use group_by as each subject only have 1 group, not both)
# Group_status = np.array(["CTRL"]*len(H_data_df_global["Subject_ID"]))
# Group_status[np.array([i in cases for i in H_data_df_global["Subject_ID"]])] = "PTSD"
# # Add to dataframe
# H_data_df_global.insert(2, "Group_status", Group_status)
# # Add dummy variable for re-using plot code
# dummy_variable = ["Global Hurst Exponent"]*H_data_df_global.shape[0]
# H_data_df_global.insert(3, "Measurement", dummy_variable )
# # Save the data
# H_data_df.to_pickle(os.path.join(Feature_savepath,"H_data_df.pkl"))
# H_data_df_global.to_pickle(os.path.join(Feature_savepath,"H_data_global_df.pkl"))
# # %% Source localization of sensor data
# # Using non-interpolated channels
# # Even interpolated channels during preprocessing and visual inspection
# # are dropped
# # Prepare epochs for estimation of source connectivity
# source_epochs = [0]*n_subjects
# for i in range(n_subjects):
# source_epochs[i] = final_epochs[i].copy()
# ### Make forward solutions
# # A forward solution is first made for all individuals with no dropped channels
# # Afterwards individual forward solutions are made for subjects with bad
# # channels that were interpolated in preprocessing and these are dropped
# # First forward operator is computed using a template MRI for each dataset
# fs_dir = "/home/glia/MNE-fsaverage-data/fsaverage"
# subjects_dir = os.path.dirname(fs_dir)
# trans = "fsaverage"
# src = os.path.join(fs_dir, "bem", "fsaverage-ico-5-src.fif")
# bem = os.path.join(fs_dir, "bem", "fsaverage-5120-5120-5120-bem-sol.fif")
# # Read the template sourcespace
# sourcespace = mne.read_source_spaces(src)
# temp_idx = 0 # Index with subject that had no bad channels
# subject_eeg = source_epochs[temp_idx].copy()
# subject_eeg.set_eeg_reference(projection=True) # needed for inverse modelling
# # Make forward solution
# fwd = mne.make_forward_solution(subject_eeg.info, trans=trans, src=src,
# bem=bem, eeg=True, mindist=5.0, n_jobs=1)
# # Save forward operator
# fname_fwd = "./Source_fwd/fsaverage-fwd.fif"
# mne.write_forward_solution(fname_fwd, fwd, overwrite=True)
# # A specific forward solution is also made for each subject with bad channels
# with open("./Preprocessing/bad_ch.pkl", "rb") as file:
# bad_ch = pickle.load(file)
# All_bad_ch = bad_ch
# All_drop_epochs = dropped_epochs_df
# All_dropped_ch = []
# Bad_ch_idx = [idx for idx, item in enumerate(All_bad_ch) if item != 0]
# Bad_ch_subjects = All_drop_epochs["Subject_ID"][Bad_ch_idx]
# # For each subject with bad channels, drop the channels and make forward operator
# for n in range(len(Bad_ch_subjects)):
# Subject = Bad_ch_subjects.iloc[n]
# try:
# Subject_idx = Subject_id.index(Subject)
# # Get unique bad channels
# Bad_ch0 = All_bad_ch[Bad_ch_idx[n]]
# Bad_ch1 = []
# for i2 in range(len(Bad_ch0)):
# if type(Bad_ch0[i2]) == list:
# for i3 in range(len(Bad_ch0[i2])):
# Bad_ch1.append(Bad_ch0[i2][i3])
# elif type(Bad_ch0[i2]) == str:
# Bad_ch1.append(Bad_ch0[i2])
# Bad_ch1 = np.unique(Bad_ch1)
# # Drop the bad channels
# source_epochs[Subject_idx].drop_channels(Bad_ch1)
# # Save the overview of dropped channels
# All_dropped_ch.append([Subject,Subject_idx,Bad_ch1])
# # Make forward operator
# subject_eeg = source_epochs[Subject_idx].copy()
# subject_eeg.set_eeg_reference(projection=True) # needed for inverse modelling
# # Make forward solution
# fwd = mne.make_forward_solution(subject_eeg.info, trans=trans, src=src,
# bem=bem, eeg=True, mindist=5.0, n_jobs=1)
# # Save forward operator
# fname_fwd = "./Source_fwd/fsaverage_{}-fwd.fif".format(Subject)
# mne.write_forward_solution(fname_fwd, fwd, overwrite=True)
# except:
# print(Subject,"was already dropped")
# with open("./Preprocessing/All_datasets_bad_ch.pkl", "wb") as filehandle:
# pickle.dump(All_dropped_ch, filehandle)
# # %% Load forward operators
# # Re-use for all subjects without dropped channels
# fname_fwd = "./Source_fwd/fsaverage-fwd.fif"
# fwd = mne.read_forward_solution(fname_fwd)
# fwd_list = [fwd]*n_subjects
# # Use specific forward solutions for subjects with dropped channels
# with open("./Preprocessing/All_datasets_bad_ch.pkl", "rb") as file:
# All_dropped_ch = pickle.load(file)
# for i in range(len(All_dropped_ch)):
# Subject = All_dropped_ch[i][0]
# Subject_idx = All_dropped_ch[i][1]
# fname_fwd = "./Source_fwd/fsaverage_{}-fwd.fif".format(Subject)
# fwd = mne.read_forward_solution(fname_fwd)
# fwd_list[Subject_idx] = fwd
# # Check the correct number of channels are present in fwd
# random_point = int(np.random.randint(0,len(All_dropped_ch)-1,1))
# assert len(fwds[All_dropped_ch[random_point][1]].ch_names) == source_epochs[All_dropped_ch[random_point][1]].info["nchan"]
# # %% Make parcellation
# # After mapping to source space, I end up with 20484 vertices
# # but I wanted to map to fewer sources and not many more
# # Thus I need to perform parcellation
# # Get labels for FreeSurfer "aparc" cortical parcellation (example with 74 labels/hemi - Destriuex)
# labels_aparc = mne.read_labels_from_annot("fsaverage", parc="aparc.a2009s",
# subjects_dir=subjects_dir)
# labels_aparc = labels_aparc[:-2] # remove unknowns
# labels_aparc_names = [label.name for label in labels_aparc]
# # Manually adding the 31 ROIs (14-lh/rh + 3 in midline) from Toll et al, 2020
# # Making fuction to take subset of a label
# def label_subset(label, subset, name="ROI_name"):
# label_subset = mne.Label(label.vertices[subset], label.pos[subset,:],
# label.values[subset], label.hemi,
# name = "{}-{}".format(name,label.hemi),
# subject = label.subject, color = None)
# return label_subset
# ### Visual area 1 (V1 and somatosensory cortex BA1-3)
# label_filenames = ["lh.V1.label", "rh.V1.label",
# "lh.BA1.label", "rh.BA1.label",
# "lh.BA2.label", "rh.BA2.label",
# "lh.BA3a.label", "rh.BA3a.label",
# "lh.BA3b.label", "rh.BA3b.label"]
# labels0 = [0]*len(label_filenames)
# for i, filename in enumerate(label_filenames):
# labels0[i] = mne.read_label(os.path.join(fs_dir, "label", filename), subject="fsaverage")
# # Add V1 to final label variable
# labels = labels0[:2]
# # Rename to remove redundant hemi information
# labels[0].name = "V1-{}".format(labels[0].hemi)
# labels[1].name = "V1-{}".format(labels[1].hemi)
# # Assign a color
# labels[0].color = matplotlib.colors.to_rgba("salmon")
# labels[1].color = matplotlib.colors.to_rgba("salmon")
# # Combine Brodmann Areas for SMC. Only use vertices ones to avoid duplication error
# SMC_labels = labels0[2:]
# for hem in range(2):
# SMC_p1 = SMC_labels[hem]
# for i in range(1,len(SMC_labels)//2):
# SMC_p2 = SMC_labels[hem+2*i]
# p2_idx = np.isin(SMC_p2.vertices, SMC_p1.vertices, invert=True)
# SMC_p21 = label_subset(SMC_p2, p2_idx, "SMC")
# SMC_p1 = SMC_p1.__add__(SMC_p21)
# SMC_p1.name = SMC_p21.name
# # Assign a color
# SMC_p1.color = matplotlib.colors.to_rgba("orange")
# labels.append(SMC_p1)
# ### Inferior frontal junction
# # Located at junction between inferior frontal and inferior precentral sulcus
# label_aparc_names0 = ["S_front_inf","S_precentral-inf-part"]
# temp_labels = []
# for i in range(len(label_aparc_names0)):
# labels_aparc_idx = [labels_aparc_names.index(l) for l in labels_aparc_names if l.startswith(label_aparc_names0[i])]
# for i2 in range(len(labels_aparc_idx)):
# temp_labels.append(labels_aparc[labels_aparc_idx[i2]].copy())
# pos1 = temp_labels[0].pos
# pos2 = temp_labels[2].pos
# distm = scipy.spatial.distance.cdist(pos1,pos2)
# # Find the closest points between the 2 ROIs
# l1_idx = np.unique(np.where(distm<np.quantile(distm, 0.001))[0]) # q chosen to correspond to around 10% of ROI
# l2_idx = np.unique(np.where(distm<np.quantile(distm, 0.0005))[1]) # q chosen to correspond to around 10% of ROI
# IFJ_label_p1 = label_subset(temp_labels[0], l1_idx, "IFJ")
# IFJ_label_p2 = label_subset(temp_labels[2], l2_idx, "IFJ")
# # Combine the 2 parts
# IFJ_label = IFJ_label_p1.__add__(IFJ_label_p2)
# IFJ_label.name = IFJ_label_p1.name
# # Assign a color
# IFJ_label.color = matplotlib.colors.to_rgba("chartreuse")
# # Append to final list
# labels.append(IFJ_label)
# # Do the same for the right hemisphere
# pos1 = temp_labels[1].pos
# pos2 = temp_labels[3].pos
# distm = scipy.spatial.distance.cdist(pos1,pos2)
# # Find the closest points between the 2 ROIs
# l1_idx = np.unique(np.where(distm<np.quantile(distm, 0.00075))[0]) # q chosen to correspond to around 10% of ROI
# l2_idx = np.unique(np.where(distm<np.quantile(distm, 0.0005))[1]) # q chosen to correspond to around 10% of ROI
# IFJ_label_p1 = label_subset(temp_labels[1], l1_idx, "IFJ")
# IFJ_label_p2 = label_subset(temp_labels[3], l2_idx, "IFJ")
# # Combine the 2 parts
# IFJ_label = IFJ_label_p1.__add__(IFJ_label_p2)
# IFJ_label.name = IFJ_label_p1.name
# # Assign a color
# IFJ_label.color = matplotlib.colors.to_rgba("chartreuse")
# # Append to final list
# labels.append(IFJ_label)
# ### Intraparietal sulcus
# label_aparc_names0 = ["S_intrapariet_and_P_trans"]
# labels_aparc_idx = [labels_aparc_names.index(l) for l in labels_aparc_names if l.startswith(label_aparc_names0[0])]
# for i in range(len(labels_aparc_idx)):
# labels.append(labels_aparc[labels_aparc_idx[i]].copy())
# labels[-1].name = "IPS-{}".format(labels[-1].hemi)
# ### Frontal eye field as intersection between middle frontal gyrus and precentral gyrus
# label_aparc_names0 = ["G_front_middle","G_precentral"]
# temp_labels = []
# for i in range(len(label_aparc_names0)):
# labels_aparc_idx = [labels_aparc_names.index(l) for l in labels_aparc_names if l.startswith(label_aparc_names0[i])]
# for i2 in range(len(labels_aparc_idx)):
# temp_labels.append(labels_aparc[labels_aparc_idx[i2]].copy())
# # Take 10% of middle frontal gyrus closest to precentral gyrus (most posterior)
# temp_label0 = temp_labels[0]
# G_fm_y = temp_label0.pos[:,1]
# thres_G_fm_y = np.sort(G_fm_y)[len(G_fm_y)//10]
# idx_p1 = np.where(G_fm_y<thres_G_fm_y)[0]
# FEF_label_p1 = label_subset(temp_label0, idx_p1, "FEF")
# # Take 10% closest for precentral gyrus (most anterior)
# temp_label0 = temp_labels[2]
# # I cannot only use y (anterior/posterior) but also need to restrict z-position
# G_pre_cen_z = temp_label0.pos[:,2]
# thres_G_pre_cen_z = 0.04 # visually inspected threshold
# G_pre_cen_y = temp_label0.pos[:,1]
# thres_G_pre_cen_y = np.sort(G_pre_cen_y[G_pre_cen_z>thres_G_pre_cen_z])[-len(G_pre_cen_y)//10] # notice - for anterior
# idx_p2 = np.where((G_pre_cen_y>thres_G_pre_cen_y) & (G_pre_cen_z>thres_G_pre_cen_z))[0]
# FEF_label_p2 = label_subset(temp_label0, idx_p2, "FEF")
# # Combine the 2 parts
# FEF_label = FEF_label_p1.__add__(FEF_label_p2)
# FEF_label.name = FEF_label_p1.name
# # Assign a color
# FEF_label.color = matplotlib.colors.to_rgba("aqua")
# # Append to final list
# labels.append(FEF_label)
# # Do the same for the right hemisphere
# temp_label0 = temp_labels[1]
# G_fm_y = temp_label0.pos[:,1]
# thres_G_fm_y = np.sort(G_fm_y)[len(G_fm_y)//10]
# idx_p1 = np.where(G_fm_y<thres_G_fm_y)[0]
# FEF_label_p1 = label_subset(temp_label0, idx_p1, "FEF")
# temp_label0 = temp_labels[3]
# G_pre_cen_z = temp_label0.pos[:,2]
# thres_G_pre_cen_z = 0.04 # visually inspected threshold
# G_pre_cen_y = temp_label0.pos[:,1]
# thres_G_pre_cen_y = np.sort(G_pre_cen_y[G_pre_cen_z>thres_G_pre_cen_z])[-len(G_pre_cen_y)//10] # notice - for anterior
# idx_p2 = np.where((G_pre_cen_y>thres_G_pre_cen_y) & (G_pre_cen_z>thres_G_pre_cen_z))[0]
# FEF_label_p2 = label_subset(temp_label0, idx_p2, "FEF")
# # Combine the 2 parts
# FEF_label = FEF_label_p1.__add__(FEF_label_p2)
# FEF_label.name = FEF_label_p1.name
# # Assign a color
# FEF_label.color = matplotlib.colors.to_rgba("aqua")
# # Append to final list
# labels.append(FEF_label)
# ### Supplementary eye fields
# # Located at caudal end of frontal gyrus and upper part of paracentral sulcus
# label_aparc_names0 = ["G_and_S_paracentral","G_front_sup"]
# temp_labels = []
# for i in range(len(label_aparc_names0)):
# labels_aparc_idx = [labels_aparc_names.index(l) for l in labels_aparc_names if l.startswith(label_aparc_names0[i])]
# for i2 in range(len(labels_aparc_idx)):
# temp_labels.append(labels_aparc[labels_aparc_idx[i2]].copy())
# pos1 = temp_labels[0].pos
# pos2 = temp_labels[2].pos
# distm = scipy.spatial.distance.cdist(pos1,pos2)
# # Find the closest points between the 2 ROIs
# l1_idx = np.unique(np.where(distm<np.quantile(distm, 0.0005))[0]) # q chosen to correspond to around 15% of ROI
# l2_idx = np.unique(np.where(distm<np.quantile(distm, 0.005))[1]) # q chosen to correspond to around 10% of ROI
# # Notice that superior frontal gyrus is around 4 times bigger than paracentral
# len(l1_idx)/pos1.shape[0]
# len(l2_idx)/pos2.shape[0]
# # Only use upper part
# z_threshold = 0.06 # visually inspected
# l1_idx = l1_idx[pos1[l1_idx,2] > z_threshold]
# l2_idx = l2_idx[pos2[l2_idx,2] > z_threshold]
# SEF_label_p1 = label_subset(temp_labels[0], l1_idx, "SEF")
# SEF_label_p2 = label_subset(temp_labels[2], l2_idx, "SEF")
# # Combine the 2 parts
# SEF_label = SEF_label_p1.__add__(SEF_label_p2)
# SEF_label.name = SEF_label_p1.name
# # Assign a color
# SEF_label.color = matplotlib.colors.to_rgba("royalblue")
# # Append to final list
# labels.append(SEF_label)
# # Do the same for the right hemisphere
# pos1 = temp_labels[1].pos
# pos2 = temp_labels[3].pos
# distm = scipy.spatial.distance.cdist(pos1,pos2)
# # Find the closest points between the 2 ROIs
# l1_idx = np.unique(np.where(distm<np.quantile(distm, 0.0005))[0]) # q chosen to correspond to around 15% of ROI
# l2_idx = np.unique(np.where(distm<np.quantile(distm, 0.005))[1]) # q chosen to correspond to around 10% of ROI
# # Notice that superior frontal gyrus is around 4 times bigger than paracentral
# len(l1_idx)/pos1.shape[0]
# len(l2_idx)/pos2.shape[0]
# # Only use upper part
# z_threshold = 0.06 # visually inspected
# l1_idx = l1_idx[pos1[l1_idx,2] > z_threshold]
# l2_idx = l2_idx[pos2[l2_idx,2] > z_threshold]
# SEF_label_p1 = label_subset(temp_labels[1], l1_idx, "SEF")
# SEF_label_p2 = label_subset(temp_labels[3], l2_idx, "SEF")
# # Combine the 2 parts
# SEF_label = SEF_label_p1.__add__(SEF_label_p2)
# SEF_label.name = SEF_label_p1.name
# # Assign a color
# SEF_label.color = matplotlib.colors.to_rgba("royalblue")
# # Append to final list
# labels.append(SEF_label)
# ### Posterior cingulate cortex
# label_aparc_names0 = ["G_cingul-Post-dorsal", "G_cingul-Post-ventral"]
# temp_labels = []
# for i in range(len(label_aparc_names0)):
# labels_aparc_idx = [labels_aparc_names.index(l) for l in labels_aparc_names if l.startswith(label_aparc_names0[i])]
# for i2 in range(len(labels_aparc_idx)):
# temp_labels.append(labels_aparc[labels_aparc_idx[i2]].copy())
# labels0 = []
# for hem in range(2):
# PCC_p1 = temp_labels[hem]
# for i in range(1,len(temp_labels)//2):
# PCC_p2 = temp_labels[hem+2*i]
# PCC_p1 = PCC_p1.__add__(PCC_p2)
# PCC_p1.name = "PCC-{}".format(PCC_p1.hemi)
# labels0.append(PCC_p1)
# # Combine the 2 hemisphere in 1 label
# labels.append(labels0[0].__add__(labels0[1]))
# ### Medial prefrontal cortex
# # From their schematic it looks like rostral 1/4 of superior frontal gyrus
# label_aparc_names0 = ["G_front_sup"]
# temp_labels = []
# for i in range(len(label_aparc_names0)):
# labels_aparc_idx = [labels_aparc_names.index(l) for l in labels_aparc_names if l.startswith(label_aparc_names0[i])]
# for i2 in range(len(labels_aparc_idx)):
# temp_labels0 = labels_aparc[labels_aparc_idx[i2]].copy()
# temp_labels0 = temp_labels0.split(4, subjects_dir=subjects_dir)[3]
# temp_labels0.name = "mPFC-{}".format(temp_labels0.hemi)
# temp_labels.append(temp_labels0)
# # Combine the 2 hemisphere in 1 label
# labels.append(temp_labels[0].__add__(temp_labels[1]))
# ### Angular gyrus
# label_aparc_names0 = ["G_pariet_inf-Angular"]
# for i in range(len(label_aparc_names0)):
# labels_aparc_idx = [labels_aparc_names.index(l) for l in labels_aparc_names if l.startswith(label_aparc_names0[i])]
# for i2 in range(len(labels_aparc_idx)):
# temp_labels = labels_aparc[labels_aparc_idx[i2]].copy()
# temp_labels.name = "ANG-{}".format(temp_labels.hemi)
# labels.append(temp_labels)
# ### Posterior middle frontal gyrus
# label_aparc_names0 = ["G_front_middle"]
# for i in range(len(label_aparc_names0)):
# labels_aparc_idx = [labels_aparc_names.index(l) for l in labels_aparc_names if l.startswith(label_aparc_names0[i])]
# for i2 in range(len(labels_aparc_idx)):
# temp_labels = labels_aparc[labels_aparc_idx[i2]].copy()
# temp_labels = temp_labels.split(2, subjects_dir=subjects_dir)[0]
# temp_labels.name = "PMFG-{}".format(temp_labels.hemi)
# labels.append(temp_labels)
# ### Inferior parietal lobule
# # From their parcellation figure seems to be rostral angular gyrus and posterior supramarginal gyrus
# label_aparc_names0 = ["G_pariet_inf-Angular","G_pariet_inf-Supramar"]
# temp_labels = []
# for i in range(len(label_aparc_names0)):
# labels_aparc_idx = [labels_aparc_names.index(l) for l in labels_aparc_names if l.startswith(label_aparc_names0[i])]
# for i2 in range(len(labels_aparc_idx)):
# temp_labels.append(labels_aparc[labels_aparc_idx[i2]].copy())
# # Split angular in 2 and get rostral part
# temp_labels[0] = temp_labels[0].split(2, subjects_dir=subjects_dir)[1]
# temp_labels[1] = temp_labels[1].split(2, subjects_dir=subjects_dir)[1]
# # Split supramarginal in 2 and get posterior part
# temp_labels[2] = temp_labels[2].split(2, subjects_dir=subjects_dir)[0]
# temp_labels[3] = temp_labels[3].split(2, subjects_dir=subjects_dir)[0]
# for hem in range(2):
# PCC_p1 = temp_labels[hem]
# for i in range(1,len(temp_labels)//2):
# PCC_p2 = temp_labels[hem+2*i]
# PCC_p1 = PCC_p1.__add__(PCC_p2)
# PCC_p1.name = "IPL-{}".format(PCC_p1.hemi)
# labels.append(PCC_p1)
# ### Orbital gyrus
# # From their figure it seems to correspond to orbital part of inferior frontal gyrus
# label_aparc_names0 = ["G_front_inf-Orbital"]
# for i in range(len(label_aparc_names0)):
# labels_aparc_idx = [labels_aparc_names.index(l) for l in labels_aparc_names if l.startswith(label_aparc_names0[i])]
# for i2 in range(len(labels_aparc_idx)):
# temp_labels = labels_aparc[labels_aparc_idx[i2]].copy()
# temp_labels.name = "ORB-{}".format(temp_labels.hemi)
# labels.append(temp_labels)
# ### Middle temporal gyrus
# # From their figure it seems to only be 1/4 of MTG at the 2nd to last caudal part
# label_aparc_names0 = ["G_temporal_middle"]
# for i in range(len(label_aparc_names0)):
# labels_aparc_idx = [labels_aparc_names.index(l) for l in labels_aparc_names if l.startswith(label_aparc_names0[i])]
# for i2 in range(len(labels_aparc_idx)):
# temp_labels = labels_aparc[labels_aparc_idx[i2]].copy()
# temp_labels = temp_labels.split(4, subjects_dir=subjects_dir)[1]
# temp_labels.name = "MTG-{}".format(temp_labels.hemi)
# labels.append(temp_labels)
# ### Anterior middle frontal gyrus
# label_aparc_names0 = ["G_front_middle"]
# for i in range(len(label_aparc_names0)):
# labels_aparc_idx = [labels_aparc_names.index(l) for l in labels_aparc_names if l.startswith(label_aparc_names0[i])]
# for i2 in range(len(labels_aparc_idx)):
# temp_labels = labels_aparc[labels_aparc_idx[i2]].copy()
# temp_labels = temp_labels.split(2, subjects_dir=subjects_dir)[1]
# temp_labels.name = "AMFG-{}".format(temp_labels.hemi)
# labels.append(temp_labels)
# ### Insula
# label_aparc_names0 = ["G_Ins_lg_and_S_cent_ins","G_insular_short"]
# temp_labels = []
# for i in range(len(label_aparc_names0)):
# labels_aparc_idx = [labels_aparc_names.index(l) for l in labels_aparc_names if l.startswith(label_aparc_names0[i])]
# for i2 in range(len(labels_aparc_idx)):
# temp_labels.append(labels_aparc[labels_aparc_idx[i2]].copy())
# for hem in range(2):
# PCC_p1 = temp_labels[hem]
# for i in range(1,len(temp_labels)//2):
# PCC_p2 = temp_labels[hem+2*i]
# PCC_p1 = PCC_p1.__add__(PCC_p2)
# PCC_p1.name = "INS-{}".format(PCC_p1.hemi)
# labels.append(PCC_p1)
# ### (Dorsal) Anterior Cingulate Cortex
# label_aparc_names0 = ["G_and_S_cingul-Ant"]
# temp_labels = []
# for i in range(len(label_aparc_names0)):
# labels_aparc_idx = [labels_aparc_names.index(l) for l in labels_aparc_names if l.startswith(label_aparc_names0[i])]
# for i2 in range(len(labels_aparc_idx)):
# temp_labels.append(labels_aparc[labels_aparc_idx[i2]].copy())
# temp_labels[-1].name = "ACC-{}".format(temp_labels[-1].hemi)
# # Combine the 2 hemisphere in 1 label
# labels.append(temp_labels[0].__add__(temp_labels[1]))
# ### Supramarginal Gyrus
# label_aparc_names0 = ["G_pariet_inf-Supramar"]
# for i in range(len(label_aparc_names0)):
# labels_aparc_idx = [labels_aparc_names.index(l) for l in labels_aparc_names if l.startswith(label_aparc_names0[i])]
# for i2 in range(len(labels_aparc_idx)):
# temp_labels = labels_aparc[labels_aparc_idx[i2]].copy()
# temp_labels.name = "SUP-{}".format(temp_labels.hemi)
# labels.append(temp_labels)
Loading
Loading full blame...