Newer
Older
# -*- coding: utf-8 -*-
"""
Updated Oct 18 2022
@author: Qianliang Li (glia@dtu.dk)
This script contains the code to estimate the following EEG features:
1. Power Spectral Density
2. Frontal Theta/Beta Ratio
3. Asymmetry
4. Peak Alpha Frequency
5. 1/f Exponents
6. Microstates
7. Long-Range Temporal Correlation (DFA Exponent)
Source localization and functional connectivity
8. Imaginary part of Coherence
9. Weighted Phase Lag Index
10. (Orthogonalized) Power Envelope Correlations
11. Granger Causality
It should be run after Preprocessing.py
All features are saved in pandas DataFrame format for the machine learning
pipeline
Note that the code has not been changed to fit the demonstration dataset,
thus just running it might introduce some errors.
The code is provided to show how we performed the feature estimation
and if you are adapting the code, you should check if it fits your dataset
e.g. the questionnaire data, sensors and source parcellation etc
The script was written in Spyder. The outline panel can be used to navigate
the different parts easier (Default shortcut: Ctrl + Shift + O)
"""
wkdir = "/Users/benj3542/Desktop/Uni/Noter/Semester_6/Bachelor/resting-state-eeg-analysis/"
os.chdir(wkdir)
# Load all libraries from the Preamble
from Preamble import *
# %% Load preprocessed epochs and questionnaire data
load_path = "./PreprocessedData"
# Get filenames
files = []
for r, d, f in os.walk(load_path):
for file in f:
if ".fif" in file:
files.append(os.path.join(r, file))
files.sort()
# Subject IDs
Subject_id = [0] * len(files)
for i in range(len(files)):
temp = files[i].split("\\")
temp = temp[-1].split("_")
Subject_id[i] = int(temp[0][-1]) # Subject_id[i] = int(temp[0])
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
n_subjects = len(Subject_id)
# Load Final epochs
final_epochs = [0]*n_subjects
for n in range(n_subjects):
final_epochs[n] = mne.read_epochs(fname = os.path.join(files[n]),
verbose=0)
# Load dropped epochs - used for gap idx in microstates
bad_subjects = [12345] # list with subjects that were excluded due to too many dropped epochs/chs
Drop_epochs_df = pd.read_pickle("./Preprocessing/dropped_epochs.pkl")
good_subject_df_idx = [not i in bad_subjects for i in Drop_epochs_df["Subject_ID"]]
Drop_epochs_df = Drop_epochs_df.loc[good_subject_df_idx,:]
Drop_epochs_df = Drop_epochs_df.sort_values(by=["Subject_ID"]).reset_index(drop=True)
### Load questionnaire data
# For the purposes of this demonstration I will make a dummy dataframe
# The original code imported csv files with questionnaire data and group status
final_qdf = pd.DataFrame({"Subject_ID":Subject_id,
"Age":[23,26],
"Gender":[0,0],
"Group_status":[0,1],
"PCL_total":[33,56],
"Q1":[1.2, 2.3],
"Q2":[1.7, 1.5],
"Qn":[2.1,1.0]})
# Define cases as >= 44 total PCL
# Type: numpy array with subject id
cases = np.array(final_qdf["Subject_ID"][final_qdf["PCL_total"]>=44])
n_groups = 2
Groups = ["CTRL", "PTSD"]
# Define folder for saving features
Feature_savepath = "./Features/"
Stat_savepath = "./Statistics/"
Model_savepath = "./Model/"
# %% Power spectrum features
Freq_Bands = {"delta": [1.25, 4.0],
"theta": [4.0, 8.0],
"alpha": [8.0, 13.0],
"beta": [13.0, 30.0],
"gamma": [30.0, 49.0]}
ch_names = final_epochs[0].info["ch_names"]
n_channels = final_epochs[0].info["nchan"]
# Pre-allocate memory
power_bands = [0]*len(final_epochs)
def power_band_estimation(n):
# Get index for eyes open and eyes closed
EC_index = final_epochs[n].events[:,2] == 1
EO_index = final_epochs[n].events[:,2] == 2
# Calculate the power spectral density
psds, freqs = psd_multitaper(final_epochs[n], fmin = 1, fmax = 50) # output (epochs, channels, freqs)
temp_power_band = []
for fmin, fmax in Freq_Bands.values():
# Calculate the power each frequency band
psds_band = psds[:, :, (freqs >= fmin) & (freqs < fmax)].sum(axis=-1)
# Calculate the mean for each eye status
psds_band_eye = np.array([psds_band[EC_index,:].mean(axis=0),
psds_band[EO_index,:].mean(axis=0)])
# Append for each freq band
temp_power_band.append(psds_band_eye)
# Output: List with the 5 bands, and each element is a 2D array with eye status as 1st dimension and channels as 2nd dimension
# The list is reshaped and absolute and relative power are calculated
abs_power_band = np.reshape(temp_power_band, (5, 2, n_channels))
abs_power_band = 10.*np.log10(abs_power_band) # Convert to decibel scale
rel_power_band = np.reshape(temp_power_band, (5, 2, n_channels))
rel_power_band = rel_power_band/np.sum(rel_power_band, axis=0, keepdims=True)
# each eye condition and channel have been normalized to power in all 5 frequencies for that given eye condition and channel
# Make one list in 1 dimension
abs_power_values = np.concatenate(np.concatenate(abs_power_band, axis=0), axis=0)
rel_power_values = np.concatenate(np.concatenate(rel_power_band, axis=0), axis=0)
## Output: First the channels, then the eye status and finally the frequency bands are concatenated
## E.g. element 26 is 3rd channel, eyes open, first frequency band
#assert abs_power_values[26] == abs_power_band[0,1,2]
#assert abs_power_values[47] == abs_power_band[0,1,23] # +21 channels to last
#assert abs_power_values[50] == abs_power_band[1,0,2] # once all channels have been changed then the freq is changed and eye status
# Get result
res = np.concatenate([abs_power_values,rel_power_values],axis=0)
return n, res
with concurrent.futures.ProcessPoolExecutor() as executor:
for n, result in executor.map(power_band_estimation, range(len(final_epochs))): # Function and arguments
power_bands[n] = result
"""
for i in range(len(power_bands)):
n, results = power_band_estimation(i)
power_bands[i] = results
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
# Combine all data into one dataframe
# First the columns are prepared
n_subjects = len(Subject_id)
# The group status (PTSD/CTRL) is made using the information about the cases
Group_status = np.array(["CTRL"]*n_subjects)
Group_status[np.array([i in cases for i in Subject_id])] = "PTSD"
# A variable that codes the channels based on A/P localization is also made
Frontal_chs = ["Fp1", "Fpz", "Fp2", "AFz", "Fz", "F3", "F4", "F7", "F8"]
Central_chs = ["Cz", "C3", "C4", "T7", "T8", "FT7", "FC3", "FCz", "FC4", "FT8", "TP7", "CP3", "CPz", "CP4", "TP8"]
Posterior_chs = ["Pz", "P3", "P4", "P7", "P8", "POz", "O1", "O2", "Oz"]
Brain_region_labels = ["Frontal","Central","Posterior"]
Brain_region = np.array(ch_names, dtype = "<U9")
Brain_region[np.array([i in Frontal_chs for i in ch_names])] = Brain_region_labels[0]
Brain_region[np.array([i in Central_chs for i in ch_names])] = Brain_region_labels[1]
Brain_region[np.array([i in Posterior_chs for i in ch_names])] = Brain_region_labels[2]
# A variable that codes the channels based on M/L localization
Left_chs = ["Fp1", "F3", "F7", "FC3", "FT7", "C3", "T7", "CP3", "TP7", "P3", "P7", "O1"]
Right_chs = ["Fp2", "F4", "F8", "FC4", "FT8", "C4", "T8", "CP4", "TP8", "P4", "P8", "O2"]
Mid_chs = ["Fpz", "AFz", "Fz", "FCz", "Cz", "CPz", "Pz", "POz", "Oz"]
Brain_side = np.array(ch_names, dtype = "<U5")
Brain_side[np.array([i in Left_chs for i in ch_names])] = "Left"
Brain_side[np.array([i in Right_chs for i in ch_names])] = "Right"
Brain_side[np.array([i in Mid_chs for i in ch_names])] = "Mid"
# Eye status is added
eye_status = list(final_epochs[0].event_id.keys())
n_eye_status = len(eye_status)
# Frequency bands
freq_bands_name = list(Freq_Bands.keys())
n_freq_bands = len(freq_bands_name)
# Quantification (Abs/Rel)
quant_status = ["Absolute", "Relative"]
n_quant_status = len(quant_status)
# The dataframe is made by combining all the unlisted pds values
# Each row correspond to a different channel. It is reset after all channel names have been used
# Each eye status element is repeated n_channel times, before it is reset
# Each freq_band element is repeated n_channel * n_eye_status times, before it is reset
# Each quantification status element is repeated n_channel * n_eye_status * n_freq_bands times, before it is reset
power_df = pd.DataFrame(data = {"Subject_ID": [ele for ele in Subject_id for i in range(n_eye_status*n_quant_status*n_freq_bands*n_channels)],
"Group_status": [ele for ele in Group_status for i in range(n_eye_status*n_quant_status*n_freq_bands*n_channels)],
"Channel": ch_names*(n_eye_status*n_quant_status*n_freq_bands*n_subjects),
"Brain_region": list(Brain_region)*(n_eye_status*n_quant_status*n_freq_bands*n_subjects),
"Brain_side": list(Brain_side)*(n_eye_status*n_quant_status*n_freq_bands*n_subjects),
"Eye_status": [ele for ele in eye_status for i in range(n_channels)]*n_quant_status*n_freq_bands*n_subjects,
"Freq_band": [ele for ele in freq_bands_name for i in range(n_channels*n_eye_status)]*n_quant_status*n_subjects,
"Quant_status": [ele for ele in quant_status for i in range(n_channels*n_eye_status*n_freq_bands)]*n_subjects,
"PSD": list(np.concatenate(power_bands, axis=0))
})
# Absolute power is in decibels (10*log10(power))
# Fix Freq_band categorical order
power_df["Freq_band"] = power_df["Freq_band"].astype("category").\
cat.reorder_categories(list(Freq_Bands.keys()), ordered=True)
# Fix Brain_region categorical order
power_df["Brain_region"] = power_df["Brain_region"].astype("category").\
cat.reorder_categories(Brain_region_labels, ordered=True)
# Save the dataframe
power_df.to_pickle(os.path.join(Feature_savepath,"Power_df.pkl"))
# %% Theta-beta ratio
# Frontal theta/beta ratio has been implicated in cognitive control of attention
power_df = pd.read_pickle(os.path.join(Feature_savepath,"Power_df.pkl"))
eye_status = list(final_epochs[0].event_id)
n_eye_status = len(eye_status)
# Subset frontal absolute power
power_df_sub1 = power_df[(power_df["Quant_status"] == "Absolute")&
(power_df["Brain_region"] == "Frontal")]
# Subset frontal, midline absolute power
power_df_sub2 = power_df[(power_df["Quant_status"] == "Absolute")&
(power_df["Brain_region"] == "Frontal")&
(power_df["Brain_side"] == "Mid")]
# Calculate average frontal power theta
frontal_theta_mean_subject = power_df_sub1[power_df_sub1["Freq_band"] == "theta"].\
groupby(["Subject_ID","Group_status","Eye_status"]).mean().reset_index()
# Calculate average frontal power beta
frontal_beta_mean_subject = power_df_sub1[power_df_sub1["Freq_band"] == "beta"].\
groupby(["Subject_ID","Group_status","Eye_status"]).mean().reset_index()
# Extract all values
frontal_beta_subject_values = power_df_sub1[power_df_sub1["Freq_band"] == "beta"]
# Calculate average frontal, midline power theta
frontal_midline_theta_mean_subject = power_df_sub2[power_df_sub2["Freq_band"] == "theta"].\
groupby(["Subject_ID","Group_status","Eye_status"]).mean().reset_index()
# Extract all values
frontal_midline_theta_subject_values = power_df_sub2[power_df_sub2["Freq_band"] == "theta"]
# Convert from dB to raw power
frontal_theta_mean_subject["PSD"] = 10**(frontal_theta_mean_subject["PSD"]/10)
frontal_beta_mean_subject["PSD"] = 10**(frontal_beta_mean_subject["PSD"]/10)
frontal_midline_theta_mean_subject["PSD"] = 10**(frontal_midline_theta_mean_subject["PSD"]/10)
frontal_beta_subject_values["PSD"] = 10**(frontal_beta_subject_values["PSD"]/10)
frontal_midline_theta_subject_values["PSD"] = 10**(frontal_midline_theta_subject_values["PSD"]/10)
frontal_beta_mean_subject.to_pickle(os.path.join(Feature_savepath,"fBMS_df.pkl"))
frontal_midline_theta_mean_subject.to_pickle(os.path.join(Feature_savepath,"fMTMS_df.pkl"))
frontal_beta_subject_values.to_pickle(os.path.join(Feature_savepath,"fBSV_df.pkl"))
frontal_midline_theta_subject_values.to_pickle(os.path.join(Feature_savepath,"fMTSV_df.pkl"))
# Calculate mean for each group and take ratio for whole group
# To confirm trend observed in PSD plots
mean_group_f_theta = frontal_theta_mean_subject.iloc[:,1:].groupby(["Group_status","Eye_status"]).mean()
mean_group_f_beta = frontal_beta_mean_subject.iloc[:,1:].groupby(["Group_status","Eye_status"]).mean()
mean_group_f_theta_beta_ratio = mean_group_f_theta/mean_group_f_beta
# Calculate ratio for each subject
frontal_theta_beta_ratio = frontal_theta_mean_subject.copy()
frontal_theta_beta_ratio["PSD"] = frontal_theta_mean_subject["PSD"]/frontal_beta_mean_subject["PSD"]
# Take the natural log of ratio
frontal_theta_beta_ratio["PSD"] = np.log(frontal_theta_beta_ratio["PSD"])
# Rename and save feature
frontal_theta_beta_ratio.rename(columns={"PSD":"TBR"},inplace=True)
# Add dummy variable for re-using plot code
dummy_variable = ["Frontal Theta Beta Ratio"]*frontal_theta_beta_ratio.shape[0]
frontal_theta_beta_ratio.insert(3, "Measurement", dummy_variable )
# frontal_theta_beta_ratio.to_pickle(os.path.join(Feature_savepath,"fTBR_df.pkl"))
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
# %% Frequency bands asymmetry
# Defined as ln(right) - ln(left)
# Thus we should only work with the absolute values and undo the dB transformation
# Here I avg over all areas. I.e. mean((ln(F4)-ln(F3),(ln(F8)-ln(F7),(ln(Fp2)-ln(Fp1))) for frontal
ROI = ["Frontal", "Central", "Posterior"]
qq = "Absolute" # only calculate asymmetry for absolute
# Pre-allocate memory
asymmetry = np.zeros(shape=(len(np.unique(power_df["Subject_ID"])),
len(np.unique(power_df["Eye_status"])),
len(list(Freq_Bands.keys())),
len(ROI)))
def calculate_asymmetry(i):
ii = np.unique(power_df["Subject_ID"])[i]
temp_asymmetry = np.zeros(shape=(len(np.unique(power_df["Eye_status"])),
len(list(Freq_Bands.keys())),
len(ROI)))
for e in range(len(np.unique(power_df["Eye_status"]))):
ee = np.unique(power_df["Eye_status"])[e]
for f in range(len(list(Freq_Bands.keys()))):
ff = list(Freq_Bands.keys())[f]
# Get the specific part of the df
temp_power_df = power_df[(power_df["Quant_status"] == qq) &
(power_df["Eye_status"] == ee) &
(power_df["Subject_ID"] == ii) &
(power_df["Freq_band"] == ff)].copy()
# Convert from dB to raw power
temp_power_df.loc[:,"PSD"] = np.array(10**(temp_power_df["PSD"]/10))
# Calculate the power asymmetry
for r in range(len(ROI)):
rr = ROI[r]
temp_power_roi_df = temp_power_df[(temp_power_df["Brain_region"] == rr)&
~(temp_power_df["Brain_side"] == "Mid")]
# Sort using channel names to make sure F8-F7 and not F4-F7 etc.
temp_power_roi_df = temp_power_roi_df.sort_values("Channel").reset_index(drop=True)
# Get the log power
R_power = temp_power_roi_df[(temp_power_roi_df["Brain_side"] == "Right")]["PSD"]
ln_R_power = np.log(R_power) # get log power
L_power = temp_power_roi_df[(temp_power_roi_df["Brain_side"] == "Left")]["PSD"]
ln_L_power = np.log(L_power) # get log power
# Pairwise subtraction followed by averaging
asymmetry_value = np.mean(np.array(ln_R_power) - np.array(ln_L_power))
# Save it to the array
temp_asymmetry[e,f,r] = asymmetry_value
# Print progress
print("{} out of {} finished testing".format(i+1,n_subjects))
return i, temp_asymmetry
with concurrent.futures.ProcessPoolExecutor() as executor:
for i, res in executor.map(calculate_asymmetry, range(len(np.unique(power_df["Subject_ID"])))): # Function and arguments
asymmetry[i,:,:,:] = res
# Prepare conversion of array to df using flatten
n_subjects = len(Subject_id)
# The group status (PTSD/CTRL) is made using the information about the cases
Group_status = np.array(["CTRL"]*n_subjects)
Group_status[np.array([i in cases for i in Subject_id])] = "PTSD"
# Eye status is added
eye_status = list(final_epochs[0].event_id.keys())
n_eye_status = len(eye_status)
# Frequency bands
freq_bands_name = list(Freq_Bands.keys())
n_freq_bands = len(freq_bands_name)
# ROIs
n_ROI = len(ROI)
# Make the dataframe
asymmetry_df = pd.DataFrame(data = {"Subject_ID": [ele for ele in Subject_id for i in range(n_eye_status*n_freq_bands*n_ROI)],
"Group_status": [ele for ele in Group_status for i in range(n_eye_status*n_freq_bands*n_ROI)],
"Eye_status": [ele for ele in eye_status for i in range(n_freq_bands*n_ROI)]*(n_subjects),
"Freq_band": [ele for ele in freq_bands_name for i in range(n_ROI)]*(n_subjects*n_eye_status),
"ROI": list(ROI)*(n_subjects*n_eye_status*n_freq_bands),
"Asymmetry_score": asymmetry.flatten(order="C")
})
# Flatten with order=C means that it first goes through last axis,
# then repeat along 2nd last axis, and then repeat along 3rd last etc
# Asymmetry numpy to pandas conversion check
random_point=321
asymmetry_df.iloc[random_point]
i = np.where(np.unique(power_df["Subject_ID"]) == asymmetry_df.iloc[random_point]["Subject_ID"])[0]
e = np.where(np.unique(power_df["Eye_status"]) == asymmetry_df.iloc[random_point]["Eye_status"])[0]
f = np.where(np.array(list(Freq_Bands.keys())) == asymmetry_df.iloc[random_point]["Freq_band"])[0]
r = np.where(np.array(ROI) == asymmetry_df.iloc[random_point]["ROI"])[0]
assert asymmetry[i,e,f,r] == asymmetry_df.iloc[random_point]["Asymmetry_score"]
# Save the dataframe
asymmetry_df.to_pickle(os.path.join(Feature_savepath,"asymmetry_df.pkl"))
# %% Using FOOOF
# Peak alpha frequency (PAF) and 1/f exponent (OOF)
# Using the FOOOF algorithm (Fitting oscillations and one over f)
# Published by Donoghue et al, 2020 in Nature Neuroscience
# To start, FOOOF takes the freqs and power spectra as input
n_channels = final_epochs[0].info["nchan"]
ch_names = final_epochs[0].info["ch_names"]
sfreq = final_epochs[0].info["sfreq"]
Freq_Bands = {"delta": [1.25, 4.0],
"theta": [4.0, 8.0],
"alpha": [8.0, 13.0],
"beta": [13.0, 30.0],
"gamma": [30.0, 49.0]}
n_freq_bands = len(Freq_Bands)
# From visual inspection there seems to be problem if PSD is too steep at the start
# To overcome this problem, we try multiple start freq
OOF_r2_thres = 0.95 # a high threshold as we allow for overfitting
PAF_r2_thres = 0.90 # a more lenient threshold for PAF, as it is usually still captured even if fit for 1/f is not perfect
freq_start_it_range = [2,3,4,5,6]
freq_end = 40 # Stop freq at 40Hz to not be influenced by the Notch Filter
eye_status = list(final_epochs[0].event_id.keys())
n_eye_status = len(eye_status)
PAF_data = np.zeros((n_subjects,n_eye_status,n_channels,3)) # CF, power, band_width
OOF_data = np.zeros((n_subjects,n_eye_status,n_channels,2)) # offset and exponent
def FOOOF_estimation(i):
PAF_data0 = np.zeros((n_eye_status,n_channels,3)) # CF, power, band_width
OOF_data0 = np.zeros((n_eye_status,n_channels,2)) # offset and exponent
# Get Eye status
eye_idx = [final_epochs[i].events[:,2] == 1, final_epochs[i].events[:,2] == 2] # EC and EO
# Calculate the power spectral density
psd, freqs = psd_multitaper(final_epochs[i], fmin = 1, fmax = 50) # output (epochs, channels, freqs)
# Retrieve psds for the 2 conditions and calculate mean across epochs
psds = []
for e in range(n_eye_status):
# Get the epochs for specific eye condition
temp_psd = psd[eye_idx[e],:,:]
# Calculate the mean across epochs
temp_psd = np.mean(temp_psd, axis=0)
# Save
psds.append(temp_psd)
# Try multiple start freq
PAF_data00 = np.zeros((n_eye_status,n_channels,len(freq_start_it_range),3)) # CF, power, band_width
OOF_data00 = np.zeros((n_eye_status,n_channels,len(freq_start_it_range),2)) # offset and exponent
r2s00 = np.zeros((n_eye_status,n_channels,len(freq_start_it_range)))
for e in range(n_eye_status):
psds_avg = psds[e]
for f in range(len(freq_start_it_range)):
# Initiate FOOOF group for analysis of multiple PSD
fg = fooof.FOOOFGroup()
# Set the frequency range to fit the model
freq_range = [freq_start_it_range[f], freq_end] # variable freq start to 49Hz
# Fit to each source PSD separately, but in parallel
fg.fit(freqs,psds_avg,freq_range,n_jobs=1)
# Extract aperiodic parameters
aps = fg.get_params('aperiodic_params')
# Extract peak parameters
peaks = fg.get_params('peak_params')
# Extract goodness-of-fit metrics
r2s = fg.get_params('r_squared')
# Save OOF and r2s
OOF_data00[e,:,f] = aps
r2s00[e,:,f] = r2s
# Find the alpha peak with greatest power
for c in range(n_channels):
peaks0 = peaks[peaks[:,3] == c]
# Subset the peaks within the alpha band
in_alpha_band = (peaks0[:,0] >= Freq_Bands["alpha"][0]) & (peaks0[:,0] <= Freq_Bands["alpha"][1])
if sum(in_alpha_band) > 0: # Any alpha peaks?
# Choose the peak with the highest power
max_alpha_idx = np.argmax(peaks0[in_alpha_band,1])
# Save results
PAF_data00[e,c,f] = peaks0[in_alpha_band][max_alpha_idx,:-1]
else:
# No alpha peaks
PAF_data00[e,c,f] = [np.nan]*3
# Check criterias
good_fits_OOF = (r2s00 > OOF_r2_thres) & (OOF_data00[:,:,:,1] > 0) # r^2 > 0.95 and exponent > 0
good_fits_PAF = (r2s00 > PAF_r2_thres) & (np.isfinite(PAF_data00[:,:,:,0])) # r^2 > 0.90 and detected peak in alpha band
# Save the data or NaN if criterias were not fulfilled
for e in range(n_eye_status):
for c in range(n_channels):
if sum(good_fits_OOF[e,c]) == 0: # no good OOF estimation
OOF_data0[e,c] = [np.nan]*2
else: # Save OOF associated with greatest r^2 that fulfilled criterias
OOF_data0[e,c] = OOF_data00[e,c,np.argmax(r2s00[e,c,good_fits_OOF[e,c]])]
if sum(good_fits_PAF[e,c]) == 0: # no good PAF estimation
PAF_data0[e,c] = [np.nan]*3
else: # Save PAF associated with greatest r^2 that fulfilled criterias
PAF_data0[e,c] = PAF_data00[e,c,np.argmax(r2s00[e,c,good_fits_PAF[e,c]])]
print("Finished {} out of {} subjects".format(i+1,n_subjects))
return i, PAF_data0, OOF_data0
# Get current time
c_time1 = time.localtime()
c_time1 = time.strftime("%a %d %b %Y %H:%M:%S", c_time1)
print(c_time1)
with concurrent.futures.ProcessPoolExecutor() as executor:
for i, PAF_result, OOF_result in executor.map(FOOOF_estimation, range(n_subjects)): # Function and arguments
PAF_data[i] = PAF_result
OOF_data[i] = OOF_result
# Save data
with open(Feature_savepath+"PAF_data_arr.pkl", "wb") as file:
pickle.dump(PAF_data, file)
with open(Feature_savepath+"OOF_data_arr.pkl", "wb") as file:
pickle.dump(OOF_data, file)
# Get current time
c_time2 = time.localtime()
c_time2 = time.strftime("%a %d %b %Y %H:%M:%S", c_time2)
print("Started", c_time1, "\nFinished",c_time2)
# Convert to Pandas dataframe (only keep mean parameter for PAF)
# The dimensions will each be a column with numbers and the last column will be the actual values
ori = PAF_data[:,:,:,0]
arr = np.column_stack(list(map(np.ravel, np.meshgrid(*map(np.arange, ori.shape), indexing="ij"))) + [ori.ravel()])
PAF_data_df = pd.DataFrame(arr, columns = ["Subject_ID", "Eye_status", "Channel", "Value"])
# Change from numerical coding to actual values
index_values = [Subject_id,eye_status,ch_names]
temp_df = PAF_data_df.copy() # make temp df to not sequential overwrite what is changed
for col in range(len(index_values)):
col_name = PAF_data_df.columns[col]
for shape in range(ori.shape[col]):
temp_df.loc[PAF_data_df.iloc[:,col] == shape,col_name]\
= index_values[col][shape]
PAF_data_df = temp_df # replace original df
# Add group status
Group_status = np.array(["CTRL"]*len(PAF_data_df["Subject_ID"]))
Group_status[np.array([i in cases for i in PAF_data_df["Subject_ID"]])] = "PTSD"
# Add to dataframe
PAF_data_df.insert(3, "Group_status", Group_status)
# Global peak alpha
PAF_data_df_global = PAF_data_df.groupby(["Subject_ID", "Group_status", "Eye_status"]).mean().reset_index() # by default pandas mean skip nan
# Add dummy variable for re-using plot code
dummy_variable = ["Global Peak Alpha Frequency"]*PAF_data_df_global.shape[0]
PAF_data_df_global.insert(3, "Measurement", dummy_variable )
# Regional peak alpha
# A variable that codes the channels based on A/P localization is also made
Frontal_chs = ["Fp1", "Fpz", "Fp2", "AFz", "Fz", "F3", "F4", "F7", "F8"]
Central_chs = ["Cz", "C3", "C4", "T7", "T8", "FT7", "FC3", "FCz", "FC4", "FT8", "TP7", "CP3", "CPz", "CP4", "TP8"]
Posterior_chs = ["Pz", "P3", "P4", "P7", "P8", "POz", "O1", "O2", "Oz"]
Brain_region = np.array(ch_names, dtype = "<U9")
Brain_region[np.array([i in Frontal_chs for i in ch_names])] = "Frontal"
Brain_region[np.array([i in Central_chs for i in ch_names])] = "Central"
Brain_region[np.array([i in Posterior_chs for i in ch_names])] = "Posterior"
PAF_data_df.insert(4, "Brain_region", list(Brain_region)*int(PAF_data_df.shape[0]/len(Brain_region)))
# Save the dataframes
PAF_data_df.to_pickle(os.path.join(Feature_savepath,"PAF_data_FOOOF_df.pkl"))
PAF_data_df_global.to_pickle(os.path.join(Feature_savepath,"PAF_data_FOOOF_global_df.pkl"))
# Convert to Pandas dataframe (only keep exponent parameter for OOF)
# The dimensions will each be a column with numbers and the last column will be the actual values
ori = OOF_data[:,:,:,1]
arr = np.column_stack(list(map(np.ravel, np.meshgrid(*map(np.arange, ori.shape), indexing="ij"))) + [ori.ravel()])
PAF_data_df = pd.DataFrame(arr, columns = ["Subject_ID", "Eye_status", "Channel", "Value"])
# Change from numerical coding to actual values
index_values = [Subject_id,eye_status,ch_names]
temp_df = PAF_data_df.copy() # make temp df to not sequential overwrite what is changed
for col in range(len(index_values)):
col_name = PAF_data_df.columns[col]
for shape in range(ori.shape[col]):
temp_df.loc[PAF_data_df.iloc[:,col] == shape,col_name]\
= index_values[col][shape]
OOF_data_df = temp_df # replace original df
# Add group status
Group_status = np.array(["CTRL"]*len(OOF_data_df["Subject_ID"]))
Group_status[np.array([i in cases for i in OOF_data_df["Subject_ID"]])] = "PTSD"
# Add to dataframe
OOF_data_df.insert(3, "Group_status", Group_status)
# Regional OOF
OOF_data_df.insert(4, "Brain_region", list(Brain_region)*int(PAF_data_df.shape[0]/len(Brain_region)))
# Save the dataframes
OOF_data_df.to_pickle(os.path.join(Feature_savepath,"OOF_data_FOOOF_df.pkl"))
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
# %% Microstate analysis
# The function takes the data as a numpy array (n_t, n_ch)
# The data is already re-referenced to common average
# Variables for the clustering function are extracted
sfreq = final_epochs[0].info["sfreq"]
eye_status = list(final_epochs[0].event_id.keys())
n_eye_status = len(eye_status)
ch_names = final_epochs[0].info["ch_names"]
n_channels = len(ch_names)
locs = np.zeros((n_channels,2)) # xy coordinates of the electrodes
for c in range(n_channels):
locs[c] = final_epochs[0].info["chs"][c]["loc"][0:2]
# The epochs are transformed to numpy arrays
micro_data = []
EC_micro_data = []
EO_micro_data = []
for i in range(n_subjects):
# Transform data to correct shape
micro_data.append(final_epochs[i].get_data()) # get data
arr_shape = micro_data[i].shape # get shape
micro_data[i] = micro_data[i].swapaxes(1,2) # swap ch and time axis
micro_data[i] = micro_data[i].reshape(arr_shape[0]*arr_shape[2],arr_shape[1]) # reshape by combining epochs and times
# Get indices for eyes open and closed
EC_index = final_epochs[i].events[:,2] == 1
EO_index = final_epochs[i].events[:,2] == 2
# Repeat with 4s * sample frequency to correct for concatenation of times and epochs
EC_index = np.repeat(EC_index,4*sfreq)
EO_index = np.repeat(EO_index,4*sfreq)
# Save data where it is divided into eye status
EC_micro_data.append(micro_data[i][EC_index])
EO_micro_data.append(micro_data[i][EO_index])
# Global explained variance and Cross-validation criterion is used to determine number of microstates
# First all data is concatenated to find the optimal number of maps for all data
micro_data_all = np.vstack(micro_data)
# Determine the number of clusters
# I use a slightly modified kmeans function which returns the cv_min
global_gev = []
cv_criterion = []
for n_maps in range(2,7):
maps, L, gfp_peaks, gev, cv_min = kmeans_return_all(micro_data_all, n_maps)
global_gev.append(np.sum(gev))
cv_criterion.append(cv_min)
# Save run results
cluster_results = np.array([global_gev,cv_criterion])
np.save("Microstate_n_cluster_test_results.npy", cluster_results) # (gev/cv_crit, n_maps from 2 to 6)
#cluster_results = np.load("Microstate_n_cluster_test_results.npy")
#global_gev = cluster_results[0,:]
#cv_criterion = cluster_results[1,:]
# Evaluate best n_maps
plt.figure()
plt.plot(np.linspace(2,6,len(cv_criterion)),(cv_criterion/np.sum(cv_criterion)), label="CV Criterion")
plt.plot(np.linspace(2,6,len(cv_criterion)),(global_gev/np.sum(global_gev)), label="GEV")
plt.legend()
plt.ylabel("Normalized to total")
# The lower CV the better.
# But the higher GEV the better.
# Based on the plots and the recommendation by vong Wegner & Laufs 2018
# In order to compare between groups, I fix the microstates by clustering on data from both groups
# Due to instability of maps when running multiple times, I increased n_maps from 4 to 6
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
mode = ["aahc", "kmeans", "kmedoids", "pca", "ica"][1]
# K-means is stochastic, thus I run it multiple times in order to find the maps with highest GEV
# Each K-means is run 5 times and best map is chosen. But I do this 10 times more, so in total 50 times!
n_run = 10
# Pre-allocate memory
microstate_cluster_results = []
# Parallel processing can only be implemented by ensuring different seeds
# Otherwise the iteration would be the same.
# However the k-means already use parallel processing so making outer loop with
# concurrent processes make it use too many processors
# Get current time
c_time1 = time.localtime()
c_time1 = time.strftime("%a %d %b %Y %H:%M:%S", c_time1)
print(c_time1)
for r in range(n_run):
maps = [0]*2
m_labels = [0]*2
gfp_peaks = [0]*2
gev = [0]*2
# Eyes closed
counter = 0
maps_, x_, gfp_peaks_, gev_ = clustering(
np.vstack(np.array(EC_micro_data)), sfreq, ch_names, locs, mode, n_maps, doplot=False) # doplot=True is bugged
maps[counter] = maps_
m_labels[counter] = x_
gfp_peaks[counter] = gfp_peaks_
gev[counter] = gev_
counter += 1
# Eyes open
maps_, x_, gfp_peaks_, gev_ = clustering(
np.vstack(np.array(EO_micro_data)), sfreq, ch_names, locs, mode, n_maps, doplot=False) # doplot=True is bugged
maps[counter] = maps_
m_labels[counter] = x_
gfp_peaks[counter] = gfp_peaks_
gev[counter] = gev_
counter += 1
microstate_cluster_results.append([maps, m_labels, gfp_peaks, gev])
print("Finished {} out of {}".format(r+1, n_run))
# Get current time
c_time2 = time.localtime()
c_time2 = time.strftime("%a %d %b %Y %H:%M:%S", c_time2)
print("Started", c_time1, "\nFinished",c_time2)
# Save the results
with open(Feature_savepath+"Microstate_5_maps_10x5_k_means_results.pkl", "wb") as file:
pickle.dump(microstate_cluster_results, file)
# # Load
# with open(Feature_savepath+"Microstate_4_maps_10x5_k_means_results.pkl", "rb") as file:
# microstate_cluster_results = pickle.load(file)
# Find the best maps (Highest GEV across all the K-means clusters)
EC_total_gevs = np.sum(np.vstack(np.array(microstate_cluster_results)[:,3,0]), axis=1) # (runs, maps/labels/gfp/gev, ec/eo)
EO_total_gevs = np.sum(np.vstack(np.array(microstate_cluster_results)[:,3,1]), axis=1)
Best_EC_idx = np.argmax(EC_total_gevs)
Best_EO_idx = np.argmax(EO_total_gevs)
# Update the variables for the best maps
maps = [microstate_cluster_results[Best_EC_idx][0][0],microstate_cluster_results[Best_EO_idx][0][1]]
m_labels = [microstate_cluster_results[Best_EC_idx][1][0],microstate_cluster_results[Best_EO_idx][1][1]]
gfp_peaks = [microstate_cluster_results[Best_EC_idx][2][0],microstate_cluster_results[Best_EO_idx][2][1]]
gev = [microstate_cluster_results[Best_EC_idx][3][0],microstate_cluster_results[Best_EO_idx][3][1]]
# Plot the maps
plt.style.use('default')
labels = ["EC", "EO"] #Eyes-closed, Eyes-open
for i in range(len(labels)):
fig, axarr = plt.subplots(1, n_maps, figsize=(20,5))
fig.patch.set_facecolor('white')
for imap in range(n_maps):
mne.viz.plot_topomap(maps[i][imap,:], pos = final_epochs[0].info, axes = axarr[imap]) # plot
axarr[imap].set_title("GEV: {:.2f}".format(gev[i][imap]), fontsize=16, fontweight="bold") # title
fig.suptitle("Microstates: {}".format(labels[i]), fontsize=20, fontweight="bold")
# Manual re-order the maps
# Due the random initiation of K-means this have to be modified every time clusters are made!
# Assign map labels (e.g. 0, 2, 1, 3)
order = [0]*2
order[0] = [3,0,1,2,4] # EC
order[1] = [3,1,0,2,4] # EO
for i in range(len(order)):
maps[i] = maps[i][order[i],:] # re-order maps
gev[i] = gev[i][order[i]] # re-order GEV
# Make directory to find and replace map labels
dic0 = {value:key for key, value in enumerate(order[i])}
m_labels[i][:] = [dic0.get(n, n) for n in m_labels[i]] # re-order labels
# The maps seems to be correlated both negatively and positively (see spatial correlation plots)
# Thus the sign of the map does not really reflect which areas are positive or negative (absolute)
# But more which areas are different during each state (relatively)
# I can therefore change the sign of the map for the visualizaiton
sign_swap = [[1,-1,1,1,1],[1,1,1,-1,1]]
for i in range(len(order)):
for m in range(n_maps):
maps[i][m] *= sign_swap[i][m]
# Plot the maps and save
save_path = "/Users/benj3542/Desktop/Uni/Noter/Semester_6/Bachelor/resting-state-eeg-analysis/Figures/Microstates"
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
labels = ["EC", "EO"]
for i in range(len(labels)):
fig, axarr = plt.subplots(1, n_maps, figsize=(20,5))
fig.patch.set_facecolor('white')
for imap in range(n_maps):
mne.viz.plot_topomap(maps[i][imap,:], pos = final_epochs[0].info, axes = axarr[imap]) # plot
axarr[imap].set_title("GEV: {:.2f}".format(gev[i][imap]), fontsize=16, fontweight="bold") # title
fig.suptitle("Microstates: {} - Total GEV: {:.2f}".format(labels[i],sum(gev[i])), fontsize=20, fontweight="bold")
# Save the figure
fig.savefig(os.path.join(save_path,str("Microstates_{}".format(labels[i]) + ".png")))
# Calculate spatial correlation between maps and actual data points (topography)
# The sign of the map is changed so the correlation is positive
# By default the code looks for highest spatial correlation (regardless of sign)
# Thus depending on random initiation point the map might be opposite
plt.style.use('ggplot')
def spatial_correlation(data, maps):
n_t = data.shape[0]
n_ch = data.shape[1]
data = data - data.mean(axis=1, keepdims=True)
# GFP peaks
gfp = np.std(data, axis=1)
gfp_peaks = locmax(gfp)
gfp_values = gfp[gfp_peaks]
gfp2 = np.sum(gfp_values**2) # normalizing constant in GEV
n_gfp = gfp_peaks.shape[0]
# Spatial correlation
C = np.dot(data, maps.T)
C /= (n_ch*np.outer(gfp, np.std(maps, axis=1)))
L = np.argmax(C**2, axis=1) # C is squared here which means the maps do no retain information about the sign of the correlation
return C
C_EC = spatial_correlation(np.vstack(np.array(EC_micro_data)), maps[0])
C_EO = spatial_correlation(np.vstack(np.array(EO_micro_data)), maps[1])
C = [C_EC, C_EO]
# Plot the distribution of spatial correlation for each label and each map
labels = ["EC", "EO"]
for i in range(len(labels)):
fig, axarr = plt.subplots(n_maps, n_maps, figsize=(16,16))
for Lmap in range(n_maps):
for Mmap in range(n_maps):
sns.distplot(C[i][m_labels[i] == Lmap,Mmap], ax = axarr[Lmap,Mmap])
axarr[Lmap,Mmap].set_xlabel("Spatial correlation")
plt.suptitle("Distribution of spatial correlation_{}".format(labels[i]), fontsize=20, fontweight="bold")
# Add common x and y axis labels by making one big axis
fig.add_subplot(111, frameon=False)
plt.tick_params(labelcolor="none", top="off", bottom="off", left="off", right="off") # hide tick labels and ticks
plt.grid(False) # remove global grid
plt.xlabel("Microstate number", labelpad=20)
plt.ylabel("Label number", labelpad=10)
fig.savefig(os.path.join(save_path,str("Microstates_Spatial_Correlation_Label_State_{}".format(labels[i]) + ".png")))
# Plot the distribution of spatial correlation for all data and each map
labels = ["EC", "EO"]
for i in range(len(labels)):
fig, axarr = plt.subplots(1,n_maps, figsize=(20,5))
for imap in range(n_maps):
sns.distplot(C[i][:,imap], ax = axarr[imap])
plt.xlabel("Spatial correlation")
plt.suptitle("Distribution of spatial correlation", fontsize=20, fontweight="bold")
# Add common x and y axis labels by making one big axis
fig.add_subplot(111, frameon=False)
plt.tick_params(labelcolor="none", top="off", bottom="off", left="off", right="off") # hide tick labels and ticks
plt.grid(False) # remove global grid
plt.xlabel("Microstate number", labelpad=20)
plt.ylabel("Label number")
# Prepare for calculation of transition matrix
# I modified the function, so it takes the list argument gap_index
# gap_index should have the indices right before gaps in data
# Gaps: Between dropped epochs, trials (eo/ec) and subjects
# The between subjects gaps is removed by dividing the data into subjects
n_trials = 5
n_epoch_length = final_epochs[0].get_data().shape[2]
micro_labels = []
micro_subject_EC_idx = [0]
micro_subject_EO_idx = [0]
gaps_idx = []
gaps_trials_idx = []
for i in range(n_subjects):
# Get indices for subject
micro_subject_EC_idx.append(micro_subject_EC_idx[i]+EC_micro_data[i].shape[0])
temp_EC = m_labels[0][micro_subject_EC_idx[i]:micro_subject_EC_idx[i+1]]
# Get labels for subject i EO
micro_subject_EO_idx.append(micro_subject_EO_idx[i]+EO_micro_data[i].shape[0])
temp_EO = m_labels[1][micro_subject_EO_idx[i]:micro_subject_EO_idx[i+1]]
# Save
micro_labels.append([temp_EC,temp_EO]) # (subject, eye)
# Get indices with gaps
# Dropped epochs are first considered
# Each epoch last 4s, which correspond to 2000 samples and a trial is 15 epochs - dropped epochs
# Get epochs for each condition
EC_drop_epochs = Drop_epochs_df.iloc[i,1:][Drop_epochs_df.iloc[i,1:] <= 75].to_numpy()
EO_drop_epochs = Drop_epochs_df.iloc[i,1:][(Drop_epochs_df.iloc[i,1:] >= 75)&
(Drop_epochs_df.iloc[i,1:] <= 150)].to_numpy()
# Get indices for the epochs for EC that were dropped and correct for changing index due to drop
EC_drop_epochs_gaps_idx = []
counter = 0
for d in range(len(EC_drop_epochs)):
drop_epoch_number = EC_drop_epochs[d]
Drop_epoch_idx = (drop_epoch_number-counter)*n_epoch_length # counter subtracted as the drop index is before dropped
EC_drop_epochs_gaps_idx.append(Drop_epoch_idx-1) # -1 for point just before gap
counter += 1
# Negative index might occur if the first epochs were removed. This index is not needed for transition matrix
if len(EC_drop_epochs_gaps_idx) > 0:
for d in range(len(EC_drop_epochs_gaps_idx)): # check all, e.g. if epoch 0,1,2,3 are dropped then all should be caught
if EC_drop_epochs_gaps_idx[0] == -1:
EC_drop_epochs_gaps_idx = EC_drop_epochs_gaps_idx[1:len(EC_drop_epochs)]
# Get indices for the epochs for EO that were dropped and correct for changing index due to drop
EO_drop_epochs_gaps_idx = []
counter = 0
for d in range(len(EO_drop_epochs)):
drop_epoch_number = EO_drop_epochs[d]-75
Drop_epoch_idx = (drop_epoch_number-counter)*n_epoch_length # counter subtracted as the drop index is before dropped
EO_drop_epochs_gaps_idx.append(Drop_epoch_idx-1) # -1 for point just before gap
counter += 1
# Negative index might occur if the first epoch was removed. This index is not needed for transition matrix
if len(EO_drop_epochs_gaps_idx) > 0:
for d in range(len(EO_drop_epochs_gaps_idx)): # check all, e.g. if epoch 0,1,2,3 are dropped then all should be caught
if EO_drop_epochs_gaps_idx[0] == -1:
EO_drop_epochs_gaps_idx = EO_drop_epochs_gaps_idx[1:len(EO_drop_epochs)]
# Gaps between trials
Trial_indices = [0, 15, 30, 45, 60, 75] # all the indices for start and end of the 5 trials
EC_trial_gaps_idx = []
EO_trial_gaps_idx = []
counter_EC = 0
counter_EO = 0
for t in range(len(Trial_indices)-2): # -2 as start and end is not used in transition matrix
temp_drop = EC_drop_epochs[(EC_drop_epochs >= Trial_indices[t])&
(EC_drop_epochs < Trial_indices[t+1])]
# Correct the trial id for any potential drops within that trial
counter_EC += len(temp_drop)
trial_idx_corrected_for_drops = 15*(t+1)-counter_EC
EC_trial_gaps_idx.append((trial_idx_corrected_for_drops*n_epoch_length)-1) # multiply id with length of epoch and subtract 1
temp_drop = EO_drop_epochs[(EO_drop_epochs >= Trial_indices[t]+75)&
(EO_drop_epochs < Trial_indices[t+1]+75)]
# Correct the trial id for any potential drops within that trial
counter_EO += len(temp_drop)
trial_idx_corrected_for_drops = 15*(t+1)-counter_EO
EO_trial_gaps_idx.append((trial_idx_corrected_for_drops*n_epoch_length)-1) # multiply id with length of epoch and subtract 1
# Concatenate all drop indices
gaps_idx.append([np.unique(np.sort(EC_drop_epochs_gaps_idx+EC_trial_gaps_idx)),
np.unique(np.sort(EO_drop_epochs_gaps_idx+EO_trial_gaps_idx))])
# Make on with trial gaps only for use in LRTC analysis
gaps_trials_idx.append([EC_trial_gaps_idx,EO_trial_gaps_idx])
# Save the gap idx files
np.save("Gaps_idx.npy",np.array(gaps_idx))
np.save("Gaps_trials_idx.npy",np.array(gaps_trials_idx))
# %% Calculate microstate features
# Symbol distribution (also called ratio of time covered RTT)
# Transition matrix
# Shannon entropy
EC_p_hat = p_empirical(m_labels[0], n_maps)
EO_p_hat = p_empirical(m_labels[1], n_maps)
# Sanity check: Overall between EC and EO
microstate_time_data = np.zeros((n_subjects,n_eye_status,n_maps))
microstate_transition_data = np.zeros((n_subjects,n_eye_status,n_maps,n_maps))
microstate_entropy_data = np.zeros((n_subjects,n_eye_status))
for i in range(n_subjects):
# Calculate ratio of time covered
temp_EC_p_hat = p_empirical(micro_labels[i][0], n_maps)
temp_EO_p_hat = p_empirical(micro_labels[i][1], n_maps)
# Calculate transition matrix
temp_EC_T_hat = T_empirical(micro_labels[i][0], n_maps, gaps_idx[i][0])
temp_EO_T_hat = T_empirical(micro_labels[i][1], n_maps, gaps_idx[i][1])
"""
temp_EC_T_hat = T_empirical(micro_labels[i][0], n_maps)
temp_EO_T_hat = T_empirical(micro_labels[i][1], n_maps)
# Calculate Shannon entropy
temp_EC_h_hat = H_1(micro_labels[i][0], n_maps)
temp_EO_h_hat = H_1(micro_labels[i][1], n_maps)
# Save the data
microstate_time_data[i,0,:] = temp_EC_p_hat
microstate_time_data[i,1,:] = temp_EO_p_hat
microstate_transition_data[i,0,:,:] = temp_EC_T_hat
microstate_transition_data[i,1,:,:] = temp_EO_T_hat
microstate_entropy_data[i,0] = temp_EC_h_hat/max_entropy(n_maps) # ratio of max entropy
microstate_entropy_data[i,1] = temp_EO_h_hat/max_entropy(n_maps) # ratio of max entropy
# Save transition data
np.save(Feature_savepath+"microstate_transition_data.npy", microstate_transition_data)
# Convert transition data to dataframe for further processing with other features
# Transition matrix should be read as probability of row to column
microstate_transition_data_arr =\
microstate_transition_data.reshape((n_subjects,n_eye_status,n_maps*n_maps)) # flatten 4 x 4 matrix to 1D
transition_info = ["M1->M1", "M1->M2", "M1->M3", "M1->M4", "M1->M5",
"M2->M1", "M2->M2", "M2->M3", "M2->M4", "M2-M5",
"M3->M1", "M3->M2", "M3->M3", "M3->M4", "M3->M5",
"M4->M1", "M4->M2", "M4->M3", "M4->M4", "M4->M5",
"M5->M1", "M5->M2", "M5->M3", "M5->M4", "M5->M5"]
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
arr = np.column_stack(list(map(np.ravel, np.meshgrid(*map(np.arange, microstate_transition_data_arr.shape), indexing="ij"))) + [microstate_transition_data_arr.ravel()])
microstate_transition_data_df = pd.DataFrame(arr, columns = ["Subject_ID", "Eye_status", "Transition", "Value"])
# Change from numerical coding to actual values
eye_status = list(final_epochs[0].event_id.keys())
index_values = [Subject_id,eye_status,transition_info]
for col in range(len(index_values)):
col_name = microstate_transition_data_df.columns[col]
for shape in reversed(range(microstate_transition_data_arr.shape[col])): # notice this is the shape of original numpy array. Not shape of DF
microstate_transition_data_df.loc[microstate_transition_data_df.iloc[:,col] == shape,col_name]\
= index_values[col][shape]
# Add group status
Group_status = np.array(["CTRL"]*len(microstate_transition_data_df["Subject_ID"]))
Group_status[np.array([i in cases for i in microstate_transition_data_df["Subject_ID"]])] = "PTSD"
# Add to dataframe
microstate_transition_data_df.insert(2, "Group_status", Group_status)
# Save df
microstate_transition_data_df.to_pickle(os.path.join(Feature_savepath,"microstate_transition_data_df.pkl"))
# Convert time covered data to Pandas dataframe
# The dimensions will each be a column with numbers and the last column will be the actual values
arr = np.column_stack(list(map(np.ravel, np.meshgrid(*map(np.arange, microstate_time_data.shape), indexing="ij"))) + [microstate_time_data.ravel()])
microstate_time_df = pd.DataFrame(arr, columns = ["Subject_ID", "Eye_status", "Microstate", "Value"])
# Change from numerical coding to actual values
eye_status = list(final_epochs[0].event_id.keys())
microstates = [1,2,3,4,5]
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
index_values = [Subject_id,eye_status,microstates]
for col in range(len(index_values)):
col_name = microstate_time_df.columns[col]
for shape in reversed(range(microstate_time_data.shape[col])): # notice this is the shape of original numpy array. Not shape of DF
microstate_time_df.loc[microstate_time_df.iloc[:,col] == shape,col_name]\
= index_values[col][shape]
# Reversed in inner loop is used to avoid sequencial data being overwritten.
# E.g. if 0 is renamed to 1, then the next loop all 1's will be renamed to 2
# Add group status
Group_status = np.array(["CTRL"]*len(microstate_time_df["Subject_ID"]))
Group_status[np.array([i in cases for i in microstate_time_df["Subject_ID"]])] = "PTSD"
# Add to dataframe
microstate_time_df.insert(2, "Group_status", Group_status)
# Save df
microstate_time_df.to_pickle(os.path.join(Feature_savepath,"microstate_time_df.pkl"))
# Transition data - mean
# Get index for groups
PTSD_idx = np.array([i in cases for i in Subject_id])
CTRL_idx = np.array([not i in cases for i in Subject_id])
n_groups = 2
microstate_transition_data_mean = np.zeros((n_groups,n_eye_status,n_maps,n_maps))
microstate_transition_data_mean[0,:,:,:] = np.mean(microstate_transition_data[PTSD_idx,:,:,:], axis=0)
microstate_transition_data_mean[1,:,:,:] = np.mean(microstate_transition_data[CTRL_idx,:,:,:], axis=0)
# Convert entropy data to Pandas dataframe
# The dimensions will each be a column with numbers and the last column will be the actual values
arr = np.column_stack(list(map(np.ravel, np.meshgrid(*map(np.arange, microstate_entropy_data.shape), indexing="ij"))) + [microstate_entropy_data.ravel()])
microstate_entropy_df = pd.DataFrame(arr, columns = ["Subject_ID", "Eye_status", "Value"])
# Change from numerical coding to actual values
eye_status = list(final_epochs[0].event_id.keys())
index_values = [Subject_id,eye_status]
for col in range(len(index_values)):
col_name = microstate_entropy_df.columns[col]
for shape in reversed(range(microstate_entropy_data.shape[col])): # notice this is the shape of original numpy array. Not shape of DF
microstate_entropy_df.loc[microstate_entropy_df.iloc[:,col] == shape,col_name]\
= index_values[col][shape]
# Reversed in inner loop is used to avoid sequencial data being overwritten.
# E.g. if 0 is renamed to 1, then the next loop all 1's will be renamed to 2
# Add group status
Group_status = np.array(["CTRL"]*len(microstate_entropy_df["Subject_ID"]))
Group_status[np.array([i in cases for i in microstate_entropy_df["Subject_ID"]])] = "PTSD"
# Add to dataframe
microstate_entropy_df.insert(2, "Group_status", Group_status)
# Add dummy variable for re-using plot code
dummy_variable = ["Entropy"]*len(Group_status)
microstate_entropy_df.insert(3, "Measurement", dummy_variable)
# Save df
microstate_entropy_df.to_pickle(os.path.join(Feature_savepath,"microstate_entropy_df.pkl"))
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
# # %% Long-range temporal correlations (LRTC)
# """
# See Hardstone et al, 2012
# Hurst exponent estimation steps:
# 1. Preprocess
# 2. Band-pass filter for frequency band of interest
# 3. Hilbert transform to obtain amplitude envelope
# 4. Perform DFA
# 4.1 Compute cumulative sum of time series to create signal profile
# 4.2 Define set of window sizes (see below)
# 4.3 Remove the linear trend using least-squares for each window
# 4.4 Calculate standard deviation for each window and take the mean
# 4.5 Plot fluctuation function (Standard deviation) as function
# for all window sizes, on double logarithmic scale
# 4.6 The DFA exponent alpha correspond to Hurst exponent
# f(L) = sd = L^alpha (with alpha as linear coefficient in log plot)
# If 0 < alpha < 0.5: The process exhibits anti-correlations
# If 0.5 < alpha < 1: The process exhibits positive correlations
# If alpha = 0.5: The process is indistinguishable from a random process
# If 1.0 < alpha < 2.0: The process is non-stationary. H = alpha - 1
# Window sizes should be equally spaced on a logarithmic scale
# Sizes should be at least 4 samples and up to 10% of total signal length
# Filters can influence neighboring samples, thus filters should be tested
# on white noise to estimate window sizes that are unaffected by filters
# filter_length=str(2*1/fmin)+"s" # cannot be used with default transition bandwidth
# """
# # From simulations with white noise I determined window size thresholds for the 5 frequency bands:
# thresholds = [7,7,7,6.5,6.5]
# # And their corresponding log step sizes
# with open("LRTC_log_win_sizes.pkl", "rb") as filehandle:
# log_win_sizes = pickle.load(filehandle)
# # Variables for the the different conditions
# # Sampling frequency
# sfreq = final_epochs[0].info["sfreq"]
# # Channels
# ch_names = final_epochs[0].info["ch_names"]
# n_channels = len(ch_names)
# # Frequency
# Freq_Bands = {"delta": [1.25, 4.0],
# "theta": [4.0, 8.0],
# "alpha": [8.0, 13.0],
# "beta": [13.0, 30.0],
# "gamma": [30.0, 49.0]}
# n_freq_bands = len(Freq_Bands)
# # Eye status
# eye_status = list(final_epochs[0].event_id.keys())
# n_eye_status = len(eye_status)
# ### Estimating Hurst exponent for the data
# # The data should be re-referenced to common average (Already done)
# # Data are transformed to numpy arrays
# # Then divided into EO and EC and further into each of the 5 trials
# # So DFA is estimated for each trial separately, which was concluded from simulations
# gaps_trials_idx = np.load("Gaps_trials_idx.npy") # re-used from microstate analysis
# n_trials = 5
# H_data = []
# for i in range(n_subjects):
# # Transform data to correct shape
# temp_arr = final_epochs[i].get_data() # get data
# arr_shape = temp_arr.shape # get shape
# temp_arr = temp_arr.swapaxes(1,2) # swap ch and time axis
# temp_arr = temp_arr.reshape(arr_shape[0]*arr_shape[2],arr_shape[1]) # reshape by combining epochs and times
# # Get indices for eyes open and closed
# EC_index = final_epochs[i].events[:,2] == 1
# EO_index = final_epochs[i].events[:,2] == 2
# # Repeat with 4s * sample frequency to correct for concatenation of times and epochs
# EC_index = np.repeat(EC_index,4*sfreq)
# EO_index = np.repeat(EO_index,4*sfreq)
# # Divide into eye status
# EC_data = temp_arr[EC_index]
# EO_data = temp_arr[EO_index]
# # Divide into trials
# EC_gap_idx = np.array([0]+list(gaps_trials_idx[i,0])+[len(EC_data)])
# EO_gap_idx = np.array([0]+list(gaps_trials_idx[i,1])+[len(EO_data)])
# EC_trial_data = []
# EO_trial_data = []
# for t in range(n_trials):
# EC_trial_data.append(EC_data[EC_gap_idx[t]:EC_gap_idx[t+1]])
# EO_trial_data.append(EO_data[EO_gap_idx[t]:EO_gap_idx[t+1]])
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
# # Save data
# H_data.append([EC_trial_data,EO_trial_data]) # output [subject][eye][trial][time,ch]
# # Calculate H for each subject, eye status, trial, freq and channel
# H_arr = np.zeros((n_subjects,n_eye_status,n_trials,n_channels,n_freq_bands))
# w_len = [len(ele) for ele in log_win_sizes]
# DFA_arr = np.empty((n_subjects,n_eye_status,n_trials,n_channels,n_freq_bands,2,np.max(w_len)))
# DFA_arr[:] = np.nan
# # Get current time
# c_time1 = time.localtime()
# c_time1 = time.strftime("%a %d %b %Y %H:%M:%S", c_time1)
# print("Started",c_time1)
# # Nolds are already using all cores so multiprocessing with make it slower
# # Warning occurs when R2 is estimated during detrending - but R2 is not used
# warnings.simplefilter("ignore")
# for i in range(n_subjects):
# # Pre-allocate memory
# DFA_temp = np.empty((n_eye_status,n_trials,n_channels,n_freq_bands,2,np.max(w_len)))
# DFA_temp[:] = np.nan
# H_temp = np.empty((n_eye_status,n_trials,n_channels,n_freq_bands))
# for e in range(n_eye_status):
# for trial in range(n_trials):
# for c in range(n_channels):
# # Get the data
# signal = H_data[i][e][trial][:,c]
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
# counter = 0 # prepare counter
# for fmin, fmax in Freq_Bands.values():
# # Filter for each freq band
# signal_filtered = mne.filter.filter_data(signal, sfreq=sfreq, verbose=0,
# l_freq=fmin, h_freq=fmax)
# # Hilbert transform
# analytic_signal = scipy.signal.hilbert(signal_filtered)
# # Get Amplitude envelope
# # np.abs is the same as np.linalg.norm, i.e. the length for complex input which is the amplitude
# ampltude_envelope = np.abs(analytic_signal)
# # Perform DFA using predefined window sizes from simulation
# a, dfa_data = nolds.dfa(ampltude_envelope,
# nvals=np.exp(log_win_sizes[counter]).astype("int"),
# debug_data=True)
# # Save DFA results
# DFA_temp[e,trial,c,counter,:,0:w_len[counter]] = dfa_data[0:2]
# H_temp[e,trial,c,counter] = a
# # Update counter
# counter += 1
# # Print run status
# print("Finished {} out of {}".format(i+1,n_subjects))
# # Save the results
# H_arr[i] = H_temp
# DFA_arr[i] = DFA_temp
# warnings.simplefilter("default")
# # Get current time
# c_time2 = time.localtime()
# c_time2 = time.strftime("%a %d %b %Y %H:%M:%S", c_time2)
# print("Started", c_time1, "\nCurrent Time",c_time2)
# # Save the DFA analysis data
# np.save(Feature_savepath+"DFA_arr.npy", DFA_arr)
# np.save(Feature_savepath+"H_arr.npy", H_arr)
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
# # Load
# DFA_arr = np.load(Feature_savepath+"DFA_arr.npy")
# H_arr = np.load(Feature_savepath+"H_arr.npy")
# # Average the Hurst Exponent across trials
# H_arr = np.mean(H_arr, axis=2)
# # Convert to Pandas dataframe (Hurst exponent)
# # The dimensions will each be a column with numbers and the last column will be the actual values
# arr = np.column_stack(list(map(np.ravel, np.meshgrid(*map(np.arange, H_arr.shape), indexing="ij"))) + [H_arr.ravel()])
# H_data_df = pd.DataFrame(arr, columns = ["Subject_ID", "Eye_status", "Channel", "Freq_band", "Value"])
# # Change from numerical coding to actual values
# eye_status = list(final_epochs[0].event_id.keys())
# ch_name = final_epochs[0].info["ch_names"]
# index_values = [Subject_id,eye_status,ch_name,list(Freq_Bands.keys())]
# for col in range(len(index_values)):
# col_name = H_data_df.columns[col]
# for shape in range(H_arr.shape[col]): # notice this is the shape of original numpy array. Not shape of DF
# H_data_df.loc[H_data_df.iloc[:,col] == shape,col_name]\
# = index_values[col][shape]
# # Add group status
# Group_status = np.array(["CTRL"]*len(H_data_df["Subject_ID"]))
# Group_status[np.array([i in cases for i in H_data_df["Subject_ID"]])] = "PTSD"
# # Add to dataframe
# H_data_df.insert(2, "Group_status", Group_status)
# # Fix Freq_band categorical order
# H_data_df["Freq_band"] = H_data_df["Freq_band"].astype("category").\
# cat.reorder_categories(list(Freq_Bands.keys()), ordered=True)
# # Global Hurst exponent
# H_data_df_global = H_data_df.groupby(["Subject_ID", "Eye_status", "Freq_band"]).mean().reset_index() # by default pandas mean skip nan
# # Add group status (cannot use group_by as each subject only have 1 group, not both)
# Group_status = np.array(["CTRL"]*len(H_data_df_global["Subject_ID"]))
# Group_status[np.array([i in cases for i in H_data_df_global["Subject_ID"]])] = "PTSD"
# # Add to dataframe
# H_data_df_global.insert(2, "Group_status", Group_status)
# # Add dummy variable for re-using plot code
# dummy_variable = ["Global Hurst Exponent"]*H_data_df_global.shape[0]
# H_data_df_global.insert(3, "Measurement", dummy_variable )
# # Save the data
# H_data_df.to_pickle(os.path.join(Feature_savepath,"H_data_df.pkl"))
# H_data_df_global.to_pickle(os.path.join(Feature_savepath,"H_data_global_df.pkl"))
# # %% Source localization of sensor data
# # Using non-interpolated channels
# # Even interpolated channels during preprocessing and visual inspection
# # are dropped
# # Prepare epochs for estimation of source connectivity
# source_epochs = [0]*n_subjects
# for i in range(n_subjects):
# source_epochs[i] = final_epochs[i].copy()
# ### Make forward solutions
# # A forward solution is first made for all individuals with no dropped channels
# # Afterwards individual forward solutions are made for subjects with bad
# # channels that were interpolated in preprocessing and these are dropped
# # First forward operator is computed using a template MRI for each dataset
# fs_dir = "/home/glia/MNE-fsaverage-data/fsaverage"
# subjects_dir = os.path.dirname(fs_dir)
# trans = "fsaverage"
# src = os.path.join(fs_dir, "bem", "fsaverage-ico-5-src.fif")
# bem = os.path.join(fs_dir, "bem", "fsaverage-5120-5120-5120-bem-sol.fif")
# # Read the template sourcespace
# sourcespace = mne.read_source_spaces(src)
# temp_idx = 0 # Index with subject that had no bad channels
# subject_eeg = source_epochs[temp_idx].copy()
# subject_eeg.set_eeg_reference(projection=True) # needed for inverse modelling
# # Make forward solution
# fwd = mne.make_forward_solution(subject_eeg.info, trans=trans, src=src,
# bem=bem, eeg=True, mindist=5.0, n_jobs=1)
# # Save forward operator
# fname_fwd = "./Source_fwd/fsaverage-fwd.fif"
# mne.write_forward_solution(fname_fwd, fwd, overwrite=True)
# # A specific forward solution is also made for each subject with bad channels
# with open("./Preprocessing/bad_ch.pkl", "rb") as file:
# bad_ch = pickle.load(file)
# All_bad_ch = bad_ch
# All_drop_epochs = dropped_epochs_df
# All_dropped_ch = []
# Bad_ch_idx = [idx for idx, item in enumerate(All_bad_ch) if item != 0]
# Bad_ch_subjects = All_drop_epochs["Subject_ID"][Bad_ch_idx]
# # For each subject with bad channels, drop the channels and make forward operator
# for n in range(len(Bad_ch_subjects)):
# Subject = Bad_ch_subjects.iloc[n]
# try:
# Subject_idx = Subject_id.index(Subject)
# # Get unique bad channels
# Bad_ch0 = All_bad_ch[Bad_ch_idx[n]]
# Bad_ch1 = []
# for i2 in range(len(Bad_ch0)):
# if type(Bad_ch0[i2]) == list:
# for i3 in range(len(Bad_ch0[i2])):
# Bad_ch1.append(Bad_ch0[i2][i3])
# elif type(Bad_ch0[i2]) == str:
# Bad_ch1.append(Bad_ch0[i2])
# Bad_ch1 = np.unique(Bad_ch1)
# # Drop the bad channels
# source_epochs[Subject_idx].drop_channels(Bad_ch1)
# # Save the overview of dropped channels
# All_dropped_ch.append([Subject,Subject_idx,Bad_ch1])
# # Make forward operator
# subject_eeg = source_epochs[Subject_idx].copy()
# subject_eeg.set_eeg_reference(projection=True) # needed for inverse modelling
# # Make forward solution
# fwd = mne.make_forward_solution(subject_eeg.info, trans=trans, src=src,
# bem=bem, eeg=True, mindist=5.0, n_jobs=1)
# # Save forward operator
# fname_fwd = "./Source_fwd/fsaverage_{}-fwd.fif".format(Subject)
# mne.write_forward_solution(fname_fwd, fwd, overwrite=True)
# except:
# print(Subject,"was already dropped")
# with open("./Preprocessing/All_datasets_bad_ch.pkl", "wb") as filehandle:
# pickle.dump(All_dropped_ch, filehandle)
# # %% Load forward operators
# # Re-use for all subjects without dropped channels
# fname_fwd = "./Source_fwd/fsaverage-fwd.fif"
# fwd = mne.read_forward_solution(fname_fwd)
# fwd_list = [fwd]*n_subjects
# # Use specific forward solutions for subjects with dropped channels
# with open("./Preprocessing/All_datasets_bad_ch.pkl", "rb") as file:
# All_dropped_ch = pickle.load(file)
# for i in range(len(All_dropped_ch)):
# Subject = All_dropped_ch[i][0]
# Subject_idx = All_dropped_ch[i][1]
# fname_fwd = "./Source_fwd/fsaverage_{}-fwd.fif".format(Subject)
# fwd = mne.read_forward_solution(fname_fwd)
# fwd_list[Subject_idx] = fwd
# # Check the correct number of channels are present in fwd
# random_point = int(np.random.randint(0,len(All_dropped_ch)-1,1))
# assert len(fwds[All_dropped_ch[random_point][1]].ch_names) == source_epochs[All_dropped_ch[random_point][1]].info["nchan"]
# # %% Make parcellation
# # After mapping to source space, I end up with 20484 vertices
# # but I wanted to map to fewer sources and not many more
# # Thus I need to perform parcellation
# # Get labels for FreeSurfer "aparc" cortical parcellation (example with 74 labels/hemi - Destriuex)
# labels_aparc = mne.read_labels_from_annot("fsaverage", parc="aparc.a2009s",
# subjects_dir=subjects_dir)
# labels_aparc = labels_aparc[:-2] # remove unknowns
# labels_aparc_names = [label.name for label in labels_aparc]
# # Manually adding the 31 ROIs (14-lh/rh + 3 in midline) from Toll et al, 2020
# # Making fuction to take subset of a label
# def label_subset(label, subset, name="ROI_name"):
# label_subset = mne.Label(label.vertices[subset], label.pos[subset,:],
# label.values[subset], label.hemi,
# name = "{}-{}".format(name,label.hemi),
# subject = label.subject, color = None)
# return label_subset
# ### Visual area 1 (V1 and somatosensory cortex BA1-3)
# label_filenames = ["lh.V1.label", "rh.V1.label",
# "lh.BA1.label", "rh.BA1.label",
# "lh.BA2.label", "rh.BA2.label",
# "lh.BA3a.label", "rh.BA3a.label",
# "lh.BA3b.label", "rh.BA3b.label"]
# labels0 = [0]*len(label_filenames)
# for i, filename in enumerate(label_filenames):
# labels0[i] = mne.read_label(os.path.join(fs_dir, "label", filename), subject="fsaverage")
# # Add V1 to final label variable
# labels = labels0[:2]
# # Rename to remove redundant hemi information
# labels[0].name = "V1-{}".format(labels[0].hemi)
# labels[1].name = "V1-{}".format(labels[1].hemi)
# # Assign a color
# labels[0].color = matplotlib.colors.to_rgba("salmon")
# labels[1].color = matplotlib.colors.to_rgba("salmon")
# # Combine Brodmann Areas for SMC. Only use vertices ones to avoid duplication error
# SMC_labels = labels0[2:]
# for hem in range(2):
# SMC_p1 = SMC_labels[hem]
# for i in range(1,len(SMC_labels)//2):
# SMC_p2 = SMC_labels[hem+2*i]
# p2_idx = np.isin(SMC_p2.vertices, SMC_p1.vertices, invert=True)
# SMC_p21 = label_subset(SMC_p2, p2_idx, "SMC")
# SMC_p1 = SMC_p1.__add__(SMC_p21)
# SMC_p1.name = SMC_p21.name
# # Assign a color
# SMC_p1.color = matplotlib.colors.to_rgba("orange")
# labels.append(SMC_p1)
# ### Inferior frontal junction
# # Located at junction between inferior frontal and inferior precentral sulcus
# label_aparc_names0 = ["S_front_inf","S_precentral-inf-part"]
# temp_labels = []
# for i in range(len(label_aparc_names0)):
# labels_aparc_idx = [labels_aparc_names.index(l) for l in labels_aparc_names if l.startswith(label_aparc_names0[i])]
# for i2 in range(len(labels_aparc_idx)):
# temp_labels.append(labels_aparc[labels_aparc_idx[i2]].copy())
# pos1 = temp_labels[0].pos
# pos2 = temp_labels[2].pos
# distm = scipy.spatial.distance.cdist(pos1,pos2)
# # Find the closest points between the 2 ROIs
# l1_idx = np.unique(np.where(distm<np.quantile(distm, 0.001))[0]) # q chosen to correspond to around 10% of ROI
# l2_idx = np.unique(np.where(distm<np.quantile(distm, 0.0005))[1]) # q chosen to correspond to around 10% of ROI
# IFJ_label_p1 = label_subset(temp_labels[0], l1_idx, "IFJ")
# IFJ_label_p2 = label_subset(temp_labels[2], l2_idx, "IFJ")
# # Combine the 2 parts
# IFJ_label = IFJ_label_p1.__add__(IFJ_label_p2)
# IFJ_label.name = IFJ_label_p1.name
# # Assign a color
# IFJ_label.color = matplotlib.colors.to_rgba("chartreuse")
# # Append to final list
# labels.append(IFJ_label)
# # Do the same for the right hemisphere
# pos1 = temp_labels[1].pos
# pos2 = temp_labels[3].pos
# distm = scipy.spatial.distance.cdist(pos1,pos2)
# # Find the closest points between the 2 ROIs
# l1_idx = np.unique(np.where(distm<np.quantile(distm, 0.00075))[0]) # q chosen to correspond to around 10% of ROI
# l2_idx = np.unique(np.where(distm<np.quantile(distm, 0.0005))[1]) # q chosen to correspond to around 10% of ROI
# IFJ_label_p1 = label_subset(temp_labels[1], l1_idx, "IFJ")
# IFJ_label_p2 = label_subset(temp_labels[3], l2_idx, "IFJ")
# # Combine the 2 parts
# IFJ_label = IFJ_label_p1.__add__(IFJ_label_p2)
# IFJ_label.name = IFJ_label_p1.name
# # Assign a color
# IFJ_label.color = matplotlib.colors.to_rgba("chartreuse")
# # Append to final list
# labels.append(IFJ_label)
# ### Intraparietal sulcus
# label_aparc_names0 = ["S_intrapariet_and_P_trans"]
# labels_aparc_idx = [labels_aparc_names.index(l) for l in labels_aparc_names if l.startswith(label_aparc_names0[0])]
# for i in range(len(labels_aparc_idx)):
# labels.append(labels_aparc[labels_aparc_idx[i]].copy())
# labels[-1].name = "IPS-{}".format(labels[-1].hemi)
# ### Frontal eye field as intersection between middle frontal gyrus and precentral gyrus
# label_aparc_names0 = ["G_front_middle","G_precentral"]
# temp_labels = []
# for i in range(len(label_aparc_names0)):
# labels_aparc_idx = [labels_aparc_names.index(l) for l in labels_aparc_names if l.startswith(label_aparc_names0[i])]
# for i2 in range(len(labels_aparc_idx)):
# temp_labels.append(labels_aparc[labels_aparc_idx[i2]].copy())
# # Take 10% of middle frontal gyrus closest to precentral gyrus (most posterior)
# temp_label0 = temp_labels[0]
# G_fm_y = temp_label0.pos[:,1]
# thres_G_fm_y = np.sort(G_fm_y)[len(G_fm_y)//10]
# idx_p1 = np.where(G_fm_y<thres_G_fm_y)[0]
# FEF_label_p1 = label_subset(temp_label0, idx_p1, "FEF")
# # Take 10% closest for precentral gyrus (most anterior)
# temp_label0 = temp_labels[2]
# # I cannot only use y (anterior/posterior) but also need to restrict z-position
# G_pre_cen_z = temp_label0.pos[:,2]
# thres_G_pre_cen_z = 0.04 # visually inspected threshold
# G_pre_cen_y = temp_label0.pos[:,1]
# thres_G_pre_cen_y = np.sort(G_pre_cen_y[G_pre_cen_z>thres_G_pre_cen_z])[-len(G_pre_cen_y)//10] # notice - for anterior
# idx_p2 = np.where((G_pre_cen_y>thres_G_pre_cen_y) & (G_pre_cen_z>thres_G_pre_cen_z))[0]
# FEF_label_p2 = label_subset(temp_label0, idx_p2, "FEF")
# # Combine the 2 parts
# FEF_label = FEF_label_p1.__add__(FEF_label_p2)
# FEF_label.name = FEF_label_p1.name
# # Assign a color
# FEF_label.color = matplotlib.colors.to_rgba("aqua")
# # Append to final list
# labels.append(FEF_label)
# # Do the same for the right hemisphere
# temp_label0 = temp_labels[1]
# G_fm_y = temp_label0.pos[:,1]
# thres_G_fm_y = np.sort(G_fm_y)[len(G_fm_y)//10]
# idx_p1 = np.where(G_fm_y<thres_G_fm_y)[0]
# FEF_label_p1 = label_subset(temp_label0, idx_p1, "FEF")
# temp_label0 = temp_labels[3]
# G_pre_cen_z = temp_label0.pos[:,2]
# thres_G_pre_cen_z = 0.04 # visually inspected threshold
# G_pre_cen_y = temp_label0.pos[:,1]
# thres_G_pre_cen_y = np.sort(G_pre_cen_y[G_pre_cen_z>thres_G_pre_cen_z])[-len(G_pre_cen_y)//10] # notice - for anterior
# idx_p2 = np.where((G_pre_cen_y>thres_G_pre_cen_y) & (G_pre_cen_z>thres_G_pre_cen_z))[0]
# FEF_label_p2 = label_subset(temp_label0, idx_p2, "FEF")
# # Combine the 2 parts
# FEF_label = FEF_label_p1.__add__(FEF_label_p2)
# FEF_label.name = FEF_label_p1.name
# # Assign a color
# FEF_label.color = matplotlib.colors.to_rgba("aqua")
# # Append to final list
# labels.append(FEF_label)
# ### Supplementary eye fields
# # Located at caudal end of frontal gyrus and upper part of paracentral sulcus
# label_aparc_names0 = ["G_and_S_paracentral","G_front_sup"]
# temp_labels = []
# for i in range(len(label_aparc_names0)):
# labels_aparc_idx = [labels_aparc_names.index(l) for l in labels_aparc_names if l.startswith(label_aparc_names0[i])]
# for i2 in range(len(labels_aparc_idx)):
# temp_labels.append(labels_aparc[labels_aparc_idx[i2]].copy())
# pos1 = temp_labels[0].pos
# pos2 = temp_labels[2].pos
# distm = scipy.spatial.distance.cdist(pos1,pos2)
# # Find the closest points between the 2 ROIs
# l1_idx = np.unique(np.where(distm<np.quantile(distm, 0.0005))[0]) # q chosen to correspond to around 15% of ROI
# l2_idx = np.unique(np.where(distm<np.quantile(distm, 0.005))[1]) # q chosen to correspond to around 10% of ROI
# # Notice that superior frontal gyrus is around 4 times bigger than paracentral
# len(l1_idx)/pos1.shape[0]
# len(l2_idx)/pos2.shape[0]
# # Only use upper part
# z_threshold = 0.06 # visually inspected
# l1_idx = l1_idx[pos1[l1_idx,2] > z_threshold]
# l2_idx = l2_idx[pos2[l2_idx,2] > z_threshold]
# SEF_label_p1 = label_subset(temp_labels[0], l1_idx, "SEF")
# SEF_label_p2 = label_subset(temp_labels[2], l2_idx, "SEF")
# # Combine the 2 parts
# SEF_label = SEF_label_p1.__add__(SEF_label_p2)
# SEF_label.name = SEF_label_p1.name
# # Assign a color
# SEF_label.color = matplotlib.colors.to_rgba("royalblue")
# # Append to final list
# labels.append(SEF_label)
# # Do the same for the right hemisphere
# pos1 = temp_labels[1].pos
# pos2 = temp_labels[3].pos
# distm = scipy.spatial.distance.cdist(pos1,pos2)
# # Find the closest points between the 2 ROIs
# l1_idx = np.unique(np.where(distm<np.quantile(distm, 0.0005))[0]) # q chosen to correspond to around 15% of ROI
# l2_idx = np.unique(np.where(distm<np.quantile(distm, 0.005))[1]) # q chosen to correspond to around 10% of ROI
# # Notice that superior frontal gyrus is around 4 times bigger than paracentral
# len(l1_idx)/pos1.shape[0]
# len(l2_idx)/pos2.shape[0]
# # Only use upper part
# z_threshold = 0.06 # visually inspected
# l1_idx = l1_idx[pos1[l1_idx,2] > z_threshold]
# l2_idx = l2_idx[pos2[l2_idx,2] > z_threshold]
# SEF_label_p1 = label_subset(temp_labels[1], l1_idx, "SEF")
# SEF_label_p2 = label_subset(temp_labels[3], l2_idx, "SEF")
# # Combine the 2 parts
# SEF_label = SEF_label_p1.__add__(SEF_label_p2)
# SEF_label.name = SEF_label_p1.name
# # Assign a color
# SEF_label.color = matplotlib.colors.to_rgba("royalblue")
# # Append to final list
# labels.append(SEF_label)
# ### Posterior cingulate cortex
# label_aparc_names0 = ["G_cingul-Post-dorsal", "G_cingul-Post-ventral"]
# temp_labels = []
# for i in range(len(label_aparc_names0)):
# labels_aparc_idx = [labels_aparc_names.index(l) for l in labels_aparc_names if l.startswith(label_aparc_names0[i])]
# for i2 in range(len(labels_aparc_idx)):
# temp_labels.append(labels_aparc[labels_aparc_idx[i2]].copy())
# labels0 = []
# for hem in range(2):
# PCC_p1 = temp_labels[hem]
# for i in range(1,len(temp_labels)//2):
# PCC_p2 = temp_labels[hem+2*i]
# PCC_p1 = PCC_p1.__add__(PCC_p2)
# PCC_p1.name = "PCC-{}".format(PCC_p1.hemi)
# labels0.append(PCC_p1)
# # Combine the 2 hemisphere in 1 label
# labels.append(labels0[0].__add__(labels0[1]))
# ### Medial prefrontal cortex
# # From their schematic it looks like rostral 1/4 of superior frontal gyrus
# label_aparc_names0 = ["G_front_sup"]
# temp_labels = []
# for i in range(len(label_aparc_names0)):
# labels_aparc_idx = [labels_aparc_names.index(l) for l in labels_aparc_names if l.startswith(label_aparc_names0[i])]
# for i2 in range(len(labels_aparc_idx)):
# temp_labels0 = labels_aparc[labels_aparc_idx[i2]].copy()
# temp_labels0 = temp_labels0.split(4, subjects_dir=subjects_dir)[3]
# temp_labels0.name = "mPFC-{}".format(temp_labels0.hemi)
# temp_labels.append(temp_labels0)
# # Combine the 2 hemisphere in 1 label
# labels.append(temp_labels[0].__add__(temp_labels[1]))
# ### Angular gyrus
# label_aparc_names0 = ["G_pariet_inf-Angular"]
# for i in range(len(label_aparc_names0)):
# labels_aparc_idx = [labels_aparc_names.index(l) for l in labels_aparc_names if l.startswith(label_aparc_names0[i])]
# for i2 in range(len(labels_aparc_idx)):
# temp_labels = labels_aparc[labels_aparc_idx[i2]].copy()
# temp_labels.name = "ANG-{}".format(temp_labels.hemi)
# labels.append(temp_labels)
# ### Posterior middle frontal gyrus
# label_aparc_names0 = ["G_front_middle"]
# for i in range(len(label_aparc_names0)):
# labels_aparc_idx = [labels_aparc_names.index(l) for l in labels_aparc_names if l.startswith(label_aparc_names0[i])]
# for i2 in range(len(labels_aparc_idx)):
# temp_labels = labels_aparc[labels_aparc_idx[i2]].copy()
# temp_labels = temp_labels.split(2, subjects_dir=subjects_dir)[0]
# temp_labels.name = "PMFG-{}".format(temp_labels.hemi)
# labels.append(temp_labels)
# ### Inferior parietal lobule
# # From their parcellation figure seems to be rostral angular gyrus and posterior supramarginal gyrus
# label_aparc_names0 = ["G_pariet_inf-Angular","G_pariet_inf-Supramar"]
# temp_labels = []
# for i in range(len(label_aparc_names0)):
# labels_aparc_idx = [labels_aparc_names.index(l) for l in labels_aparc_names if l.startswith(label_aparc_names0[i])]
# for i2 in range(len(labels_aparc_idx)):
# temp_labels.append(labels_aparc[labels_aparc_idx[i2]].copy())
# # Split angular in 2 and get rostral part
# temp_labels[0] = temp_labels[0].split(2, subjects_dir=subjects_dir)[1]
# temp_labels[1] = temp_labels[1].split(2, subjects_dir=subjects_dir)[1]
# # Split supramarginal in 2 and get posterior part
# temp_labels[2] = temp_labels[2].split(2, subjects_dir=subjects_dir)[0]
# temp_labels[3] = temp_labels[3].split(2, subjects_dir=subjects_dir)[0]
# for hem in range(2):
# PCC_p1 = temp_labels[hem]
# for i in range(1,len(temp_labels)//2):
# PCC_p2 = temp_labels[hem+2*i]
# PCC_p1 = PCC_p1.__add__(PCC_p2)
# PCC_p1.name = "IPL-{}".format(PCC_p1.hemi)
# labels.append(PCC_p1)
# ### Orbital gyrus
# # From their figure it seems to correspond to orbital part of inferior frontal gyrus
# label_aparc_names0 = ["G_front_inf-Orbital"]
# for i in range(len(label_aparc_names0)):
# labels_aparc_idx = [labels_aparc_names.index(l) for l in labels_aparc_names if l.startswith(label_aparc_names0[i])]
# for i2 in range(len(labels_aparc_idx)):
# temp_labels = labels_aparc[labels_aparc_idx[i2]].copy()
# temp_labels.name = "ORB-{}".format(temp_labels.hemi)
# labels.append(temp_labels)
# ### Middle temporal gyrus
# # From their figure it seems to only be 1/4 of MTG at the 2nd to last caudal part
# label_aparc_names0 = ["G_temporal_middle"]
# for i in range(len(label_aparc_names0)):
# labels_aparc_idx = [labels_aparc_names.index(l) for l in labels_aparc_names if l.startswith(label_aparc_names0[i])]
# for i2 in range(len(labels_aparc_idx)):
# temp_labels = labels_aparc[labels_aparc_idx[i2]].copy()
# temp_labels = temp_labels.split(4, subjects_dir=subjects_dir)[1]
# temp_labels.name = "MTG-{}".format(temp_labels.hemi)
# labels.append(temp_labels)
# ### Anterior middle frontal gyrus
# label_aparc_names0 = ["G_front_middle"]
# for i in range(len(label_aparc_names0)):
# labels_aparc_idx = [labels_aparc_names.index(l) for l in labels_aparc_names if l.startswith(label_aparc_names0[i])]
# for i2 in range(len(labels_aparc_idx)):
# temp_labels = labels_aparc[labels_aparc_idx[i2]].copy()
# temp_labels = temp_labels.split(2, subjects_dir=subjects_dir)[1]
# temp_labels.name = "AMFG-{}".format(temp_labels.hemi)
# labels.append(temp_labels)
# ### Insula
# label_aparc_names0 = ["G_Ins_lg_and_S_cent_ins","G_insular_short"]
# temp_labels = []
# for i in range(len(label_aparc_names0)):
# labels_aparc_idx = [labels_aparc_names.index(l) for l in labels_aparc_names if l.startswith(label_aparc_names0[i])]
# for i2 in range(len(labels_aparc_idx)):
# temp_labels.append(labels_aparc[labels_aparc_idx[i2]].copy())
# for hem in range(2):
# PCC_p1 = temp_labels[hem]
# for i in range(1,len(temp_labels)//2):
# PCC_p2 = temp_labels[hem+2*i]
# PCC_p1 = PCC_p1.__add__(PCC_p2)
# PCC_p1.name = "INS-{}".format(PCC_p1.hemi)
# labels.append(PCC_p1)
# ### (Dorsal) Anterior Cingulate Cortex
# label_aparc_names0 = ["G_and_S_cingul-Ant"]
# temp_labels = []
# for i in range(len(label_aparc_names0)):
# labels_aparc_idx = [labels_aparc_names.index(l) for l in labels_aparc_names if l.startswith(label_aparc_names0[i])]
# for i2 in range(len(labels_aparc_idx)):
# temp_labels.append(labels_aparc[labels_aparc_idx[i2]].copy())
# temp_labels[-1].name = "ACC-{}".format(temp_labels[-1].hemi)
# # Combine the 2 hemisphere in 1 label
# labels.append(temp_labels[0].__add__(temp_labels[1]))
# ### Supramarginal Gyrus
# label_aparc_names0 = ["G_pariet_inf-Supramar"]
# for i in range(len(label_aparc_names0)):
# labels_aparc_idx = [labels_aparc_names.index(l) for l in labels_aparc_names if l.startswith(label_aparc_names0[i])]
# for i2 in range(len(labels_aparc_idx)):
# temp_labels = labels_aparc[labels_aparc_idx[i2]].copy()
# temp_labels.name = "SUP-{}".format(temp_labels.hemi)
# labels.append(temp_labels)
# print("{} ROIs have been defined".format(len(labels)))
# # # Visualize positions
# # fig = plt.figure()
# # ax = fig.add_subplot(111, projection="3d")
# # for i in range(0,3):
# # temp_pos = temp_labels[i].pos
# # ax.scatter(temp_pos[:,0],temp_pos[:,1],temp_pos[:,2], marker="o", alpha=0.1)
# # # Add to plot
# # ax.scatter(labels[-1].pos[:,0],labels[-1].pos[:,1],labels[-1].pos[:,2], marker="o")
# # # Visualize the labels
# # # temp_l = labels_aparc[labels_aparc_idx[0]]
# # temp_l = labels[-2]
# # l_stc = stc[100].in_label(temp_l)
# # l_stc.vertices
# # l_stc.plot(**surfer_kwargs)
# # Save the annotation file
# with open("custom_aparc2009_Li_et_al_2022.pkl", "wb") as file:
# pickle.dump(labels, file)
# # %% Calculate orthogonalized power envelope connectivity in source space
# # In non-interpolated channels
# # Updated 22/1 - 2021 to use delta = 1/81 and assumption
# # about non-correlated and equal variance noise covariance matrix for channels
# # Load
# with open("custom_aparc2009_Li_et_al_2022.pkl", "rb") as file:
# labels = pickle.load(file)
# label_names = [label.name for label in labels]
# # Define function to estimate PEC
# def PEC_estimation(x, freq_bands, sfreq=200):
# """
# This function takes a source timeseries signal x and performs:
# 1. Bandpass filtering
# 2. Hilbert transform to yield analytical signal
# 3. Compute all to all connectivity by iteratively computing for each pair
# a. Orthogonalization
# b. Computing power envelopes by squaring the signals |x|^2
# c. Log-transform to enhance normality
# d. Pearson's correlation between each pair
# e. Fisher's r-to-z transform to enhance normality
# The code has been optimized by inspiration from MNE-Python's function:
# mne.connectivity.enelope_correlation.
# In MNE-python version < 0.22 there was a bug, but after the fix in 0.22
# the mne function is equivalent to my implementation, although they don't
# use epsilon but gives same result with a RuntimeWarning about log(0)
# IMPORTANT NOTE:
# Filtering introduce artifacts for first and last timepoint
# The values are very low, more than 1e-12 less than the others
# If they are not removed, then they will heavily influence Pearson's
# correlation as it is outlier sensitive
# Inputs:
# x - The signal in source space as np.array with shape (ROIs,Timepoints)
# freq_bands - The frequency bands of interest as a dictionary e.g.
# {"alpha": [8.0, 13.0], "beta": [13.0, 30.0]}
# sfreq - The sampling frequency in Hertz
# Output:
# The pairwise connectivity matrix
# """
# n_roi, n_timepoints = x.shape
# n_freq_bands = len(freq_bands)
# epsilon = 1e-100 # small value to prevent log(0) errors
# # Filter the signal in the different freq bands
# PEC_con0 = np.zeros((n_roi,n_roi,n_freq_bands))
# for fname, frange in freq_bands.items():
# fmin, fmax = [float(interval) for interval in frange]
# signal_filtered = mne.filter.filter_data(x, sfreq, fmin, fmax,
# fir_design="firwin", verbose=0)
# # Filtering on finite signals will yield very low values for first
# # and last timepoint, which can create outliers. E.g. 1e-29 compared to 1e-14
# # Outlier sensitive methods, like Pearson's correlation, is therefore
# # heavily affected and this systematic error is removed by removing
# # the first and last timepoint
# signal_filtered = signal_filtered[:,1:-1]
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
# # Hilbert transform
# analytic_signal = scipy.signal.hilbert(signal_filtered)
# # I will use x and y to keep track of orthogonalization
# x0 = analytic_signal
# # Get power envelope
# x0_mag = np.abs(x0)
# # Get scaled conjugate used for orthogonalization estimation
# x0_conj_scaled = x0.conj()
# x0_conj_scaled /= x0_mag
# # Take square power envelope
# PEx = np.square(x0_mag)
# # Take log transform
# lnPEx = np.log(PEx+epsilon)
# # Remove mean for Pearson correlation calculation
# lnPEx_nomean = lnPEx - np.mean(lnPEx, axis=-1, keepdims=True) # normalize each roi timeseries
# # Get std for Pearson correlation calculation
# lnPEx_std = np.std(lnPEx, axis=-1)
# lnPEx_std[lnPEx_std == 0] = 1 # Prevent std = 0 problems
# # Prepare con matrix
# con0 = np.zeros((n_roi,n_roi))
# for roi_r, y0 in enumerate(x0): # for each y0
# # Calculate orthogonalized signal y with respect to x for all x
# # Using y_ort = imag(y*x_conj/|x|)
# # I checked the formula in temp_v3 and it works as intended
# # I want to orthogonalize element wise for each timepoint
# y0_ort = (y0*x0_conj_scaled).imag
# # Here y0_ort.shape = (n_roi, n_timepoints)
# # So y is current roi and the first axis gives each x it is orthogonalized to
# # Take the abs to get power envelope
# y0_ort = np.abs(y0_ort)
# # Prevent log(0) error when calculating y_ort on y
# y0_ort[roi_r] = 1. # this will be 0 zero after mean subtraction
# # Take square power envelope
# PEy = np.square(y0_ort) # squared power envelope
# # Take log transform
# lnPEy = np.log(PEy+epsilon)
# # Remove mean for pearson correlation calculation
# lnPEy_nomean = lnPEy - np.mean(lnPEy, axis=-1, keepdims=True)
# # Get std for Pearson correlation calculation
# lnPEy_std = np.std(lnPEy, axis=-1)
# lnPEy_std[lnPEy_std == 0] = 1.
# # Pearson correlation is expectation of X_nomean * Y_nomean for each time-series divided with standard deviations
# PEC = np.mean(lnPEx_nomean*lnPEy_nomean, axis=-1)
# PEC /= lnPEx_std
# PEC /= lnPEy_std
# con0[roi_r] = PEC
# # The con0 connectivity matrix should be read as correlation between
# # orthogonalized y (row number) and x (column number)
# # It is not symmetrical, as cor(roi2_ort, roi1) is not cor(roi1_ort, roi2)
# # To make it symmetrical the average of the absolute correlation
# # of the 2 possibilities for each pair are taken
# con0 = np.abs(con0)
# con0 = (con0.T+con0)/2.
# # Fisher's z transform - which is equivalent to arctanh
# con0 = np.arctanh(con0)
# # The diagonal is not 0 as I wanted to avoid numerical errors with log(0)
# # and used a small epsilon value. Thus the diagonal is explicitly set to 0
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
# # Save to array
# PEC_con0[:,:,list(freq_bands.keys()).index(fname)] = con0
# return PEC_con0
# # Prepare variables
# Freq_Bands = {"delta": [1.25, 4.0],
# "theta": [4.0, 8.0],
# "alpha": [8.0, 13.0],
# "beta": [13.0, 30.0],
# "gamma": [30.0, 49.0]}
# n_freq_bands = len(Freq_Bands)
# n_roi = len(labels)
# # Get current time
# c_time1 = time.localtime()
# c_time1 = time.strftime("%a %d %b %Y %H:%M:%S", c_time1)
# print(c_time1)
# # PEC analysis
# PEC_data_list = [0]*n_subjects
# STCs_list = [0]*n_subjects
# # Using inverse operator as generator interferes with concurrent processes
# # If I run it for multiple subjects I run out of ram
# # Thus concurrent processes are used inside the for loop
# def PEC_analysis(input_args): # iterable epoch number and corresponding ts
# i2, ts = input_args
# # Estimate PEC
# PEC_con0 = PEC_estimation(ts, Freq_Bands, sfreq)
# print("Finished {} out of {} epochs".format(i2+1,n_epochs))
# return i2, PEC_con0, ts
# for i in range(n_subjects):
# n_epochs, n_ch, n_timepoints = source_epochs[i].get_data().shape
# # Use different forward solutions depending on number of channels
# cur_subject_id = Subject_id[i]
# fwd = fwds[i]
# # Using assumption about equal variance and no correlations I make a diagonal matrix
# # Using the default option for 0.2µV std for EEG data
# noise_cov = mne.make_ad_hoc_cov(source_epochs[i].info, None)
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
# # Make inverse operator
# # Using default depth parameter = 0.8 and free orientation (loose = 1)
# inverse_operator = mne.minimum_norm.make_inverse_operator(source_epochs[i].info,
# fwd, noise_cov,
# loose = 1, depth = 0.8,
# verbose = 0)
# src_inv = inverse_operator["src"]
# # Compute inverse solution and retrieve time series for each label
# # Preallocate memory
# label_ts = np.full((n_epochs,len(labels),n_timepoints),np.nan)
# # Define regularization
# snr = 9 # Zhang et al, 2020 used delta = 1/81, which is inverse SNR and correspond to lambda2
# # A for loop is used for each label due to memory issues when doing all labels at the same time
# for l in range(len(labels)):
# stc = mne.minimum_norm.apply_inverse_epochs(source_epochs[i],inverse_operator,
# lambda2 = 1/(snr**2),
# label = labels[l],
# pick_ori = "vector",
# return_generator=False,
# method = "MNE", verbose = 0)
# # Use PCA to reduce the 3 orthogonal directions to 1 principal direction with max power
# # There can be ambiguity about the orientation, thus the one that
# # is pointing most "normal", i.e. closest 90 degrees to the skull is used
# stc_pca = [0]*len(stc)
# for ep in range(n_epochs):
# stc_pca[ep], pca_dir = stc[ep].project(directions="pca", src=src_inv)
# # Get mean time series for the whole label
# temp_label_ts = mne.extract_label_time_course(stc_pca, labels[l], src_inv, mode="mean_flip",
# return_generator=False, verbose=0)
# # Save to array
# label_ts[:,l,:] = np.squeeze(np.array(temp_label_ts))
# print("Finished estimating STC for {} out of {} ROIs".format(l+1,len(labels)))
# # Free up memory
# del stc
# # Prepare variables
# sfreq=source_epochs[i].info["sfreq"]
# n_epochs = len(source_epochs[i])
# # Estimate the pairwise PEC for each epoch
# PEC_con_subject = np.zeros((n_epochs,n_roi,n_roi,n_freq_bands))
# stcs0 = np.zeros((n_epochs,n_roi,int(sfreq)*4)) # 4s epochs
# # Make list of arguments to pass into PEC_analysis using the helper func
# args = []
# for i2 in range(n_epochs):
# args.append((i2,label_ts[i2]))
# with concurrent.futures.ProcessPoolExecutor(max_workers=16) as executor:
# for i2, PEC_result, stc_result in executor.map(PEC_analysis, args): # Function and arguments
# PEC_con_subject[i2] = PEC_result
# stcs0[i2] = stc_result
# # Save to list
# PEC_data_list[i] = PEC_con_subject # [subject](epoch,ch,ch,freq)
# STCs_list[i] = stcs0 # [subject][epoch,roi,timepoint]
# # Print progress
# print("Finished {} out of {} subjects".format(i+1,n_subjects))
# # Get current time
# c_time2 = time.localtime()
# c_time2 = time.strftime("%a %d %b %Y %H:%M:%S", c_time2)
# print("Started", c_time1, "\nFinished",c_time2)
# with open(Feature_savepath+"PEC_each_epoch_drop_interpol_ch_fix_snr.pkl", "wb") as file:
# pickle.dump(PEC_data_list, file)
# with open(Feature_savepath+"STCs_each_epoch_drop_interpol_ch_fix_snr.pkl", "wb") as file:
# pickle.dump(STCs_list, file)
# # # # Load
# # with open(Feature_savepath+"PEC_each_epoch_drop_interpol_ch_fix_snr.pkl", "rb") as file:
# # PEC_data_list = pickle.load(file)
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
# # with open(Feature_savepath+"STCs_each_epoch_drop_interpol_ch_fix_snr.pkl", "rb") as file:
# # STCs_list = pickle.load(file)
# # Average over eye status
# eye_status = list(source_epochs[0].event_id.keys())
# n_eye_status = len(eye_status)
# pec_data = np.zeros((n_subjects,n_eye_status,n_roi,n_roi,n_freq_bands))
# for i in range(n_subjects):
# # Get indices for eyes open and closed
# EC_index = source_epochs[i].events[:,2] == 1
# EO_index = source_epochs[i].events[:,2] == 2
# # Average over the indices and save to array
# pec_data[i,0] = np.mean(PEC_data_list[i][EC_index], axis=0)
# pec_data[i,1] = np.mean(PEC_data_list[i][EO_index], axis=0)
# # Only use the lower diagonal as the diagonal should be 0 (or very small due to numerical errors)
# # And it is symmetric
# for f in range(n_freq_bands):
# pec_data[i,0,:,:,f] = np.tril(pec_data[i,0,:,:,f],k=-1)
# pec_data[i,1,:,:,f] = np.tril(pec_data[i,1,:,:,f],k=-1)
# # Also save as dataframe format for feature selection
# # Convert to Pandas dataframe
# # The dimensions will each be a column with numbers and the last column will be the actual values
# arr = np.column_stack(list(map(np.ravel, np.meshgrid(*map(np.arange, pec_data.shape), indexing="ij"))) + [pec_data.ravel()])
# pec_data_df = pd.DataFrame(arr, columns = ["Subject_ID", "Eye_status", "chx", "chy", "Freq_band", "Value"])
# # Change from numerical coding to actual values
# eye_status = list(source_epochs[0].event_id.keys())
# freq_bands_name = list(Freq_Bands.keys())
# label_names = [label.name for label in labels]
# index_values = [Subject_id,eye_status,label_names,label_names,freq_bands_name]
# for col in range(len(index_values)):
# col_name = pec_data_df.columns[col]
# for shape in range(pec_data.shape[col]): # notice not dataframe but the array
# pec_data_df.loc[pec_data_df.iloc[:,col] == shape,col_name]\
# = index_values[col][shape]
# # Add group status
# Group_status = np.array(["CTRL"]*len(pec_data_df["Subject_ID"]))
# Group_status[np.array([i in cases for i in pec_data_df["Subject_ID"]])] = "PTSD"
# # Add to dataframe
# pec_data_df.insert(3, "Group_status", Group_status)
# # Remove all diagonal and upper-matrix entries by removing zeros
# pec_data_df = pec_data_df.iloc[pec_data_df["Value"].to_numpy().nonzero()]
# # Save df
# pec_data_df.to_pickle(os.path.join(Feature_savepath,"pec_data_drop_interpol_ch_df.pkl"))
# # %% Sparse clustering of PEC for subtyping PTSD group
# # They did it for both eye status together, so all data in one matrix
# # Load PEC df
# # pec_data_df = pd.read_pickle(os.path.join(Feature_savepath,"pec_data_df.pkl"))
# pec_data_df = pd.read_pickle(os.path.join(Feature_savepath,"pec_data_drop_interpol_ch_df.pkl"))
# # Convert to wide format
# # Make function to add measurement column for indexing
# def add_measurement_column(df, measurement = "Text"):
# dummy_variable = [measurement]*df.shape[0]
# df.insert(1, "Measurement", dummy_variable)
# return df
# # Make function to convert column tuple to string
# def convertTupleHeader(header):
# header = list(header)
# str = "_".join(header)
# return str
# # Prepare overall dataframe
# PEC_df = pd.DataFrame(Subject_id, columns = ["Subject_ID"])
# # Add PEC
# pec_data_df = add_measurement_column(pec_data_df, "PEC")
# temp_df = pec_data_df.pivot_table(index="Subject_ID",columns=["Measurement",
# "Eye_status", "chx", "chy",
# "Freq_band"], dropna=True,
# values="Value").reset_index(drop=True)
# # check NaN is properly dropped and subject index is correct
# assert pec_data_df.shape[0] == np.prod(temp_df.shape)
# test1 = pec_data_df.iloc[np.random.randint(n_subjects),:]
# assert test1["Value"] ==\
# temp_df[test1[1]][test1[2]][test1[3]][test1[5]][test1[6]][Subject_id.index(test1[0])]
# # Fix column names
# temp_df.columns = [convertTupleHeader(temp_df.columns[i]) for i in range(len(temp_df.columns))]
# PEC_df = pd.concat([PEC_df,temp_df], axis=1)
# # Add group status
# Groups = ["CTRL", "PTSD"]
# Group_status = np.array([0]*PEC_df.shape[0]) # CTRL = 0
# Group_status[np.array([i in cases for i in PEC_df["Subject_ID"]])] = 1 # PTSD = 1
# PEC_df.insert(1, "Group_status", Group_status)
# # Only use PTSD patient group
# PEC_df2 = PEC_df.loc[PEC_df["Group_status"]==1,:]
# Subject_info_cols = ["Subject_ID","Group_status"]
# # Use gridsearch and permutations to estimate gap statistic and use it to
# # determine number of clusters and sparsity s
# # I will use 100 permutations and test 2 to 6 clusters as Zhang 2020
# # Error when trying to determine Gap statistic for 1 cluster? Also in R package
# max_clusters = 6
# n_sparsity_feat = 20
# perm_res = []
# for k in range(1,max_clusters):
# # Cannot permute with 1 cluster
# n_clusters = k+1
# x = np.array(PEC_df2.copy().drop(Subject_info_cols, axis=1))
# perm = pysparcl.cluster.permute_modified(x, k=n_clusters, verbose=True,
# nvals=n_sparsity_feat, nperms=100)
# perm_res.append(perm)
# # Save the results
# with open(Feature_savepath+"PEC_drop_interpol_ch_kmeans_perm.pkl", "wb") as file:
# pickle.dump(perm_res, file)
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
# # # Load
# # with open(Feature_savepath+"PEC_drop_interpol_ch_kmeans_perm.pkl", "rb") as file:
# # perm_res = pickle.load(file)
# # Convert results to array
# perm_res_arr = np.zeros((len(perm_res)*n_sparsity_feat,4))
# for i in range(len(perm_res)):
# _, gaps, sdgaps, wbounds, _ = perm_res[i].values()
# for i2 in range(n_sparsity_feat):
# perm_res_arr[20*i+i2,0] = i+2 # cluster size
# perm_res_arr[20*i+i2,1] = gaps[i2] # gap statistic
# perm_res_arr[20*i+i2,2] = sdgaps[i2] # gap statistic std
# perm_res_arr[20*i+i2,3] = wbounds[i2] # sparsity feature s
# # For each sparsity s, determine best k using one-standard-error criterion
# # Meaning the cluster and sparsity is chosen for the smallest value of k for a fixed s
# # that fulfill Gap(k) >= Gap(k+1)-std(k+1)
# def one_standard_deviation_search(gaps, std):
# best_gaps = np.argmax(gaps)
# current_gaps = gaps[best_gaps]
# current_std = std[best_gaps]
# current_gaps_idx = best_gaps
# while (gaps[current_gaps_idx-1] >= current_gaps - current_std):
# if current_gaps_idx == 0:
# break
# else:
# current_gaps_idx -= 1
# current_gaps = gaps[current_gaps_idx]
# current_std = std[current_gaps_idx]
# out = current_gaps, current_std, current_gaps_idx
# return out
# best_ks = np.zeros((n_sparsity_feat, 2))
# all_s = np.unique(perm_res_arr[:,3])
# plt.figure(figsize=(12,12))
# for i2 in range(n_sparsity_feat):
# current_s = all_s[i2]
# gaps = perm_res_arr[perm_res_arr[:,3] == current_s,1]
# std = perm_res_arr[perm_res_arr[:,3] == current_s,2]
# _, _, idx = one_standard_deviation_search(gaps, std)
# # Save to array
# best_ks[i2,0] = current_s
# best_ks[i2,1] = perm_res_arr[perm_res_arr[:,3] == current_s,0][idx]
# # Plot gap
# plt.errorbar(perm_res_arr[perm_res_arr[:,3] == current_s,0].astype("int"),
# gaps, yerr=std, capsize=5, label = np.round(current_s,3))
# plt.title("Gap statistic for different fixed s")
# plt.legend(loc=1)
# plt.xlabel("Number of clusters")
# plt.ylabel("Gap statistic")
# best_k = int(scipy.stats.mode(best_ks[:,1])[0])
# # Determine s using fixed k as lowest s within 1 std of max gap statistic
# # According to Witten & Tibshirani, 2010
# best_gaps_idx = np.argmax(perm_res_arr[perm_res_arr[:,0] == best_k,1])
# best_gaps = perm_res_arr[perm_res_arr[:,0] == best_k,1][best_gaps_idx]
# best_gaps_std = perm_res_arr[perm_res_arr[:,0] == best_k,2][best_gaps_idx]
# one_std_crit = perm_res_arr[perm_res_arr[:,0] == best_k,1]>=best_gaps-best_gaps_std
# best_s = np.array([perm_res_arr[perm_res_arr[:,0] == best_k,3][one_std_crit][0]])
# # Perform clustering with k clusters
# x = np.array(PEC_df2.copy().drop(Subject_info_cols, axis=1))
# sparcl = pysparcl.cluster.kmeans(x, k=best_k, wbounds=best_s)[0]
# # Save the results
# with open(Feature_savepath+"PEC_drop_interpol_ch_sparse_kmeans.pkl", "wb") as file:
# pickle.dump(sparcl, file)
# # Get overview of the features chosen and summarize feature type with countplot
# nonzero_idx = sparcl["ws"].nonzero()
# sparcl_features = PEC_df2.copy().drop(Subject_info_cols, axis=1).columns[nonzero_idx]
# # Prepare variables
# Freq_Bands = {"delta": [1.25, 4.0],
# "theta": [4.0, 8.0],
# "alpha": [8.0, 13.0],
# "beta": [13.0, 30.0],
# "gamma": [30.0, 49.0]}
# n_freq_bands = len(Freq_Bands)
# eye_status = list(source_epochs[0].event_id.keys())
# n_eye_status = len(eye_status)
# sparcl_feat = []
# sparcl_feat_counts = []
# for e in range(n_eye_status):
# ee = eye_status[e]
# for f in range(n_freq_bands):
# ff = list(Freq_Bands.keys())[f]
# temp_feat = sparcl_features[sparcl_features.str.contains(("_"+ee))]
# temp_feat = temp_feat[temp_feat.str.contains(("_"+ff))]
# # Save to list
# sparcl_feat.append(temp_feat)
# sparcl_feat_counts.append(["{}_{}".format(ee,ff), len(temp_feat)])
# # Convert the list to dataframe to use in countplot
# sparcl_feat_counts_df = pd.DataFrame(columns=["Eye_status", "Freq_band"])
# for i in range(len(sparcl_feat_counts)):
# # If this feature type does not exist, then skip it
# if sparcl_feat_counts[i][1] == 0:
# continue
# ee, ff = sparcl_feat_counts[i][0].split("_")
# counts = sparcl_feat_counts[i][1]
# temp_df = pd.DataFrame({"Eye_status":np.repeat(ee,counts),
# "Freq_band":np.repeat(ff,counts)})
# sparcl_feat_counts_df = sparcl_feat_counts_df.append(temp_df, ignore_index=True)
# # Fix Freq_band categorical order
# cat_type = pd.CategoricalDtype(categories=list(Freq_Bands.keys()), ordered=True)
# sparcl_feat_counts_df["Freq_band"] = sparcl_feat_counts_df["Freq_band"].astype(cat_type)
# plt.figure(figsize=(8,8))
# g = sns.countplot(y="Freq_band", hue="Eye_status", data=sparcl_feat_counts_df)
# plt.title("PEC Sparse K-means features")
# plt.xlabel("Number of non-zero weights")
# plt.ylabel("Frequency Band")
# # %% Functional connectivity in source space
# # MNE implementation of PLV and wPLI is phase across trials(epochs), e.g. for ERPs
# # I'll use my own manually implemented PLV and wPLI across time and then average across epochs
# # Notice that the new MNE-connectivity library now also takes phase across time
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
# sfreq = final_epochs[0].info["sfreq"]
# # error when using less than 5 cycles for spectrum estimation
# # 1Hz too low with epoch length of 4, thus I changed the fmin to 1.25 for delta
# Freq_Bands = {"delta": [1.25, 4.0],
# "theta": [4.0, 8.0],
# "alpha": [8.0, 13.0],
# "beta": [13.0, 30.0],
# "gamma": [30.0, 49.0]}
# n_freq_bands = len(Freq_Bands)
# freq_centers = np.array([2.5,6,10.5,21.5,40])
# # Convert to tuples for the mne function
# fmin=tuple([list(Freq_Bands.values())[f][0] for f in range(len(Freq_Bands))])
# fmax=tuple([list(Freq_Bands.values())[f][1] for f in range(len(Freq_Bands))])
# # Make linspace array for morlet waves
# freq_centers = np.arange(fmin[0],fmax[-1]+0.25,0.25)
# # Prepare Morlets
# morlets = mne.time_frequency.tfr.morlet(sfreq,freq_centers,n_cycles=3)
# # Make freqs array for indexing
# freqs0 = [0]*n_freq_bands
# for f in range(n_freq_bands):
# freqs0[f] = freq_centers[(freq_centers>=fmin[f]) & (freq_centers<=fmax[f])]
# # The in-built connectivity function gives an (n_channel, n_channel, freqs output
# # For loop over subject ID and eye status is implemented
# n_subjects = len(Subject_id)
# eye_status = list(final_epochs[0].event_id.keys())
# n_eye_status = len(eye_status)
# ch_names = final_epochs[0].info["ch_names"]
# # Load source labels
# with open("custom_aparc2009_Li_et_al_2022.pkl", "rb") as file:
# labels = pickle.load(file)
# label_names = [label.name for label in labels]
# n_sources = len(label_names)
# # Connectivity methods
# connectivity_methods = ["coh","imcoh","plv","wpli"]
# n_con_methods=len(connectivity_methods)
# # Number of pairwise ch connections
# n_ch_connections = scipy.special.comb(n_sources,2, exact=True, repetition=False)
# # Load source time series
# with open(Feature_savepath+"STCs_each_epoch_drop_interpol_ch_fix_snr.pkl", "rb") as file:
# STCs_list = pickle.load(file)
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
# # I made my own slightly-optimized PLV & WPLI function
# # Version 2 based on Filter + Hilbert instead of Morlets
# def calculate_PLV_WPLI_across_time(data):
# n_ch, n_time0 = data.shape
# x = data.copy()
# # Filter the signal in the different freq bands
# con_array0 = np.zeros((2,n_ch,n_ch,n_freq_bands))
# # con_array0[con_array0==0] = np.nan
# for fname, frange in Freq_Bands.items():
# fmin, fmax = [float(interval) for interval in frange]
# signal_filtered = mne.filter.filter_data(x, sfreq, fmin, fmax,
# fir_design="firwin", verbose=0)
# # Filtering on finite signals will yield very low values for first
# # and last timepoint, which can create outliers. E.g. 1e-29 compared to 1e-14
# # This systematic error is removed by removing the first and last timepoint
# signal_filtered = signal_filtered[:,1:-1]
# # Hilbert transform to get complex signal
# analytic_signal = scipy.signal.hilbert(signal_filtered)
# # Calculate for the lower diagnonal only as it is symmetric
# for ch_r in range(n_ch):
# for ch_c in range(n_ch):
# if ch_r>ch_c:
# # =========================================================================
# # PLV over time correspond to mean across time of the absolute value of
# # the circular length of the relative phases. So PLV will be 1 if
# # the phases of 2 signals maintain a constant lag
# # In equational form: PLV = 1/N * |sum(e^i(phase1-phase2))|
# # In code: abs(mean(exp(1i*phase_diff)))
# # =========================================================================
# # The real part correspond to the amplitude and the imaginary part can be used to calculate the phase
# phase_diff = np.angle(analytic_signal[ch_r])-np.angle(analytic_signal[ch_c])
# # Convert phase difference to complex part i(phase1-phase2)
# phase_diff_im = 0*phase_diff+1j*phase_diff
# # Take the exponential, then the mean followed by absolute value
# PLV = np.abs(np.mean(np.exp(phase_diff_im)))
# # Save to array
# con_array0[0,ch_r,ch_c,list(Freq_Bands.keys()).index(fname)] = PLV
# # =========================================================================
# # PLI over time correspond to the sign of the sine of relative phase
# # differences. So PLI will be 1 if one signal is always leading or
# # lagging behind the other signal. But it is insensitive to changes in
# # relative phase, as long as it is the same signal that leads.
# # If 2 signals are almost in phase, they might shift between lead/lag
# # due to small fluctuations from noise. This would lead to unstable
# # estimation of "phase" synchronisation.
# # The wPLI tries to correct for this by weighting the PLI with the
# # magnitude of the lag, to attenuate noise sources giving rise to
# # near zero phase lag "synchronization"
# # In equational form: WPLI = |E{|phase_diff|*sign(phase_diff)}| / E{|phase_diff|}
# # =========================================================================
# # Calculate the magnitude of phase differences
# phase_diff_mag = np.abs(np.sin(phase_diff))
# # Calculate the signed phase difference (PLI)
# sign_phase_diff = np.sign(np.sin(phase_diff))
# # Calculate the nominator (abs and average across time)
# WPLI_nominator = np.abs(np.mean(phase_diff_mag*sign_phase_diff))
# # Calculate denominator for normalization
# WPLI_denom = np.mean(phase_diff_mag)
# # Calculate WPLI
# WPLI = WPLI_nominator/WPLI_denom
# # Save to array
# con_array0[1,ch_r,ch_c,list(Freq_Bands.keys()).index(fname)] = WPLI
# return con_array0
# # Pre-allocatate memory
# con_data = np.zeros((n_con_methods,n_subjects,n_eye_status,n_sources,n_sources,n_freq_bands))
# n_epochs_matrix = np.zeros((n_subjects,n_eye_status))
# # Get current time
# c_time = time.localtime()
# c_time = time.strftime("%H:%M:%S", c_time)
# print(c_time)
# def connectivity_estimation(i):
# con_data0 = np.zeros((n_con_methods,n_eye_status,n_sources,n_sources,n_freq_bands))
# con_data0[con_data0==0] = np.nan
# n_epochs_matrix0 = np.zeros((n_eye_status))
# for e in range(n_eye_status):
# ee = eye_status[e]
# eye_idx = final_epochs[i].events[:,2] == e+1 # EC = 1 and EO = 2
# # Get source time series
# temp_STC = STCs_list[i][eye_idx]
# # Calculate the coherence and ImgCoh for the given subject and eye status
# con, freqs, times, n_epochs, n_tapers = spectral_connectivity(
# temp_STC, method=connectivity_methods[0:2],
# mode="multitaper", sfreq=sfreq, fmin=fmin, fmax=fmax,
# faverage=True, verbose=0)
# # Save the results in array
# con_data0[0,e,:,:,:] = con[0] # coherence
# con_data0[1,e,:,:,:] = np.abs(con[1]) # Absolute value of ImgCoh to reflect magnitude of ImgCoh
# # Calculate PLV and wPLI for each epoch and then average
# n_epochs0 = temp_STC.shape[0]
# con_data1 = np.zeros((len(connectivity_methods[2:]),n_epochs0,n_sources,n_sources,n_freq_bands))
# for epoch in range(n_epochs0):
# # First the data is retrieved and epoch axis dropped
# temp_data = temp_STC[epoch,:,:]
# # PLV and WPLI value is calculated across timepoints in each freq band
# PLV_WPLI_con = calculate_PLV_WPLI_across_time(temp_data)
# # Save results
# con_data1[0,epoch,:,:,:] = PLV_WPLI_con[0] # phase locking value
# con_data1[1,epoch,:,:,:] = PLV_WPLI_con[1] # weighted phase lag index
# # Take average across epochs for PLV and wPLI
# con_data2 = np.mean(con_data1,axis=1)
# # Save to final array
# con_data0[2,e,:,:,:] = con_data2[0] # phase locking value
# con_data0[3,e,:,:,:] = con_data2[1] # weighted phase lag index
# n_epochs_matrix0[e] = n_epochs
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
# print("{} out of {} finished".format(i+1,n_subjects))
# return i, con_data0, n_epochs_matrix0
# with concurrent.futures.ProcessPoolExecutor(max_workers=16) as executor:
# for i, con_result, n_epochs_mat in executor.map(connectivity_estimation, range(n_subjects)): # Function and arguments
# con_data[:,i,:,:,:,:] = con_result
# n_epochs_matrix[i] = n_epochs_mat
# # Get current time
# c_time = time.localtime()
# c_time = time.strftime("%H:%M:%S", c_time)
# print(c_time)
# # Save the results
# np.save(Feature_savepath+"Source_drop_interpol_ch_connectivity_measures_data.npy", con_data) # (con_measure,subject,eye,ch,ch,freq)
# # Also save as dataframe format for feature selection
# # Convert to Pandas dataframe
# # The dimensions will each be a column with numbers and the last column will be the actual values
# arr = np.column_stack(list(map(np.ravel, np.meshgrid(*map(np.arange, con_data.shape), indexing="ij"))) + [con_data.ravel()])
# con_data_df = pd.DataFrame(arr, columns = ["Con_measurement", "Subject_ID", "Eye_status", "chx", "chy", "Freq_band", "Value"])
# # Change from numerical coding to actual values
# eye_status = list(final_epochs[0].event_id.keys())
# freq_bands_name = list(Freq_Bands.keys())
# index_values = [connectivity_methods,Subject_id,eye_status,label_names,label_names,freq_bands_name]
# for col in range(len(index_values)):
# col_name = con_data_df.columns[col]
# for shape in range(con_data.shape[col]): # notice not dataframe but the array
# con_data_df.loc[con_data_df.iloc[:,col] == shape,col_name]\
# = index_values[col][shape]
# # Add group status
# Group_status = np.array(["CTRL"]*len(con_data_df["Subject_ID"]))
# Group_status[np.array([i in cases for i in con_data_df["Subject_ID"]])] = "PTSD"
# # Add to dataframe
# con_data_df.insert(3, "Group_status", Group_status)
# # Remove all diagonal and upper-matrix entries
# con_data_df = con_data_df.iloc[con_data_df["Value"].to_numpy().nonzero()]
# # Save df
# con_data_df.to_pickle(os.path.join(Feature_savepath,"con_data_source_drop_interpol_df.pkl"))
# # %% Estimate Granger's Causality in source space
# # Load source labels
# with open("custom_aparc2009_Li_et_al_2022.pkl", "rb") as file:
# labels = pickle.load(file)
# label_names = [label.name for label in labels]
# n_sources = len(label_names)
# # Load source time series
# with open(Feature_savepath+"STCs_each_epoch_drop_interpol_ch_fix_snr.pkl", "rb") as file:
# STCs_list = pickle.load(file)
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
# # Granger's causality might be influenced by volume conduction, thus working with CSD might be beneficial
# # But since I already used source modelling to alleviate this problem I will not apply CSD
# # Barrett et al, 2012 also do not apply CSD on source GC
# # GC assumes stationarity, thus I will test for stationarity using ADF test
# # The null hypothesis of ADF is that it has unit root, i.e. is non-stationary
# # I will test how many can reject the null hypothesis, i.e. are stationary
# # Due to the low numerical values in STC the ADF test is unstable, thus I multiply it to be around 1e0
# stationary_test_arr = [0]*n_subjects
# n_tests = [0]*n_subjects
# for i in range(n_subjects):
# # Get data
# data_arr = STCs_list[i]
# # Get shape
# n_epochs, n_channels, n_timepoints = data_arr.shape
# # Create array for indices to print out progress
# ep_progress_idx = np.arange(n_epochs//5,n_epochs,n_epochs//5)
# # Calculate number of tests performed for each subject
# n_tests[i] = n_epochs*n_channels
# # Prepare empty array (with 2's as 0 and 1 will be used)
# stationary_test_arr0 = np.zeros((n_epochs,n_channels))+2 # make array of 2's
# for ep in range(n_epochs):
# for c in range(n_channels):
# ADF = adfuller(data_arr[ep,c,:]*1e14) # multilying with a constant does not change ADF, but helps against numerical instability
# p_value = ADF[1]
# if p_value < 0.05:
# stationary_test_arr0[ep,c] = True # Stationary set to 1
# else:
# stationary_test_arr0[ep,c] = False # Non-stationary set to 0
# # Print partial progress
# if len(np.where(ep_progress_idx==ep)[0]) > 0:
# print("Finished epoch number: {} out of {}".format(ep,n_epochs))
# # Indices that were not tested
# no_test_idx = np.where(stationary_test_arr0==2)[0]
# if len(no_test_idx) > 0:
# print("An unexpected error occurred and {} was not tested".format(no_test_idx))
# # Save to list
# stationary_test_arr[i] = stationary_test_arr0
# # Print progress
# print("Finished subject {} out of {}".format(i+1,n_subjects))
# with open(Stat_savepath+"Source_drop_interpol_GC_stationarity_tests.pkl", "wb") as filehandle:
# # The data is stored as binary data stream
# pickle.dump(stationary_test_arr, filehandle)
# # I used a threshold of 0.05
# # This means that on average I would expect 5% false positives among the tests that showed significance for stationarity
# ratio_stationary = [0]*n_subjects
# for i in range(n_subjects):
# # Ratio of tests that showed stationarity
# ratio_stationary[i] = np.sum(stationary_test_arr[i])/n_tests[i]
# print("Ratio of stationary time series: {0:.3f}".format(np.mean(ratio_stationary))) # 88%
# # The pre-processing have already ensured that most of the data fulfills the stationarity assumption.
# # Divide the data into eyes closed and open
# ch_names = label_names
# n_channels = len(ch_names)
# STC_eye_data = []
# for i in range(n_subjects):
# # Get index for eyes open and eyes closed
# EC_index = final_epochs[i].events[:,2] == 1
# EO_index = final_epochs[i].events[:,2] == 2
# # Get the data
# EC_epoch_data = STCs_list[i][EC_index,:,:] # eye index
# EO_epoch_data = STCs_list[i][EO_index,:,:]
# # Save to list
# STC_eye_data.append([EC_epoch_data, EO_epoch_data])
# # Make each epoch a TimeSeries object
# # Input for TimeSeries is: (ch, time)
# eye_status = list(final_epochs[0].event_id.keys())
# n_eye_status = len(eye_status)
# sfreq = final_epochs[0].info["sfreq"]
# Timeseries_data = []
# for i in range(n_subjects):
# temp_list1 = []
# for e in range(n_eye_status):
# temp_list2 = []
# n_epochs = STC_eye_data[i][e].shape[0]
# for ep in range(n_epochs):
# # Convert to TimeSeries
# time_series = nts.TimeSeries(STC_eye_data[i][e][ep,:,:], sampling_rate=sfreq)
# # Save the object
# temp_list2.append(time_series)
# # Save the timeseries across eye status
# temp_list1.append(temp_list2)
# # Save the timeseries across subjects
# Timeseries_data.append(temp_list1) # output [subject][eye][epoch](ch,time)
# # Test multiple specified model orders of AR models, each combination has its own model
# m_orders = np.linspace(1,25,25) # the model orders tested
# m_orders = np.round(m_orders)
# n_timepoints = len(Timeseries_data[0][0][0])
# n_ch_combinations = scipy.special.comb(n_channels,2, exact=True, repetition=False)
# # To reduce computation time I only test representative epochs (1 from each 1 min session)
# # There will be 5 epochs from eyes closed and 5 from eyes open
# n_rep_epoch = 5
# # The subjects have different number of epochs due to dropped epochs
# gaps_trials_idx = np.load("Gaps_trials_idx.npy") # time_points between sessions
# # I convert the gap time points to epoch number used as representative epoch
# epoch_idx = np.zeros((n_subjects,n_eye_status,n_rep_epoch), dtype=int) # prepare array
# epoch_idx[:,:,0:4] = np.round(gaps_trials_idx/n_timepoints,0)-8 # take random epoch from sessions 1 to 4
# epoch_idx[:,:,4] = np.round(gaps_trials_idx[:,:,3]/n_timepoints,0)+5 # take random epoch from session 5
# # Checking if all epoch idx exists
# for i in range(n_subjects):
# EC_index = final_epochs[i].events[:,2] == 1
# EO_index = final_epochs[i].events[:,2] == 2
# assert np.sum(EC_index) >= epoch_idx[i,0,4]
# assert np.sum(EO_index) >= epoch_idx[i,1,4]
# # Prepare model order estimation
# AIC_arr = np.zeros((len(m_orders),n_subjects,n_eye_status,n_rep_epoch,n_ch_combinations))
# BIC_arr = np.zeros((len(m_orders),n_subjects,n_eye_status,n_rep_epoch,n_ch_combinations))
# def GC_model_order_est(i):
# AIC_arr0 = np.zeros((len(m_orders),n_eye_status,n_rep_epoch,n_ch_combinations))
# BIC_arr0 = np.zeros((len(m_orders),n_eye_status,n_rep_epoch,n_ch_combinations))
# for e in range(n_eye_status):
# n_epochs = STC_eye_data[i][e].shape[0]
# N_total = n_timepoints*n_epochs # total number of datapoints for specific eye condition
# for ep in range(n_rep_epoch):
# epp = epoch_idx[i,e,ep]
# for o in range(len(m_orders)):
# order = int(m_orders[o])
# # Make the Granger Causality object
# GCA1 = nta.GrangerAnalyzer(Timeseries_data[i][e][epp-1], order=order,
# n_freqs=2000)
# for c in range(n_ch_combinations):
# # Retrieve error covariance matrix for all combinations
# ecov = np.array(list(GCA1.error_cov.values()))
# # Calculate AIC
# AIC = ntsu.akaike_information_criterion(ecov[c,:,:], p = n_channels,
# m=order, Ntotal=N_total)
# # Calculate BIC
# BIC = ntsu.bayesian_information_criterion(ecov[c,:,:], p = n_channels,
# m=order, Ntotal=N_total)
# # Save the information criterions
# AIC_arr0[o,e,ep,c] = AIC
# BIC_arr0[o,e,ep,c] = BIC
# print("{} out of {} finished testing".format(i+1,n_subjects))
# return i, AIC_arr0, BIC_arr0
# # Get current time
# c_time1 = time.localtime()
# c_time1 = time.strftime("%a %d %b %Y %H:%M:%S", c_time1)
# print(c_time1)
# with concurrent.futures.ProcessPoolExecutor() as executor:
# for i, AIC_result, BIC_result in executor.map(GC_model_order_est, range(n_subjects)): # Function and arguments
# AIC_arr[:,i] = AIC_result
# BIC_arr[:,i] = BIC_result
# # Get current time
# c_time2 = time.localtime()
# c_time2 = time.strftime("%a %d %b %Y %H:%M:%S", c_time2)
# print("Started", c_time1, "\nCurrent Time",c_time2)
# # Save the AIC and BIC results
# np.save(Feature_savepath+"AIC_Source_drop_interpol_GC_model_order.npy", AIC_arr) # (m. order, subject, eye, epoch, combination)
# np.save(Feature_savepath+"BIC_Source_drop_interpol_GC_model_order.npy", BIC_arr) # (m. order, subject, eye, epoch, combination)
# # Load data
# AIC_arr = np.load(Feature_savepath+"AIC_Source_drop_interpol_GC_model_order.npy")
# BIC_arr = np.load(Feature_savepath+"BIC_Source_drop_interpol_GC_model_order.npy")
# # Average across all subjects, eye status, epochs and combinations
# plt.figure(figsize=(8,6))
# plt.plot(m_orders, np.nanmean(AIC_arr, axis=(1,2,3,4)), label="AIC")
# plt.plot(m_orders, np.nanmean(BIC_arr, axis=(1,2,3,4)), label="BIC")
# plt.title("Average information criteria value")
# plt.xlabel("Model order (Lag)")
# plt.legend()
# np.sum(np.isnan(AIC_arr))/AIC_arr.size # around 0.07% NaN due to non-convergence
# np.sum(np.isnan(BIC_arr))/BIC_arr.size # around 0.07% NaN due to non-convergence
# # If we look at each subject
# mean_subject_AIC = np.nanmean(AIC_arr, axis=(2,3,4))
# plt.figure(figsize=(8,6))
# for i in range(n_subjects):
# plt.plot(m_orders, mean_subject_AIC[:,i])
# plt.title("Average AIC for each subject")
# plt.xlabel("Model order (Lag)")
# mean_subject_BIC = np.nanmean(BIC_arr, axis=(2,3,4))
# plt.figure(figsize=(8,6))
# for i in range(n_subjects):
# plt.plot(m_orders, mean_subject_BIC[:,i])
# plt.title("Average BIC for each subject")
# plt.xlabel("Model order (Lag)")
# # We see that for many cases in BIC, it does not converge. Monotonic increasing!
# # We can look at the distribution of chosen order for each time series analyzed
# # I.e. I will find the minima in model order for each model
# AIC_min_arr = np.argmin(AIC_arr, axis=0)
# BIC_min_arr = np.argmin(BIC_arr, axis=0)
# # Plot the distributions of the model order chosen
# plt.figure(figsize=(8,6))
# sns.distplot(AIC_min_arr.reshape(-1)+1, kde=False, norm_hist=True,
# bins=np.linspace(0.75,30.25,60), label="AIC")
# plt.ylabel("Frequency density")
# plt.xlabel("Model order")
# plt.title("AIC Model Order Estimation")
# plt.figure(figsize=(8,6))
# sns.distplot(BIC_min_arr.reshape(-1)+1, kde=False, norm_hist=True, color="blue",
# bins=np.linspace(0.75,30.25,60), label="BIC")
# plt.ylabel("Frequency density")
# plt.xlabel("Model order")
# plt.title("BIC Model Order Estimation")
# # It is clear from the BIC model that most have model order 1
# # which reflect their monotonic increasing nature without convergence
# # Thus I will only use AIC
# # There is a bias variance trade-off with model order [Stokes & Purdon, 2017]
# # Lower order is associated with higher bias and higher order with variance
# # I will choose the model order that is chosen the most (i.e. majority voting)
# AR_order = int(np.nanquantile(AIC_min_arr.reshape(-1), q=0.5))
# # Order = 5
# # Calculate Granger Causality for each subject, eye and epoch
# Freq_Bands = {"delta": [1.25, 4.0],
# "theta": [4.0, 8.0],
# "alpha": [8.0, 13.0],
# "beta": [13.0, 30.0],
# "gamma": [30.0, 49.0]}
# n_freq_bands = len(Freq_Bands)
# # Pre-allocate memory
# GC_data = np.zeros((2,n_subjects,n_eye_status,n_channels,n_channels,n_freq_bands))
# def GC_analysis(i):
# GC_data0 = np.zeros((2,n_eye_status,n_channels,n_channels,n_freq_bands))
# for e in range(n_eye_status):
# n_epochs = STC_eye_data[i][e].shape[0]
# # Make temporary array to save GC for each epoch
# temp_GC_data = np.zeros((2,n_epochs,n_channels,n_channels,n_freq_bands))
# for ep in range(n_epochs):
# # Fit the AR model
# GCA = nta.GrangerAnalyzer(Timeseries_data[i][e][ep], order=AR_order,
# n_freqs=int(800)) # n_Freq=800 correspond to step of 0.25Hz, the same as multitaper for power estimation
# for f in range(n_freq_bands):
# # Define lower and upper band
# f_lb = list(Freq_Bands.values())[f][0]
# f_ub = list(Freq_Bands.values())[f][1]
# # Get index corresponding to the frequency bands of interest
# freq_idx_G = np.where((GCA.frequencies >= f_lb) * (GCA.frequencies < f_ub))[0]
# # Calculcate Granger causality quantities
# g_xy = np.mean(GCA.causality_xy[:, :, freq_idx_G], -1) # avg on last dimension
# g_yx = np.mean(GCA.causality_yx[:, :, freq_idx_G], -1) # avg on last dimension
# # Transpose to use same format as con_measurement and save
# temp_GC_data[0,ep,:,:,f] = np.transpose(g_xy)
# temp_GC_data[1,ep,:,:,f] = np.transpose(g_yx)
# # Average over epochs for each person, eye condition, direction and frequency band
# temp_GC_epoch_mean = np.nanmean(temp_GC_data, axis=1) # sometimes Log(Sxx/xx_auto_component) is nan
# # Save to array
# GC_data0[:,e,:,:,:] = temp_GC_epoch_mean
# print("{} out of {} finished analyzing".format(i+1,n_subjects))
# return i, GC_data0
# # Get current time
# c_time1 = time.localtime()
# c_time1 = time.strftime("%a %d %b %Y %H:%M:%S", c_time1)
# print(c_time1)
# with concurrent.futures.ProcessPoolExecutor() as executor:
# for i, GC_result in executor.map(GC_analysis, range(n_subjects)): # Function and arguments
# GC_data[:,i] = GC_result
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
# # Get current time
# c_time2 = time.localtime()
# c_time2 = time.strftime("%a %d %b %Y %H:%M:%S", c_time2)
# print("Started", c_time1, "\nCurrent Time",c_time2)
# # Output: GC_data (g_xy/g_yx, subject, eye, chx, chy, freq)
# # Notice that for g_xy ([0,...]) it means "chy" Granger causes "chx"
# # and for g_yx ([1,...]) it means "chx" Granger causes "chy"
# # This is due to the transposing which flipped the results on to the lower-part of the diagonal
# # Save the Granger_Causality data
# np.save(Feature_savepath+"Source_drop_interpol_GrangerCausality_data.npy", GC_data)
# # Theoretically negative GC values should be impossible, but in practice
# # they can still occur due to problems with model fitting (see Stokes & Purdon, 2017)
# print("{:.3f}% negative GC values".\
# format(np.sum(GC_data[~np.isnan(GC_data)]<0)/np.sum(~np.isnan(GC_data))*100)) # 0.08% negative values
# # These values cannot be interpreted, but seems to occur mostly for true non-causal connections
# # Hence I set them to 0
# with np.errstate(invalid="ignore"): # invalid number refers to np.nan, which will be set to False for comparisons
# GC_data[(GC_data<0)] = 0
# # Save as dataframe for further processing with other features
# # Convert to Pandas dataframe
# # The dimensions will each be a column with numbers and the last column will be the actual values
# arr = np.column_stack(list(map(np.ravel, np.meshgrid(*map(np.arange, GC_data.shape), indexing="ij"))) + [GC_data.ravel()])
# GC_data_df = pd.DataFrame(arr, columns = ["GC_direction", "Subject_ID", "Eye_status", "chx", "chy", "Freq_band", "Value"])
# # Change from numerical coding to actual values
# eye_status = list(final_epochs[0].event_id.keys())
# freq_bands_name = list(Freq_Bands.keys())
# GC_directions_info = ["chy -> chx", "chx -> chy"]
# index_values = [GC_directions_info,Subject_id,eye_status,ch_names,ch_names,freq_bands_name]
# for col in range(len(index_values)):
# col_name = GC_data_df.columns[col]
# for shape in range(GC_data.shape[col]): # notice not dataframe but the array
# GC_data_df.loc[GC_data_df.iloc[:,col] == shape,col_name]\
# = index_values[col][shape]
# # Add group status
# Group_status = np.array(["CTRL"]*len(GC_data_df["Subject_ID"]))
# Group_status[np.array([i in cases for i in GC_data_df["Subject_ID"]])] = "PTSD"
# # Add to dataframe
# GC_data_df.insert(3, "Group_status", Group_status)
# # Remove all nan (including diagonal and upper-matrix entries)
# GC_data_df = GC_data_df.iloc[np.invert(np.isnan(GC_data_df["Value"].to_numpy()))]
# # Swap ch values for GC_direction chy -> chx (so it is always chx -> chy)
# tempchy = GC_data_df[GC_data_df["GC_direction"] == "chy -> chx"]["chy"] # save chy
# GC_data_df.loc[GC_data_df["GC_direction"] == "chy -> chx","chy"] =\
# GC_data_df.loc[GC_data_df["GC_direction"] == "chy -> chx","chx"] # overwrite old chy
# GC_data_df.loc[GC_data_df["GC_direction"] == "chy -> chx","chx"] = tempchy # overwrite chx
# # Drop the GC_direction column
# GC_data_df = GC_data_df.drop("GC_direction", axis=1)
# # Save df
# GC_data_df.to_pickle(os.path.join(Feature_savepath,"GC_data_source_drop_interpol_df.pkl"))
# # Testing if df was formatted correctly
# expected_GC_values = n_subjects*n_eye_status*n_ch_combinations*n_freq_bands*2 # 2 because it is bidirectional
# assert GC_data_df.shape[0] == expected_GC_values
# # Testing a random GC value
# random_connection = np.random.randint(0,GC_data_df.shape[0])
# test_connection = GC_data_df.iloc[random_connection,:]
# i = np.where(Subject_id==test_connection["Subject_ID"])[0]
# e = np.where(np.array(eye_status)==test_connection["Eye_status"])[0]
# chx = np.where(np.array(ch_names)==test_connection["chx"])[0]
# chy = np.where(np.array(ch_names)==test_connection["chy"])[0]
# f = np.where(np.array(freq_bands_name)==test_connection["Freq_band"])[0]
# value = test_connection["Value"]
# if chx < chy: # the GC array is only lower diagonal to save memory
# assert GC_data[0,i,e,chy,chx,f] == value
# if chx > chy:
# assert GC_data[1,i,e,chx,chy,f] == value