Skip to content
Snippets Groups Projects
FeatureEstimation.py 130 KiB
Newer Older
glia's avatar
glia committed
# -*- coding: utf-8 -*-
"""
Updated Oct 18 2022

@author: Qianliang Li (glia@dtu.dk)

This script contains the code to estimate the following EEG features:
    1. Power Spectral Density
    2. Frontal Theta/Beta Ratio
    3. Asymmetry
    4. Peak Alpha Frequency
    5. 1/f Exponents
    6. Microstates
    7. Long-Range Temporal Correlation (DFA Exponent)
Source localization and functional connectivity
    8. Imaginary part of Coherence
    9. Weighted Phase Lag Index
    10. (Orthogonalized) Power Envelope Correlations
    11. Granger Causality

It should be run after Preprocessing.py

All features are saved in pandas DataFrame format for the machine learning
pipeline

Note that the code has not been changed to fit the demonstration dataset,
thus just running it might introduce some errors.
The code is provided to show how we performed the feature estimation
and if you are adapting the code, you should check if it fits your dataset
e.g. the questionnaire data, sensors and source parcellation etc

The script was written in Spyder. The outline panel can be used to navigate
the different parts easier (Default shortcut: Ctrl + Shift + O)
"""

glia's avatar
glia committed
# Set working directory
import os
wkdir = "/Users/benj3542/Desktop/Uni/Noter/Semester_6/Bachelor/resting-state-eeg-analysis/"
glia's avatar
glia committed
os.chdir(wkdir)

# Load all libraries from the Preamble
from Preamble import *

# %% Load preprocessed epochs and questionnaire data
load_path = "./PreprocessedData"

# Get filenames
files = []
for r, d, f in os.walk(load_path):
    for file in f:
        if ".fif" in file:
            files.append(os.path.join(r, file))
files.sort()

# Subject IDs
Subject_id = [0] * len(files)
for i in range(len(files)):
    temp = files[i].split("\\")
    temp = temp[-1].split("_")
    Subject_id[i] = int(temp[0][-1]) # Subject_id[i] = int(temp[0])
glia's avatar
glia committed

n_subjects = len(Subject_id)

# Load Final epochs
final_epochs = [0]*n_subjects
for n in range(n_subjects):
    final_epochs[n] = mne.read_epochs(fname = os.path.join(files[n]),
                    verbose=0)

# Load dropped epochs - used for gap idx in microstates
bad_subjects = [12345] # list with subjects that were excluded due to too many dropped epochs/chs
Drop_epochs_df = pd.read_pickle("./Preprocessing/dropped_epochs.pkl")

good_subject_df_idx = [not i in bad_subjects for i in Drop_epochs_df["Subject_ID"]]
Drop_epochs_df = Drop_epochs_df.loc[good_subject_df_idx,:]
Drop_epochs_df = Drop_epochs_df.sort_values(by=["Subject_ID"]).reset_index(drop=True)

### Load questionnaire data
# For the purposes of this demonstration I will make a dummy dataframe
# The original code imported csv files with questionnaire data and group status
final_qdf = pd.DataFrame({"Subject_ID":Subject_id,
                          "Age":[23,26],
                          "Gender":[0,0],
                          "Group_status":[0,1],
                          "PCL_total":[33,56],
                          "Q1":[1.2, 2.3],
                          "Q2":[1.7, 1.5],
                          "Qn":[2.1,1.0]})

# Define cases as >= 44 total PCL
# Type: numpy array with subject id
cases = np.array(final_qdf["Subject_ID"][final_qdf["PCL_total"]>=44])
n_groups = 2
Groups = ["CTRL", "PTSD"]

# Define folder for saving features
Feature_savepath = "./Features/"
Stat_savepath = "./Statistics/"
Model_savepath = "./Model/"

# %% Power spectrum features
Freq_Bands = {"delta": [1.25, 4.0],
              "theta": [4.0, 8.0],
              "alpha": [8.0, 13.0],
              "beta": [13.0, 30.0],
              "gamma": [30.0, 49.0]}
ch_names = final_epochs[0].info["ch_names"]
n_channels = final_epochs[0].info["nchan"]

# Pre-allocate memory
power_bands = [0]*len(final_epochs)

def power_band_estimation(n):
    # Get index for eyes open and eyes closed
    EC_index = final_epochs[n].events[:,2] == 1
    EO_index = final_epochs[n].events[:,2] == 2
    
    # Calculate the power spectral density
    psds, freqs = psd_multitaper(final_epochs[n], fmin = 1, fmax = 50) # output (epochs, channels, freqs)
    
    temp_power_band = []
    
    for fmin, fmax in Freq_Bands.values():
        # Calculate the power each frequency band
        psds_band = psds[:, :, (freqs >= fmin) & (freqs < fmax)].sum(axis=-1)
        # Calculate the mean for each eye status
        psds_band_eye = np.array([psds_band[EC_index,:].mean(axis=0),
                                      psds_band[EO_index,:].mean(axis=0)])
        # Append for each freq band
        temp_power_band.append(psds_band_eye)
        # Output: List with the 5 bands, and each element is a 2D array with eye status as 1st dimension and channels as 2nd dimension
    
    # The list is reshaped and absolute and relative power are calculated
    abs_power_band = np.reshape(temp_power_band, (5, 2, n_channels))
    abs_power_band = 10.*np.log10(abs_power_band) # Convert to decibel scale
    
    rel_power_band = np.reshape(temp_power_band, (5, 2, n_channels))
    rel_power_band = rel_power_band/np.sum(rel_power_band, axis=0, keepdims=True)
    # each eye condition and channel have been normalized to power in all 5 frequencies for that given eye condition and channel
    
    # Make one list in 1 dimension
    abs_power_values = np.concatenate(np.concatenate(abs_power_band, axis=0), axis=0)
    rel_power_values = np.concatenate(np.concatenate(rel_power_band, axis=0), axis=0)
    ## Output: First the channels, then the eye status and finally the frequency bands are concatenated
    ## E.g. element 26 is 3rd channel, eyes open, first frequency band
    #assert abs_power_values[26] == abs_power_band[0,1,2]
    #assert abs_power_values[47] == abs_power_band[0,1,23] # +21 channels to last
    #assert abs_power_values[50] == abs_power_band[1,0,2] # once all channels have been changed then the freq is changed and eye status
    
    # Get result
    res = np.concatenate([abs_power_values,rel_power_values],axis=0)
    return n, res

glia's avatar
glia committed
with concurrent.futures.ProcessPoolExecutor() as executor:
    for n, result in executor.map(power_band_estimation, range(len(final_epochs))): # Function and arguments
        power_bands[n] = result
"""

for i in range(len(power_bands)):
    n, results = power_band_estimation(i)
    power_bands[i] = results
glia's avatar
glia committed

# Combine all data into one dataframe
# First the columns are prepared
n_subjects = len(Subject_id)

# The group status (PTSD/CTRL) is made using the information about the cases
Group_status = np.array(["CTRL"]*n_subjects)
Group_status[np.array([i in cases for i in Subject_id])] = "PTSD"

# A variable that codes the channels based on A/P localization is also made
Frontal_chs = ["Fp1", "Fpz", "Fp2", "AFz", "Fz", "F3", "F4", "F7", "F8"]
Central_chs = ["Cz", "C3", "C4", "T7", "T8", "FT7", "FC3", "FCz", "FC4", "FT8", "TP7", "CP3", "CPz", "CP4", "TP8"]
Posterior_chs = ["Pz", "P3", "P4", "P7", "P8", "POz", "O1", "O2", "Oz"]

Brain_region_labels = ["Frontal","Central","Posterior"]
Brain_region = np.array(ch_names, dtype = "<U9")
Brain_region[np.array([i in Frontal_chs for i in ch_names])] = Brain_region_labels[0]
Brain_region[np.array([i in Central_chs for i in ch_names])] = Brain_region_labels[1]
Brain_region[np.array([i in Posterior_chs for i in ch_names])] = Brain_region_labels[2]

# A variable that codes the channels based on M/L localization
Left_chs = ["Fp1", "F3", "F7", "FC3", "FT7", "C3", "T7", "CP3", "TP7", "P3", "P7", "O1"]
Right_chs = ["Fp2", "F4", "F8", "FC4", "FT8", "C4", "T8", "CP4", "TP8", "P4", "P8", "O2"]
Mid_chs = ["Fpz", "AFz", "Fz", "FCz", "Cz", "CPz", "Pz", "POz", "Oz"]

Brain_side = np.array(ch_names, dtype = "<U5")
Brain_side[np.array([i in Left_chs for i in ch_names])] = "Left"
Brain_side[np.array([i in Right_chs for i in ch_names])] = "Right"
Brain_side[np.array([i in Mid_chs for i in ch_names])] = "Mid"

# Eye status is added
eye_status = list(final_epochs[0].event_id.keys())
n_eye_status = len(eye_status)

# Frequency bands
freq_bands_name = list(Freq_Bands.keys())
n_freq_bands = len(freq_bands_name)
glia's avatar
glia committed

# Quantification (Abs/Rel)
quant_status = ["Absolute", "Relative"]
n_quant_status = len(quant_status)

# The dataframe is made by combining all the unlisted pds values
# Each row correspond to a different channel. It is reset after all channel names have been used
# Each eye status element is repeated n_channel times, before it is reset
# Each freq_band element is repeated n_channel * n_eye_status times, before it is reset
# Each quantification status element is repeated n_channel * n_eye_status * n_freq_bands times, before it is reset
power_df = pd.DataFrame(data = {"Subject_ID": [ele for ele in Subject_id for i in range(n_eye_status*n_quant_status*n_freq_bands*n_channels)],
                                "Group_status": [ele for ele in Group_status for i in range(n_eye_status*n_quant_status*n_freq_bands*n_channels)],
                                "Channel": ch_names*(n_eye_status*n_quant_status*n_freq_bands*n_subjects),
                                "Brain_region": list(Brain_region)*(n_eye_status*n_quant_status*n_freq_bands*n_subjects),
                                "Brain_side": list(Brain_side)*(n_eye_status*n_quant_status*n_freq_bands*n_subjects),
                                "Eye_status": [ele for ele in eye_status for i in range(n_channels)]*n_quant_status*n_freq_bands*n_subjects,
                                "Freq_band": [ele for ele in freq_bands_name for i in range(n_channels*n_eye_status)]*n_quant_status*n_subjects,
                                "Quant_status": [ele for ele in quant_status for i in range(n_channels*n_eye_status*n_freq_bands)]*n_subjects,
                                "PSD": list(np.concatenate(power_bands, axis=0))
                                })
# Absolute power is in decibels (10*log10(power))

# Fix Freq_band categorical order
power_df["Freq_band"] = power_df["Freq_band"].astype("category").\
            cat.reorder_categories(list(Freq_Bands.keys()), ordered=True)
glia's avatar
glia committed
# Fix Brain_region categorical order
power_df["Brain_region"] = power_df["Brain_region"].astype("category").\
            cat.reorder_categories(Brain_region_labels, ordered=True)
glia's avatar
glia committed
# Save the dataframe
power_df.to_pickle(os.path.join(Feature_savepath,"Power_df.pkl"))


# %% Theta-beta ratio
# Frontal theta/beta ratio has been implicated in cognitive control of attention
power_df = pd.read_pickle(os.path.join(Feature_savepath,"Power_df.pkl"))

eye_status = list(final_epochs[0].event_id)
n_eye_status = len(eye_status)

# Subset frontal absolute power
power_df_sub1 = power_df[(power_df["Quant_status"] == "Absolute")&
                         (power_df["Brain_region"] == "Frontal")]
# Subset frontal, midline absolute power
power_df_sub2 = power_df[(power_df["Quant_status"] == "Absolute")&
                            (power_df["Brain_region"] == "Frontal")&
                            (power_df["Brain_side"] == "Mid")]

glia's avatar
glia committed

# Calculate average frontal power theta
glia's avatar
glia committed
frontal_theta_mean_subject = power_df_sub1[power_df_sub1["Freq_band"] == "theta"].\
    groupby(["Subject_ID","Group_status","Eye_status"]).mean().reset_index()

# Calculate average frontal power beta
glia's avatar
glia committed
frontal_beta_mean_subject = power_df_sub1[power_df_sub1["Freq_band"] == "beta"].\
    groupby(["Subject_ID","Group_status","Eye_status"]).mean().reset_index()
# Extract all values
frontal_beta_subject_values = power_df_sub1[power_df_sub1["Freq_band"] == "beta"]
glia's avatar
glia committed

# Calculate average frontal, midline power theta
frontal_midline_theta_mean_subject = power_df_sub2[power_df_sub2["Freq_band"] == "theta"].\
    groupby(["Subject_ID","Group_status","Eye_status"]).mean().reset_index()
# Extract all values
frontal_midline_theta_subject_values = power_df_sub2[power_df_sub2["Freq_band"] == "theta"]
glia's avatar
glia committed
# Convert from dB to raw power
frontal_theta_mean_subject["PSD"] = 10**(frontal_theta_mean_subject["PSD"]/10)
frontal_beta_mean_subject["PSD"] = 10**(frontal_beta_mean_subject["PSD"]/10)
frontal_midline_theta_mean_subject["PSD"] = 10**(frontal_midline_theta_mean_subject["PSD"]/10)
frontal_beta_subject_values["PSD"] = 10**(frontal_beta_subject_values["PSD"]/10)
frontal_midline_theta_subject_values["PSD"] = 10**(frontal_midline_theta_subject_values["PSD"]/10)

frontal_beta_mean_subject.to_pickle(os.path.join(Feature_savepath,"fBMS_df.pkl"))
frontal_midline_theta_mean_subject.to_pickle(os.path.join(Feature_savepath,"fMTMS_df.pkl"))
frontal_beta_subject_values.to_pickle(os.path.join(Feature_savepath,"fBSV_df.pkl"))
frontal_midline_theta_subject_values.to_pickle(os.path.join(Feature_savepath,"fMTSV_df.pkl"))
glia's avatar
glia committed

# Calculate mean for each group and take ratio for whole group
# To confirm trend observed in PSD plots
mean_group_f_theta = frontal_theta_mean_subject.iloc[:,1:].groupby(["Group_status","Eye_status"]).mean()
mean_group_f_beta = frontal_beta_mean_subject.iloc[:,1:].groupby(["Group_status","Eye_status"]).mean()
mean_group_f_theta_beta_ratio = mean_group_f_theta/mean_group_f_beta

# Calculate ratio for each subject
frontal_theta_beta_ratio = frontal_theta_mean_subject.copy()
frontal_theta_beta_ratio["PSD"] = frontal_theta_mean_subject["PSD"]/frontal_beta_mean_subject["PSD"]

# Take the natural log of ratio 
frontal_theta_beta_ratio["PSD"] = np.log(frontal_theta_beta_ratio["PSD"])

# Rename and save feature
frontal_theta_beta_ratio.rename(columns={"PSD":"TBR"},inplace=True)
# Add dummy variable for re-using plot code
dummy_variable = ["Frontal Theta Beta Ratio"]*frontal_theta_beta_ratio.shape[0]
frontal_theta_beta_ratio.insert(3, "Measurement", dummy_variable )

# frontal_theta_beta_ratio.to_pickle(os.path.join(Feature_savepath,"fTBR_df.pkl"))
glia's avatar
glia committed

glia's avatar
glia committed
# %% Frequency bands asymmetry
# Defined as ln(right) - ln(left)
# Thus we should only work with the absolute values and undo the dB transformation
# Here I avg over all areas. I.e. mean((ln(F4)-ln(F3),(ln(F8)-ln(F7),(ln(Fp2)-ln(Fp1))) for frontal
ROI = ["Frontal", "Central", "Posterior"]
qq = "Absolute" # only calculate asymmetry for absolute
# Pre-allocate memory
asymmetry = np.zeros(shape=(len(np.unique(power_df["Subject_ID"])),
                             len(np.unique(power_df["Eye_status"])),
                             len(list(Freq_Bands.keys())),
                             len(ROI)))

def calculate_asymmetry(i):
    ii = np.unique(power_df["Subject_ID"])[i]
    temp_asymmetry = np.zeros(shape=(len(np.unique(power_df["Eye_status"])),
                             len(list(Freq_Bands.keys())),
                             len(ROI)))
    for e in range(len(np.unique(power_df["Eye_status"]))):
        ee = np.unique(power_df["Eye_status"])[e]
        for f in range(len(list(Freq_Bands.keys()))):
            ff = list(Freq_Bands.keys())[f]
            
            # Get the specific part of the df
            temp_power_df = power_df[(power_df["Quant_status"] == qq) &
                                     (power_df["Eye_status"] == ee) &
                                     (power_df["Subject_ID"] == ii) &
                                     (power_df["Freq_band"] == ff)].copy()
            
            # Convert from dB to raw power
            temp_power_df.loc[:,"PSD"] = np.array(10**(temp_power_df["PSD"]/10))
            
            # Calculate the power asymmetry
            for r in range(len(ROI)):
                rr = ROI[r]
                temp_power_roi_df = temp_power_df[(temp_power_df["Brain_region"] == rr)&
                                                  ~(temp_power_df["Brain_side"] == "Mid")]
                # Sort using channel names to make sure F8-F7 and not F4-F7 etc.
                temp_power_roi_df = temp_power_roi_df.sort_values("Channel").reset_index(drop=True)
                # Get the log power
                R_power = temp_power_roi_df[(temp_power_roi_df["Brain_side"] == "Right")]["PSD"]
                ln_R_power = np.log(R_power) # get log power
                L_power = temp_power_roi_df[(temp_power_roi_df["Brain_side"] == "Left")]["PSD"]
                ln_L_power = np.log(L_power) # get log power
                # Pairwise subtraction followed by averaging
                asymmetry_value = np.mean(np.array(ln_R_power) - np.array(ln_L_power))
                # Save it to the array
                temp_asymmetry[e,f,r] = asymmetry_value
    # Print progress
    print("{} out of {} finished testing".format(i+1,n_subjects))
    return i, temp_asymmetry

with concurrent.futures.ProcessPoolExecutor() as executor:
    for i, res in executor.map(calculate_asymmetry, range(len(np.unique(power_df["Subject_ID"])))): # Function and arguments
        asymmetry[i,:,:,:] = res

# Prepare conversion of array to df using flatten
n_subjects = len(Subject_id)

# The group status (PTSD/CTRL) is made using the information about the cases
Group_status = np.array(["CTRL"]*n_subjects)
Group_status[np.array([i in cases for i in Subject_id])] = "PTSD"

# Eye status is added
eye_status = list(final_epochs[0].event_id.keys())
n_eye_status = len(eye_status)

# Frequency bands
freq_bands_name = list(Freq_Bands.keys())
n_freq_bands = len(freq_bands_name)

# ROIs
n_ROI = len(ROI)

# Make the dataframe                
asymmetry_df = pd.DataFrame(data = {"Subject_ID": [ele for ele in Subject_id for i in range(n_eye_status*n_freq_bands*n_ROI)],
                                     "Group_status": [ele for ele in Group_status for i in range(n_eye_status*n_freq_bands*n_ROI)],
                                     "Eye_status": [ele for ele in eye_status for i in range(n_freq_bands*n_ROI)]*(n_subjects),
                                     "Freq_band": [ele for ele in freq_bands_name for i in range(n_ROI)]*(n_subjects*n_eye_status),
                                     "ROI": list(ROI)*(n_subjects*n_eye_status*n_freq_bands),
                                     "Asymmetry_score": asymmetry.flatten(order="C")
                                     })
# Flatten with order=C means that it first goes through last axis,
# then repeat along 2nd last axis, and then repeat along 3rd last etc

# Asymmetry numpy to pandas conversion check
random_point=321
asymmetry_df.iloc[random_point]

i = np.where(np.unique(power_df["Subject_ID"]) == asymmetry_df.iloc[random_point]["Subject_ID"])[0]
e = np.where(np.unique(power_df["Eye_status"]) == asymmetry_df.iloc[random_point]["Eye_status"])[0]
f = np.where(np.array(list(Freq_Bands.keys())) == asymmetry_df.iloc[random_point]["Freq_band"])[0]
r = np.where(np.array(ROI) == asymmetry_df.iloc[random_point]["ROI"])[0]

assert asymmetry[i,e,f,r] == asymmetry_df.iloc[random_point]["Asymmetry_score"]

# Save the dataframe
asymmetry_df.to_pickle(os.path.join(Feature_savepath,"asymmetry_df.pkl"))

# %% Using FOOOF
# Peak alpha frequency (PAF) and 1/f exponent (OOF)
# Using the FOOOF algorithm (Fitting oscillations and one over f)
# Published by Donoghue et al, 2020 in Nature Neuroscience
# To start, FOOOF takes the freqs and power spectra as input
n_channels = final_epochs[0].info["nchan"]
ch_names = final_epochs[0].info["ch_names"]
sfreq = final_epochs[0].info["sfreq"]
Freq_Bands = {"delta": [1.25, 4.0],
              "theta": [4.0, 8.0],
              "alpha": [8.0, 13.0],
              "beta": [13.0, 30.0],
              "gamma": [30.0, 49.0]}
n_freq_bands = len(Freq_Bands)

# From visual inspection there seems to be problem if PSD is too steep at the start
# To overcome this problem, we try multiple start freq
OOF_r2_thres = 0.95 # a high threshold as we allow for overfitting
PAF_r2_thres = 0.90 # a more lenient threshold for PAF, as it is usually still captured even if fit for 1/f is not perfect
freq_start_it_range = [2,3,4,5,6]
freq_end = 40 # Stop freq at 40Hz to not be influenced by the Notch Filter

eye_status = list(final_epochs[0].event_id.keys())
n_eye_status = len(eye_status)

PAF_data = np.zeros((n_subjects,n_eye_status,n_channels,3)) # CF, power, band_width
OOF_data = np.zeros((n_subjects,n_eye_status,n_channels,2)) # offset and exponent

def FOOOF_estimation(i):
    PAF_data0 = np.zeros((n_eye_status,n_channels,3)) # CF, power, band_width
    OOF_data0 = np.zeros((n_eye_status,n_channels,2)) # offset and exponent
    # Get Eye status
    eye_idx = [final_epochs[i].events[:,2] == 1, final_epochs[i].events[:,2] == 2] # EC and EO
    # Calculate the power spectral density
    psd, freqs = psd_multitaper(final_epochs[i], fmin = 1, fmax = 50) # output (epochs, channels, freqs)
    # Retrieve psds for the 2 conditions and calculate mean across epochs
    psds = []
    for e in range(n_eye_status):
        # Get the epochs for specific eye condition
        temp_psd = psd[eye_idx[e],:,:]
        # Calculate the mean across epochs
        temp_psd = np.mean(temp_psd, axis=0)
        # Save
        psds.append(temp_psd)
    # Try multiple start freq
    PAF_data00 = np.zeros((n_eye_status,n_channels,len(freq_start_it_range),3)) # CF, power, band_width
    OOF_data00 = np.zeros((n_eye_status,n_channels,len(freq_start_it_range),2)) # offset and exponent
    r2s00 = np.zeros((n_eye_status,n_channels,len(freq_start_it_range)))
    for e in range(n_eye_status):
        psds_avg = psds[e]
        for f in range(len(freq_start_it_range)):
            # Initiate FOOOF group for analysis of multiple PSD
            fg = fooof.FOOOFGroup()
            # Set the frequency range to fit the model
            freq_range = [freq_start_it_range[f], freq_end] # variable freq start to 49Hz
            # Fit to each source PSD separately, but in parallel
            fg.fit(freqs,psds_avg,freq_range,n_jobs=1)
            # Extract aperiodic parameters
            aps = fg.get_params('aperiodic_params')
            # Extract peak parameters
            peaks = fg.get_params('peak_params')
            # Extract goodness-of-fit metrics
            r2s = fg.get_params('r_squared')
            # Save OOF and r2s
            OOF_data00[e,:,f] = aps
            r2s00[e,:,f] = r2s
            # Find the alpha peak with greatest power
            for c in range(n_channels):
                peaks0 = peaks[peaks[:,3] == c]
                # Subset the peaks within the alpha band
                in_alpha_band = (peaks0[:,0] >= Freq_Bands["alpha"][0]) & (peaks0[:,0] <= Freq_Bands["alpha"][1])
                if sum(in_alpha_band) > 0: # Any alpha peaks?
                    # Choose the peak with the highest power
                    max_alpha_idx = np.argmax(peaks0[in_alpha_band,1])
                    # Save results
                    PAF_data00[e,c,f] = peaks0[in_alpha_band][max_alpha_idx,:-1]
                else:
                    # No alpha peaks
                    PAF_data00[e,c,f] = [np.nan]*3
    # Check criterias
    good_fits_OOF = (r2s00 > OOF_r2_thres) & (OOF_data00[:,:,:,1] > 0) # r^2 > 0.95 and exponent > 0
    good_fits_PAF = (r2s00 > PAF_r2_thres) & (np.isfinite(PAF_data00[:,:,:,0])) # r^2 > 0.90 and detected peak in alpha band
    # Save the data or NaN if criterias were not fulfilled
    for e in range(n_eye_status):
        for c in range(n_channels):
            if sum(good_fits_OOF[e,c]) == 0: # no good OOF estimation
                OOF_data0[e,c] = [np.nan]*2
            else: # Save OOF associated with greatest r^2 that fulfilled criterias
                OOF_data0[e,c] = OOF_data00[e,c,np.argmax(r2s00[e,c,good_fits_OOF[e,c]])]
            if sum(good_fits_PAF[e,c]) == 0: # no good PAF estimation
                PAF_data0[e,c] = [np.nan]*3
            else: # Save PAF associated with greatest r^2 that fulfilled criterias
                PAF_data0[e,c] = PAF_data00[e,c,np.argmax(r2s00[e,c,good_fits_PAF[e,c]])]
    print("Finished {} out of {} subjects".format(i+1,n_subjects))
    return i, PAF_data0, OOF_data0

# Get current time
c_time1 = time.localtime()
c_time1 = time.strftime("%a %d %b %Y %H:%M:%S", c_time1)
print(c_time1)

with concurrent.futures.ProcessPoolExecutor() as executor:
    for i, PAF_result, OOF_result in executor.map(FOOOF_estimation, range(n_subjects)): # Function and arguments
        PAF_data[i] = PAF_result
        OOF_data[i] = OOF_result

# Save data
with open(Feature_savepath+"PAF_data_arr.pkl", "wb") as file:
    pickle.dump(PAF_data, file)
with open(Feature_savepath+"OOF_data_arr.pkl", "wb") as file:
    pickle.dump(OOF_data, file)

# Get current time
c_time2 = time.localtime()
c_time2 = time.strftime("%a %d %b %Y %H:%M:%S", c_time2)
print("Started", c_time1, "\nFinished",c_time2)

# Convert to Pandas dataframe (only keep mean parameter for PAF)
# The dimensions will each be a column with numbers and the last column will be the actual values
ori = PAF_data[:,:,:,0]
arr = np.column_stack(list(map(np.ravel, np.meshgrid(*map(np.arange, ori.shape), indexing="ij"))) + [ori.ravel()])
PAF_data_df = pd.DataFrame(arr, columns = ["Subject_ID", "Eye_status", "Channel", "Value"])
# Change from numerical coding to actual values

index_values = [Subject_id,eye_status,ch_names]
temp_df = PAF_data_df.copy() # make temp df to not sequential overwrite what is changed
for col in range(len(index_values)):
    col_name = PAF_data_df.columns[col]
    for shape in range(ori.shape[col]):
        temp_df.loc[PAF_data_df.iloc[:,col] == shape,col_name]\
        = index_values[col][shape]
PAF_data_df = temp_df # replace original df 

# Add group status
Group_status = np.array(["CTRL"]*len(PAF_data_df["Subject_ID"]))
Group_status[np.array([i in cases for i in PAF_data_df["Subject_ID"]])] = "PTSD"
# Add to dataframe
PAF_data_df.insert(3, "Group_status", Group_status)

# Global peak alpha
PAF_data_df_global = PAF_data_df.groupby(["Subject_ID", "Group_status", "Eye_status"]).mean().reset_index() # by default pandas mean skip nan
# Add dummy variable for re-using plot code
dummy_variable = ["Global Peak Alpha Frequency"]*PAF_data_df_global.shape[0]
PAF_data_df_global.insert(3, "Measurement", dummy_variable )

# Regional peak alpha
# A variable that codes the channels based on A/P localization is also made
Frontal_chs = ["Fp1", "Fpz", "Fp2", "AFz", "Fz", "F3", "F4", "F7", "F8"]
Central_chs = ["Cz", "C3", "C4", "T7", "T8", "FT7", "FC3", "FCz", "FC4", "FT8", "TP7", "CP3", "CPz", "CP4", "TP8"]
Posterior_chs = ["Pz", "P3", "P4", "P7", "P8", "POz", "O1", "O2", "Oz"]

Brain_region = np.array(ch_names, dtype = "<U9")
Brain_region[np.array([i in Frontal_chs for i in ch_names])] = "Frontal"
Brain_region[np.array([i in Central_chs for i in ch_names])] = "Central"
Brain_region[np.array([i in Posterior_chs for i in ch_names])] = "Posterior"

PAF_data_df.insert(4, "Brain_region", list(Brain_region)*int(PAF_data_df.shape[0]/len(Brain_region)))

# Save the dataframes
PAF_data_df.to_pickle(os.path.join(Feature_savepath,"PAF_data_FOOOF_df.pkl"))
PAF_data_df_global.to_pickle(os.path.join(Feature_savepath,"PAF_data_FOOOF_global_df.pkl"))

# Convert to Pandas dataframe (only keep exponent parameter for OOF)
# The dimensions will each be a column with numbers and the last column will be the actual values
ori = OOF_data[:,:,:,1]
arr = np.column_stack(list(map(np.ravel, np.meshgrid(*map(np.arange, ori.shape), indexing="ij"))) + [ori.ravel()])
PAF_data_df = pd.DataFrame(arr, columns = ["Subject_ID", "Eye_status", "Channel", "Value"])
# Change from numerical coding to actual values

index_values = [Subject_id,eye_status,ch_names]
temp_df = PAF_data_df.copy() # make temp df to not sequential overwrite what is changed
for col in range(len(index_values)):
    col_name = PAF_data_df.columns[col]
    for shape in range(ori.shape[col]):
        temp_df.loc[PAF_data_df.iloc[:,col] == shape,col_name]\
        = index_values[col][shape]
OOF_data_df = temp_df # replace original df 

# Add group status
Group_status = np.array(["CTRL"]*len(OOF_data_df["Subject_ID"]))
Group_status[np.array([i in cases for i in OOF_data_df["Subject_ID"]])] = "PTSD"
# Add to dataframe
OOF_data_df.insert(3, "Group_status", Group_status)

# Regional OOF
OOF_data_df.insert(4, "Brain_region", list(Brain_region)*int(PAF_data_df.shape[0]/len(Brain_region)))

# Save the dataframes
OOF_data_df.to_pickle(os.path.join(Feature_savepath,"OOF_data_FOOOF_df.pkl"))
glia's avatar
glia committed
# %% Microstate analysis
# The function takes the data as a numpy array (n_t, n_ch)
# The data is already re-referenced to common average
# Variables for the clustering function are extracted
sfreq = final_epochs[0].info["sfreq"]
eye_status = list(final_epochs[0].event_id.keys())
n_eye_status = len(eye_status)
ch_names = final_epochs[0].info["ch_names"]
n_channels = len(ch_names)
locs = np.zeros((n_channels,2)) # xy coordinates of the electrodes
for c in range(n_channels):
    locs[c] = final_epochs[0].info["chs"][c]["loc"][0:2]

# The epochs are transformed to numpy arrays
micro_data = []
EC_micro_data = []
EO_micro_data = []
for i in range(n_subjects):
    # Transform data to correct shape
    micro_data.append(final_epochs[i].get_data()) # get data
    arr_shape = micro_data[i].shape # get shape
    micro_data[i] = micro_data[i].swapaxes(1,2) # swap ch and time axis
    micro_data[i] = micro_data[i].reshape(arr_shape[0]*arr_shape[2],arr_shape[1]) # reshape by combining epochs and times
    # Get indices for eyes open and closed
    EC_index = final_epochs[i].events[:,2] == 1
    EO_index = final_epochs[i].events[:,2] == 2
    # Repeat with 4s * sample frequency to correct for concatenation of times and epochs
    EC_index = np.repeat(EC_index,4*sfreq)
    EO_index = np.repeat(EO_index,4*sfreq)
    # Save data where it is divided into eye status
    EC_micro_data.append(micro_data[i][EC_index])
    EO_micro_data.append(micro_data[i][EO_index])

# Global explained variance and Cross-validation criterion is used to determine number of microstates
# First all data is concatenated to find the optimal number of maps for all data
micro_data_all = np.vstack(micro_data)

# Determine the number of clusters
# I use a slightly modified kmeans function which returns the cv_min
global_gev = []
cv_criterion = []
for n_maps in range(2,7):
    maps, L, gfp_peaks, gev, cv_min = kmeans_return_all(micro_data_all, n_maps)
    global_gev.append(np.sum(gev))
    cv_criterion.append(cv_min)
# Save run results
cluster_results = np.array([global_gev,cv_criterion])
np.save("Microstate_n_cluster_test_results.npy", cluster_results) # (gev/cv_crit, n_maps from 2 to 6)

#cluster_results = np.load("Microstate_n_cluster_test_results.npy")
#global_gev = cluster_results[0,:]
#cv_criterion = cluster_results[1,:]

# Evaluate best n_maps
plt.figure()
plt.plot(np.linspace(2,6,len(cv_criterion)),(cv_criterion/np.sum(cv_criterion)), label="CV Criterion")
plt.plot(np.linspace(2,6,len(cv_criterion)),(global_gev/np.sum(global_gev)), label="GEV")
plt.legend()
plt.ylabel("Normalized to total")
# The lower CV the better.
# But the higher GEV the better.
# Based on the plots and the recommendation by vong Wegner & Laufs 2018
# we used 5 microstates
glia's avatar
glia committed

# In order to compare between groups, I fix the microstates by clustering on data from both groups
# Due to instability of maps when running multiple times, I increased n_maps from 4 to 6
glia's avatar
glia committed
mode = ["aahc", "kmeans", "kmedoids", "pca", "ica"][1]

# K-means is stochastic, thus I run it multiple times in order to find the maps with highest GEV
# Each K-means is run 5 times and best map is chosen. But I do this 10 times more, so in total 50 times!
n_run = 10
# Pre-allocate memory
microstate_cluster_results = []

# Parallel processing can only be implemented by ensuring different seeds
# Otherwise the iteration would be the same.
# However the k-means already use parallel processing so making outer loop with
# concurrent processes make it use too many processors
# Get current time
c_time1 = time.localtime()
c_time1 = time.strftime("%a %d %b %Y %H:%M:%S", c_time1)
print(c_time1)

for r in range(n_run):
    maps = [0]*2
    m_labels = [0]*2
    gfp_peaks = [0]*2
    gev = [0]*2
    # Eyes closed
    counter = 0
    maps_, x_, gfp_peaks_, gev_ = clustering(
        np.vstack(np.array(EC_micro_data)), sfreq, ch_names, locs, mode, n_maps, doplot=False) # doplot=True is bugged
    maps[counter] = maps_
    m_labels[counter] = x_
    gfp_peaks[counter] = gfp_peaks_
    gev[counter] = gev_
    counter += 1
    # Eyes open
    maps_, x_, gfp_peaks_, gev_ = clustering(
        np.vstack(np.array(EO_micro_data)), sfreq, ch_names, locs, mode, n_maps, doplot=False) # doplot=True is bugged
    maps[counter] = maps_
    m_labels[counter] = x_
    gfp_peaks[counter] = gfp_peaks_
    gev[counter] = gev_
    counter += 1
    
    microstate_cluster_results.append([maps, m_labels, gfp_peaks, gev])
    print("Finished {} out of {}".format(r+1, n_run))

# Get current time
c_time2 = time.localtime()
c_time2 = time.strftime("%a %d %b %Y %H:%M:%S", c_time2)
print("Started", c_time1, "\nFinished",c_time2)

# Save the results
with open(Feature_savepath+"Microstate_5_maps_10x5_k_means_results.pkl", "wb") as file:
glia's avatar
glia committed
    pickle.dump(microstate_cluster_results, file)

# # Load
# with open(Feature_savepath+"Microstate_4_maps_10x5_k_means_results.pkl", "rb") as file:
#     microstate_cluster_results = pickle.load(file)

# Find the best maps (Highest GEV across all the K-means clusters)
EC_total_gevs = np.sum(np.vstack(np.array(microstate_cluster_results)[:,3,0]), axis=1) # (runs, maps/labels/gfp/gev, ec/eo)
EO_total_gevs = np.sum(np.vstack(np.array(microstate_cluster_results)[:,3,1]), axis=1)
Best_EC_idx = np.argmax(EC_total_gevs)
Best_EO_idx = np.argmax(EO_total_gevs)
# Update the variables for the best maps
maps = [microstate_cluster_results[Best_EC_idx][0][0],microstate_cluster_results[Best_EO_idx][0][1]]
m_labels = [microstate_cluster_results[Best_EC_idx][1][0],microstate_cluster_results[Best_EO_idx][1][1]]
gfp_peaks = [microstate_cluster_results[Best_EC_idx][2][0],microstate_cluster_results[Best_EO_idx][2][1]]
gev = [microstate_cluster_results[Best_EC_idx][3][0],microstate_cluster_results[Best_EO_idx][3][1]]

# Plot the maps
plt.style.use('default')
labels = ["EC", "EO"] #Eyes-closed, Eyes-open
glia's avatar
glia committed
for i in range(len(labels)):    
    fig, axarr = plt.subplots(1, n_maps, figsize=(20,5))
    fig.patch.set_facecolor('white')
    for imap in range(n_maps):
        mne.viz.plot_topomap(maps[i][imap,:], pos = final_epochs[0].info, axes = axarr[imap]) # plot
        axarr[imap].set_title("GEV: {:.2f}".format(gev[i][imap]), fontsize=16, fontweight="bold") # title
    fig.suptitle("Microstates: {}".format(labels[i]), fontsize=20, fontweight="bold")

# Manual re-order the maps
# Due the random initiation of K-means this have to be modified every time clusters are made!
# Assign map labels (e.g. 0, 2, 1, 3)
order = [0]*2
order[0] = [3,0,1,2,4] # EC
order[1] = [3,1,0,2,4] # EO
glia's avatar
glia committed
for i in range(len(order)):
    maps[i] = maps[i][order[i],:] # re-order maps
    gev[i] = gev[i][order[i]] # re-order GEV
    # Make directory to find and replace map labels
    dic0 = {value:key for key, value in enumerate(order[i])}
    m_labels[i][:] = [dic0.get(n, n) for n in m_labels[i]] # re-order labels

# The maps seems to be correlated both negatively and positively (see spatial correlation plots)
# Thus the sign of the map does not really reflect which areas are positive or negative (absolute)
# But more which areas are different during each state (relatively)
# I can therefore change the sign of the map for the visualizaiton
sign_swap = [[1,-1,1,1,1],[1,1,1,-1,1]]
glia's avatar
glia committed
for i in range(len(order)):
    for m in range(n_maps):
        maps[i][m] *= sign_swap[i][m]

# Plot the maps and save
save_path = "/Users/benj3542/Desktop/Uni/Noter/Semester_6/Bachelor/resting-state-eeg-analysis/Figures/Microstates"
glia's avatar
glia committed
labels = ["EC", "EO"]
for i in range(len(labels)):    
    fig, axarr = plt.subplots(1, n_maps, figsize=(20,5))
    fig.patch.set_facecolor('white')
    for imap in range(n_maps):
        mne.viz.plot_topomap(maps[i][imap,:], pos = final_epochs[0].info, axes = axarr[imap]) # plot
        axarr[imap].set_title("GEV: {:.2f}".format(gev[i][imap]), fontsize=16, fontweight="bold") # title
    fig.suptitle("Microstates: {} - Total GEV: {:.2f}".format(labels[i],sum(gev[i])), fontsize=20, fontweight="bold")
    # Save the figure
    fig.savefig(os.path.join(save_path,str("Microstates_{}".format(labels[i]) + ".png")))

# Calculate spatial correlation between maps and actual data points (topography)
# The sign of the map is changed so the correlation is positive
# By default the code looks for highest spatial correlation (regardless of sign)
# Thus depending on random initiation point the map might be opposite
plt.style.use('ggplot')
def spatial_correlation(data, maps):
    n_t = data.shape[0]
    n_ch = data.shape[1]
    data = data - data.mean(axis=1, keepdims=True)

    # GFP peaks
    gfp = np.std(data, axis=1)
    gfp_peaks = locmax(gfp)
    gfp_values = gfp[gfp_peaks]
    gfp2 = np.sum(gfp_values**2) # normalizing constant in GEV
    n_gfp = gfp_peaks.shape[0]

    # Spatial correlation
    C = np.dot(data, maps.T)
    C /= (n_ch*np.outer(gfp, np.std(maps, axis=1)))
    L = np.argmax(C**2, axis=1) # C is squared here which means the maps do no retain information about the sign of the correlation
    
    return C

C_EC = spatial_correlation(np.vstack(np.array(EC_micro_data)), maps[0])
C_EO = spatial_correlation(np.vstack(np.array(EO_micro_data)), maps[1])
C = [C_EC, C_EO]

# Plot the distribution of spatial correlation for each label and each map
labels = ["EC", "EO"]
for i in range(len(labels)):
    fig, axarr = plt.subplots(n_maps, n_maps, figsize=(16,16))
    for Lmap in range(n_maps):
        for Mmap in range(n_maps):
            sns.distplot(C[i][m_labels[i] == Lmap,Mmap], ax = axarr[Lmap,Mmap])
            axarr[Lmap,Mmap].set_xlabel("Spatial correlation")
    plt.suptitle("Distribution of spatial correlation_{}".format(labels[i]), fontsize=20, fontweight="bold")
    # Add common x and y axis labels by making one big axis
    fig.add_subplot(111, frameon=False)
    plt.tick_params(labelcolor="none", top="off", bottom="off", left="off", right="off") # hide tick labels and ticks
    plt.grid(False) # remove global grid
    plt.xlabel("Microstate number", labelpad=20)
    plt.ylabel("Label number", labelpad=10)
    fig.savefig(os.path.join(save_path,str("Microstates_Spatial_Correlation_Label_State_{}".format(labels[i]) + ".png")))

# Plot the distribution of spatial correlation for all data and each map
labels = ["EC", "EO"]
for i in range(len(labels)):
    fig, axarr = plt.subplots(1,n_maps, figsize=(20,5))
    for imap in range(n_maps):
        sns.distplot(C[i][:,imap], ax = axarr[imap])
        plt.xlabel("Spatial correlation")
    plt.suptitle("Distribution of spatial correlation", fontsize=20, fontweight="bold")
    # Add common x and y axis labels by making one big axis
    fig.add_subplot(111, frameon=False)
    plt.tick_params(labelcolor="none", top="off", bottom="off", left="off", right="off") # hide tick labels and ticks
    plt.grid(False) # remove global grid
    plt.xlabel("Microstate number", labelpad=20)
    plt.ylabel("Label number")

# Prepare for calculation of transition matrix
# I modified the function, so it takes the list argument gap_index
# gap_index should have the indices right before gaps in data

# Gaps: Between dropped epochs, trials (eo/ec) and subjects
# The between subjects gaps is removed by dividing the data into subjects
n_trials = 5
n_epoch_length = final_epochs[0].get_data().shape[2]

micro_labels = []
micro_subject_EC_idx = [0]
micro_subject_EO_idx = [0]
gaps_idx = []
gaps_trials_idx = []
for i in range(n_subjects):
    # Get indices for subject
    micro_subject_EC_idx.append(micro_subject_EC_idx[i]+EC_micro_data[i].shape[0])
    temp_EC = m_labels[0][micro_subject_EC_idx[i]:micro_subject_EC_idx[i+1]]
    # Get labels for subject i EO
    micro_subject_EO_idx.append(micro_subject_EO_idx[i]+EO_micro_data[i].shape[0])
    temp_EO = m_labels[1][micro_subject_EO_idx[i]:micro_subject_EO_idx[i+1]]
    # Save
    micro_labels.append([temp_EC,temp_EO]) # (subject, eye)
    
    # Get indices with gaps
    # Dropped epochs are first considered
    # Each epoch last 4s, which correspond to 2000 samples and a trial is 15 epochs - dropped epochs
    # Get epochs for each condition
    EC_drop_epochs = Drop_epochs_df.iloc[i,1:][Drop_epochs_df.iloc[i,1:] <= 75].to_numpy()
    EO_drop_epochs = Drop_epochs_df.iloc[i,1:][(Drop_epochs_df.iloc[i,1:] >= 75)&
                                            (Drop_epochs_df.iloc[i,1:] <= 150)].to_numpy()
    # Get indices for the epochs for EC that were dropped and correct for changing index due to drop
    EC_drop_epochs_gaps_idx = []
    counter = 0
    for d in range(len(EC_drop_epochs)):
        drop_epoch_number = EC_drop_epochs[d]
        Drop_epoch_idx = (drop_epoch_number-counter)*n_epoch_length # counter subtracted as the drop index is before dropped
        EC_drop_epochs_gaps_idx.append(Drop_epoch_idx-1) # -1 for point just before gap
        counter += 1
    # Negative index might occur if the first epochs were removed. This index is not needed for transition matrix
    if len(EC_drop_epochs_gaps_idx) > 0:
        for d in range(len(EC_drop_epochs_gaps_idx)): # check all, e.g. if epoch 0,1,2,3 are dropped then all should be caught
            if EC_drop_epochs_gaps_idx[0] == -1:
                EC_drop_epochs_gaps_idx = EC_drop_epochs_gaps_idx[1:len(EC_drop_epochs)]
    
    # Get indices for the epochs for EO that were dropped and correct for changing index due to drop
    EO_drop_epochs_gaps_idx = []
    counter = 0
    for d in range(len(EO_drop_epochs)):
        drop_epoch_number = EO_drop_epochs[d]-75
        Drop_epoch_idx = (drop_epoch_number-counter)*n_epoch_length # counter subtracted as the drop index is before dropped
        EO_drop_epochs_gaps_idx.append(Drop_epoch_idx-1) # -1 for point just before gap
        counter += 1
    # Negative index might occur if the first epoch was removed. This index is not needed for transition matrix
    if len(EO_drop_epochs_gaps_idx) > 0:
        for d in range(len(EO_drop_epochs_gaps_idx)): # check all, e.g. if epoch 0,1,2,3 are dropped then all should be caught
            if EO_drop_epochs_gaps_idx[0] == -1:
                EO_drop_epochs_gaps_idx = EO_drop_epochs_gaps_idx[1:len(EO_drop_epochs)]
    
    # Gaps between trials
    Trial_indices = [0, 15, 30, 45, 60, 75] # all the indices for start and end of the 5 trials
    EC_trial_gaps_idx = []
    EO_trial_gaps_idx = []
    counter_EC = 0
    counter_EO = 0
    for t in range(len(Trial_indices)-2): # -2 as start and end is not used in transition matrix
        temp_drop = EC_drop_epochs[(EC_drop_epochs >= Trial_indices[t])&
                            (EC_drop_epochs < Trial_indices[t+1])]
        # Correct the trial id for any potential drops within that trial
        counter_EC += len(temp_drop)
        trial_idx_corrected_for_drops = 15*(t+1)-counter_EC
        EC_trial_gaps_idx.append((trial_idx_corrected_for_drops*n_epoch_length)-1) # multiply id with length of epoch and subtract 1
        
        temp_drop = EO_drop_epochs[(EO_drop_epochs >= Trial_indices[t]+75)&
                            (EO_drop_epochs < Trial_indices[t+1]+75)]
        # Correct the trial id for any potential drops within that trial
        counter_EO += len(temp_drop)
        trial_idx_corrected_for_drops = 15*(t+1)-counter_EO
        EO_trial_gaps_idx.append((trial_idx_corrected_for_drops*n_epoch_length)-1) # multiply id with length of epoch and subtract 1
    
    # Concatenate all drop indices
    gaps_idx.append([np.unique(np.sort(EC_drop_epochs_gaps_idx+EC_trial_gaps_idx)),
                    np.unique(np.sort(EO_drop_epochs_gaps_idx+EO_trial_gaps_idx))])
    # Make on with trial gaps only for use in LRTC analysis
    gaps_trials_idx.append([EC_trial_gaps_idx,EO_trial_gaps_idx])

# Save the gap idx files
np.save("Gaps_idx.npy",np.array(gaps_idx))
np.save("Gaps_trials_idx.npy",np.array(gaps_trials_idx))

# %% Calculate microstate features
# Symbol distribution (also called ratio of time covered RTT)
# Transition matrix
# Shannon entropy
EC_p_hat = p_empirical(m_labels[0], n_maps)
EO_p_hat = p_empirical(m_labels[1], n_maps)
# Sanity check: Overall between EC and EO

microstate_time_data = np.zeros((n_subjects,n_eye_status,n_maps))
microstate_transition_data = np.zeros((n_subjects,n_eye_status,n_maps,n_maps))
microstate_entropy_data = np.zeros((n_subjects,n_eye_status))
for i in range(n_subjects):
    # Calculate ratio of time covered
    temp_EC_p_hat = p_empirical(micro_labels[i][0], n_maps)
    temp_EO_p_hat = p_empirical(micro_labels[i][1], n_maps)
    # Calculate transition matrix
glia's avatar
glia committed
    temp_EC_T_hat = T_empirical(micro_labels[i][0], n_maps, gaps_idx[i][0])
    temp_EO_T_hat = T_empirical(micro_labels[i][1], n_maps, gaps_idx[i][1])
    """
    temp_EC_T_hat = T_empirical(micro_labels[i][0], n_maps)
    temp_EO_T_hat = T_empirical(micro_labels[i][1], n_maps)
glia's avatar
glia committed
    # Calculate Shannon entropy
    temp_EC_h_hat = H_1(micro_labels[i][0], n_maps)
    temp_EO_h_hat = H_1(micro_labels[i][1], n_maps)
    
    # Save the data
    microstate_time_data[i,0,:] = temp_EC_p_hat
    microstate_time_data[i,1,:] = temp_EO_p_hat
    microstate_transition_data[i,0,:,:] = temp_EC_T_hat
    microstate_transition_data[i,1,:,:] = temp_EO_T_hat
    microstate_entropy_data[i,0] = temp_EC_h_hat/max_entropy(n_maps) # ratio of max entropy
    microstate_entropy_data[i,1] = temp_EO_h_hat/max_entropy(n_maps) # ratio of max entropy

# Save transition data
np.save(Feature_savepath+"microstate_transition_data.npy", microstate_transition_data)
# Convert transition data to dataframe for further processing with other features
# Transition matrix should be read as probability of row to column
microstate_transition_data_arr =\
     microstate_transition_data.reshape((n_subjects,n_eye_status,n_maps*n_maps)) # flatten 4 x 4 matrix to 1D
transition_info = ["M1->M1", "M1->M2", "M1->M3", "M1->M4", "M1->M5",
                   "M2->M1", "M2->M2", "M2->M3", "M2->M4", "M2-M5",
                   "M3->M1", "M3->M2", "M3->M3", "M3->M4", "M3->M5",
                   "M4->M1", "M4->M2", "M4->M3", "M4->M4", "M4->M5",
                   "M5->M1", "M5->M2", "M5->M3", "M5->M4", "M5->M5"]
glia's avatar
glia committed

arr = np.column_stack(list(map(np.ravel, np.meshgrid(*map(np.arange, microstate_transition_data_arr.shape), indexing="ij"))) + [microstate_transition_data_arr.ravel()])
microstate_transition_data_df = pd.DataFrame(arr, columns = ["Subject_ID", "Eye_status", "Transition", "Value"])
# Change from numerical coding to actual values
eye_status = list(final_epochs[0].event_id.keys())

index_values = [Subject_id,eye_status,transition_info]
for col in range(len(index_values)):
    col_name = microstate_transition_data_df.columns[col]
    for shape in reversed(range(microstate_transition_data_arr.shape[col])): # notice this is the shape of original numpy array. Not shape of DF
        microstate_transition_data_df.loc[microstate_transition_data_df.iloc[:,col] == shape,col_name]\
        = index_values[col][shape]

# Add group status
Group_status = np.array(["CTRL"]*len(microstate_transition_data_df["Subject_ID"]))
Group_status[np.array([i in cases for i in microstate_transition_data_df["Subject_ID"]])] = "PTSD"
# Add to dataframe
microstate_transition_data_df.insert(2, "Group_status", Group_status)

# Save df
microstate_transition_data_df.to_pickle(os.path.join(Feature_savepath,"microstate_transition_data_df.pkl"))

# Convert time covered data to Pandas dataframe
# The dimensions will each be a column with numbers and the last column will be the actual values
arr = np.column_stack(list(map(np.ravel, np.meshgrid(*map(np.arange, microstate_time_data.shape), indexing="ij"))) + [microstate_time_data.ravel()])
microstate_time_df = pd.DataFrame(arr, columns = ["Subject_ID", "Eye_status", "Microstate", "Value"])
# Change from numerical coding to actual values
eye_status = list(final_epochs[0].event_id.keys())
microstates = [1,2,3,4,5]
glia's avatar
glia committed

index_values = [Subject_id,eye_status,microstates]
for col in range(len(index_values)):
    col_name = microstate_time_df.columns[col]
    for shape in reversed(range(microstate_time_data.shape[col])): # notice this is the shape of original numpy array. Not shape of DF
        microstate_time_df.loc[microstate_time_df.iloc[:,col] == shape,col_name]\
        = index_values[col][shape]
# Reversed in inner loop is used to avoid sequencial data being overwritten.
# E.g. if 0 is renamed to 1, then the next loop all 1's will be renamed to 2

# Add group status
Group_status = np.array(["CTRL"]*len(microstate_time_df["Subject_ID"]))
Group_status[np.array([i in cases for i in microstate_time_df["Subject_ID"]])] = "PTSD"
# Add to dataframe
microstate_time_df.insert(2, "Group_status", Group_status)

# Save df
microstate_time_df.to_pickle(os.path.join(Feature_savepath,"microstate_time_df.pkl"))

# Transition data - mean
# Get index for groups
PTSD_idx = np.array([i in cases for i in Subject_id])
CTRL_idx = np.array([not i in cases for i in Subject_id])
n_groups = 2

microstate_transition_data_mean = np.zeros((n_groups,n_eye_status,n_maps,n_maps))
microstate_transition_data_mean[0,:,:,:] = np.mean(microstate_transition_data[PTSD_idx,:,:,:], axis=0)
microstate_transition_data_mean[1,:,:,:] = np.mean(microstate_transition_data[CTRL_idx,:,:,:], axis=0)

# Convert entropy data to Pandas dataframe
# The dimensions will each be a column with numbers and the last column will be the actual values
arr = np.column_stack(list(map(np.ravel, np.meshgrid(*map(np.arange, microstate_entropy_data.shape), indexing="ij"))) + [microstate_entropy_data.ravel()])
microstate_entropy_df = pd.DataFrame(arr, columns = ["Subject_ID", "Eye_status", "Value"])
# Change from numerical coding to actual values
eye_status = list(final_epochs[0].event_id.keys())

index_values = [Subject_id,eye_status]
for col in range(len(index_values)):
    col_name = microstate_entropy_df.columns[col]
    for shape in reversed(range(microstate_entropy_data.shape[col])): # notice this is the shape of original numpy array. Not shape of DF
        microstate_entropy_df.loc[microstate_entropy_df.iloc[:,col] == shape,col_name]\
        = index_values[col][shape]
# Reversed in inner loop is used to avoid sequencial data being overwritten.
# E.g. if 0 is renamed to 1, then the next loop all 1's will be renamed to 2

# Add group status
Group_status = np.array(["CTRL"]*len(microstate_entropy_df["Subject_ID"]))
Group_status[np.array([i in cases for i in microstate_entropy_df["Subject_ID"]])] = "PTSD"
# Add to dataframe
microstate_entropy_df.insert(2, "Group_status", Group_status)
# Add dummy variable for re-using plot code
dummy_variable = ["Entropy"]*len(Group_status)
microstate_entropy_df.insert(3, "Measurement", dummy_variable)

# Save df
microstate_entropy_df.to_pickle(os.path.join(Feature_savepath,"microstate_entropy_df.pkl"))

# # %% Long-range temporal correlations (LRTC)
# """
# See Hardstone et al, 2012
# Hurst exponent estimation steps:
#     1. Preprocess
#     2. Band-pass filter for frequency band of interest
#     3. Hilbert transform to obtain amplitude envelope
#     4. Perform DFA
#         4.1 Compute cumulative sum of time series to create signal profile
#         4.2 Define set of window sizes (see below)
#         4.3 Remove the linear trend using least-squares for each window
#         4.4 Calculate standard deviation for each window and take the mean
#         4.5 Plot fluctuation function (Standard deviation) as function
#             for all window sizes, on double logarithmic scale
#         4.6 The DFA exponent alpha correspond to Hurst exponent
#             f(L) = sd = L^alpha (with alpha as linear coefficient in log plot)

# If 0 < alpha < 0.5: The process exhibits anti-correlations
# If 0.5 < alpha < 1: The process exhibits positive correlations
# If alpha = 0.5: The process is indistinguishable from a random process
# If 1.0 < alpha < 2.0: The process is non-stationary. H = alpha - 1

# Window sizes should be equally spaced on a logarithmic scale
# Sizes should be at least 4 samples and up to 10% of total signal length
# Filters can influence neighboring samples, thus filters should be tested
# on white noise to estimate window sizes that are unaffected by filters

# filter_length=str(2*1/fmin)+"s" # cannot be used with default transition bandwidth

# """
# # From simulations with white noise I determined window size thresholds for the 5 frequency bands:
# thresholds = [7,7,7,6.5,6.5]
# # And their corresponding log step sizes
# with open("LRTC_log_win_sizes.pkl", "rb") as filehandle:
#     log_win_sizes = pickle.load(filehandle)

# # Variables for the the different conditions
# # Sampling frequency
# sfreq = final_epochs[0].info["sfreq"]
# # Channels
# ch_names = final_epochs[0].info["ch_names"]
# n_channels = len(ch_names)
# # Frequency
# Freq_Bands = {"delta": [1.25, 4.0],
#               "theta": [4.0, 8.0],
#               "alpha": [8.0, 13.0],
#               "beta": [13.0, 30.0],
#               "gamma": [30.0, 49.0]}
# n_freq_bands = len(Freq_Bands)
# # Eye status
# eye_status = list(final_epochs[0].event_id.keys())
# n_eye_status = len(eye_status)

# ### Estimating Hurst exponent for the data
# # The data should be re-referenced to common average (Already done)

# # Data are transformed to numpy arrays
# # Then divided into EO and EC and further into each of the 5 trials
# # So DFA is estimated for each trial separately, which was concluded from simulations
# gaps_trials_idx = np.load("Gaps_trials_idx.npy") # re-used from microstate analysis
# n_trials = 5

# H_data = []
# for i in range(n_subjects):
#     # Transform data to correct shape
#     temp_arr = final_epochs[i].get_data() # get data
#     arr_shape = temp_arr.shape # get shape
#     temp_arr = temp_arr.swapaxes(1,2) # swap ch and time axis
#     temp_arr = temp_arr.reshape(arr_shape[0]*arr_shape[2],arr_shape[1]) # reshape by combining epochs and times
#     # Get indices for eyes open and closed
#     EC_index = final_epochs[i].events[:,2] == 1
#     EO_index = final_epochs[i].events[:,2] == 2
#     # Repeat with 4s * sample frequency to correct for concatenation of times and epochs
#     EC_index = np.repeat(EC_index,4*sfreq)
#     EO_index = np.repeat(EO_index,4*sfreq)
#     # Divide into eye status
#     EC_data = temp_arr[EC_index]
#     EO_data = temp_arr[EO_index]
#     # Divide into trials
#     EC_gap_idx = np.array([0]+list(gaps_trials_idx[i,0])+[len(EC_data)])
#     EO_gap_idx = np.array([0]+list(gaps_trials_idx[i,1])+[len(EO_data)])
glia's avatar
glia committed
    
#     EC_trial_data = []
#     EO_trial_data = []
#     for t in range(n_trials):
#         EC_trial_data.append(EC_data[EC_gap_idx[t]:EC_gap_idx[t+1]])
#         EO_trial_data.append(EO_data[EO_gap_idx[t]:EO_gap_idx[t+1]])
glia's avatar
glia committed
        
#     # Save data
#     H_data.append([EC_trial_data,EO_trial_data]) # output [subject][eye][trial][time,ch]

# # Calculate H for each subject, eye status, trial, freq and channel
# H_arr = np.zeros((n_subjects,n_eye_status,n_trials,n_channels,n_freq_bands))
# w_len = [len(ele) for ele in log_win_sizes]
# DFA_arr = np.empty((n_subjects,n_eye_status,n_trials,n_channels,n_freq_bands,2,np.max(w_len)))
# DFA_arr[:] = np.nan

# # Get current time
# c_time1 = time.localtime()
# c_time1 = time.strftime("%a %d %b %Y %H:%M:%S", c_time1)
# print("Started",c_time1)

# # Nolds are already using all cores so multiprocessing with make it slower
# # Warning occurs when R2 is estimated during detrending - but R2 is not used
# warnings.simplefilter("ignore")
# for i in range(n_subjects):
#     # Pre-allocate memory
#     DFA_temp = np.empty((n_eye_status,n_trials,n_channels,n_freq_bands,2,np.max(w_len)))
#     DFA_temp[:] = np.nan
#     H_temp = np.empty((n_eye_status,n_trials,n_channels,n_freq_bands))
#     for e in range(n_eye_status):
#         for trial in range(n_trials):
#             for c in range(n_channels):
#                 # Get the data
#                 signal = H_data[i][e][trial][:,c]
glia's avatar
glia committed
                
#                 counter = 0 # prepare counter
#                 for fmin, fmax in Freq_Bands.values():
#                     # Filter for each freq band
#                     signal_filtered = mne.filter.filter_data(signal, sfreq=sfreq, verbose=0,
#                                                   l_freq=fmin, h_freq=fmax)
#                     # Hilbert transform
#                     analytic_signal = scipy.signal.hilbert(signal_filtered)
#                     # Get Amplitude envelope
#                     # np.abs is the same as np.linalg.norm, i.e. the length for complex input which is the amplitude
#                     ampltude_envelope = np.abs(analytic_signal)
#                     # Perform DFA using predefined window sizes from simulation
#                     a, dfa_data = nolds.dfa(ampltude_envelope,
#                                             nvals=np.exp(log_win_sizes[counter]).astype("int"),
#                                             debug_data=True)
#                     # Save DFA results
#                     DFA_temp[e,trial,c,counter,:,0:w_len[counter]] = dfa_data[0:2]
#                     H_temp[e,trial,c,counter] = a
#                     # Update counter
#                     counter += 1

#     # Print run status
#     print("Finished {} out of {}".format(i+1,n_subjects))
#     # Save the results
#     H_arr[i] = H_temp
#     DFA_arr[i] = DFA_temp

# warnings.simplefilter("default")

# # Get current time
# c_time2 = time.localtime()
# c_time2 = time.strftime("%a %d %b %Y %H:%M:%S", c_time2)
# print("Started", c_time1, "\nCurrent Time",c_time2)

# # Save the DFA analysis data 
# np.save(Feature_savepath+"DFA_arr.npy", DFA_arr)
# np.save(Feature_savepath+"H_arr.npy", H_arr)
glia's avatar
glia committed

1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730
# # Load
# DFA_arr = np.load(Feature_savepath+"DFA_arr.npy")
# H_arr = np.load(Feature_savepath+"H_arr.npy")

# # Average the Hurst Exponent across trials
# H_arr = np.mean(H_arr, axis=2)

# # Convert to Pandas dataframe (Hurst exponent)
# # The dimensions will each be a column with numbers and the last column will be the actual values
# arr = np.column_stack(list(map(np.ravel, np.meshgrid(*map(np.arange, H_arr.shape), indexing="ij"))) + [H_arr.ravel()])
# H_data_df = pd.DataFrame(arr, columns = ["Subject_ID", "Eye_status", "Channel", "Freq_band", "Value"])
# # Change from numerical coding to actual values
# eye_status = list(final_epochs[0].event_id.keys())
# ch_name = final_epochs[0].info["ch_names"]

# index_values = [Subject_id,eye_status,ch_name,list(Freq_Bands.keys())]
# for col in range(len(index_values)):
#     col_name = H_data_df.columns[col]
#     for shape in range(H_arr.shape[col]): # notice this is the shape of original numpy array. Not shape of DF
#         H_data_df.loc[H_data_df.iloc[:,col] == shape,col_name]\
#         = index_values[col][shape]

# # Add group status
# Group_status = np.array(["CTRL"]*len(H_data_df["Subject_ID"]))
# Group_status[np.array([i in cases for i in H_data_df["Subject_ID"]])] = "PTSD"
# # Add to dataframe
# H_data_df.insert(2, "Group_status", Group_status)

# # Fix Freq_band categorical order
# H_data_df["Freq_band"] = H_data_df["Freq_band"].astype("category").\
#             cat.reorder_categories(list(Freq_Bands.keys()), ordered=True)

# # Global Hurst exponent
# H_data_df_global = H_data_df.groupby(["Subject_ID", "Eye_status", "Freq_band"]).mean().reset_index() # by default pandas mean skip nan
# # Add group status (cannot use group_by as each subject only have 1 group, not both)
# Group_status = np.array(["CTRL"]*len(H_data_df_global["Subject_ID"]))
# Group_status[np.array([i in cases for i in H_data_df_global["Subject_ID"]])] = "PTSD"
# # Add to dataframe
# H_data_df_global.insert(2, "Group_status", Group_status)
# # Add dummy variable for re-using plot code
# dummy_variable = ["Global Hurst Exponent"]*H_data_df_global.shape[0]
# H_data_df_global.insert(3, "Measurement", dummy_variable )

# # Save the data
# H_data_df.to_pickle(os.path.join(Feature_savepath,"H_data_df.pkl"))
# H_data_df_global.to_pickle(os.path.join(Feature_savepath,"H_data_global_df.pkl"))

# # %% Source localization of sensor data
# # Using non-interpolated channels
# # Even interpolated channels during preprocessing and visual inspection
# # are dropped

# # Prepare epochs for estimation of source connectivity
# source_epochs = [0]*n_subjects
# for i in range(n_subjects):
#     source_epochs[i] = final_epochs[i].copy()

# ### Make forward solutions
# # A forward solution is first made for all individuals with no dropped channels
# # Afterwards individual forward solutions are made for subjects with bad
# # channels that were interpolated in preprocessing and these are dropped
# # First forward operator is computed using a template MRI for each dataset
# fs_dir = "/home/glia/MNE-fsaverage-data/fsaverage"
# subjects_dir = os.path.dirname(fs_dir)
# trans = "fsaverage"
# src = os.path.join(fs_dir, "bem", "fsaverage-ico-5-src.fif")
# bem = os.path.join(fs_dir, "bem", "fsaverage-5120-5120-5120-bem-sol.fif")

# # Read the template sourcespace
# sourcespace = mne.read_source_spaces(src)

# temp_idx = 0 # Index with subject that had no bad channels
# subject_eeg = source_epochs[temp_idx].copy()
# subject_eeg.set_eeg_reference(projection=True) # needed for inverse modelling
# # Make forward solution
# fwd = mne.make_forward_solution(subject_eeg.info, trans=trans, src=src,
#                             bem=bem, eeg=True, mindist=5.0, n_jobs=1)
# # Save forward operator
# fname_fwd = "./Source_fwd/fsaverage-fwd.fif"
# mne.write_forward_solution(fname_fwd, fwd, overwrite=True)

# # A specific forward solution is also made for each subject with bad channels
# with open("./Preprocessing/bad_ch.pkl", "rb") as file:
#    bad_ch = pickle.load(file)

# All_bad_ch = bad_ch
# All_drop_epochs = dropped_epochs_df
# All_dropped_ch = []

# Bad_ch_idx = [idx for idx, item in enumerate(All_bad_ch) if item != 0]
# Bad_ch_subjects = All_drop_epochs["Subject_ID"][Bad_ch_idx]
# # For each subject with bad channels, drop the channels and make forward operator
# for n in range(len(Bad_ch_subjects)):
#     Subject = Bad_ch_subjects.iloc[n]
#     try:
#         Subject_idx = Subject_id.index(Subject)
#         # Get unique bad channels
#         Bad_ch0 = All_bad_ch[Bad_ch_idx[n]]
#         Bad_ch1 = []
#         for i2 in range(len(Bad_ch0)):
#             if type(Bad_ch0[i2]) == list:
#                 for i3 in range(len(Bad_ch0[i2])):
#                     Bad_ch1.append(Bad_ch0[i2][i3])
#             elif type(Bad_ch0[i2]) == str:
#                 Bad_ch1.append(Bad_ch0[i2])
#         Bad_ch1 = np.unique(Bad_ch1)
#         # Drop the bad channels
#         source_epochs[Subject_idx].drop_channels(Bad_ch1)
#         # Save the overview of dropped channels
#         All_dropped_ch.append([Subject,Subject_idx,Bad_ch1])
#         # Make forward operator
#         subject_eeg = source_epochs[Subject_idx].copy()
#         subject_eeg.set_eeg_reference(projection=True) # needed for inverse modelling
#         # Make forward solution
#         fwd = mne.make_forward_solution(subject_eeg.info, trans=trans, src=src,
#                                     bem=bem, eeg=True, mindist=5.0, n_jobs=1)
#         # Save forward operator
#         fname_fwd = "./Source_fwd/fsaverage_{}-fwd.fif".format(Subject)
#         mne.write_forward_solution(fname_fwd, fwd, overwrite=True)
#     except:
#         print(Subject,"was already dropped")

# with open("./Preprocessing/All_datasets_bad_ch.pkl", "wb") as filehandle:
#     pickle.dump(All_dropped_ch, filehandle)


# # %% Load forward operators
# # Re-use for all subjects without dropped channels
# fname_fwd = "./Source_fwd/fsaverage-fwd.fif"
# fwd = mne.read_forward_solution(fname_fwd)

# fwd_list = [fwd]*n_subjects

# # Use specific forward solutions for subjects with dropped channels
# with open("./Preprocessing/All_datasets_bad_ch.pkl", "rb") as file:
#    All_dropped_ch = pickle.load(file)

# for i in range(len(All_dropped_ch)):
#     Subject = All_dropped_ch[i][0]
#     Subject_idx = All_dropped_ch[i][1]
#     fname_fwd = "./Source_fwd/fsaverage_{}-fwd.fif".format(Subject)
#     fwd = mne.read_forward_solution(fname_fwd)
#     fwd_list[Subject_idx] = fwd

# # Check the correct number of channels are present in fwd
# random_point = int(np.random.randint(0,len(All_dropped_ch)-1,1))
# assert len(fwds[All_dropped_ch[random_point][1]].ch_names) == source_epochs[All_dropped_ch[random_point][1]].info["nchan"]

# # %% Make parcellation
# # After mapping to source space, I end up with 20484 vertices
# # but I wanted to map to fewer sources and not many more
# # Thus I need to perform parcellation
# # Get labels for FreeSurfer "aparc" cortical parcellation (example with 74 labels/hemi - Destriuex)
# labels_aparc = mne.read_labels_from_annot("fsaverage", parc="aparc.a2009s",
#                                     subjects_dir=subjects_dir)
# labels_aparc = labels_aparc[:-2] # remove unknowns

# labels_aparc_names = [label.name for label in labels_aparc]

# # Manually adding the 31 ROIs (14-lh/rh + 3 in midline) from Toll et al, 2020
# # Making fuction to take subset of a label
# def label_subset(label, subset, name="ROI_name"):
#     label_subset = mne.Label(label.vertices[subset], label.pos[subset,:],
#                          label.values[subset], label.hemi,
#                          name = "{}-{}".format(name,label.hemi),
#                          subject = label.subject, color = None)
#     return label_subset

# ### Visual area 1 (V1 and somatosensory cortex BA1-3)
# label_filenames = ["lh.V1.label", "rh.V1.label",
#                    "lh.BA1.label", "rh.BA1.label",
#                    "lh.BA2.label", "rh.BA2.label",
#                    "lh.BA3a.label", "rh.BA3a.label",
#                    "lh.BA3b.label", "rh.BA3b.label"]
# labels0 = [0]*len(label_filenames)
# for i, filename in enumerate(label_filenames):
#     labels0[i] = mne.read_label(os.path.join(fs_dir, "label", filename), subject="fsaverage")
# # Add V1 to final label variable
# labels = labels0[:2]
# # Rename to remove redundant hemi information
# labels[0].name = "V1-{}".format(labels[0].hemi)
# labels[1].name = "V1-{}".format(labels[1].hemi)
# # Assign a color
# labels[0].color = matplotlib.colors.to_rgba("salmon")
# labels[1].color = matplotlib.colors.to_rgba("salmon")
# # Combine Brodmann Areas for SMC. Only use vertices ones to avoid duplication error
# SMC_labels = labels0[2:]
# for hem in range(2):
#     SMC_p1 = SMC_labels[hem]
#     for i in range(1,len(SMC_labels)//2):
#         SMC_p2 = SMC_labels[hem+2*i]
#         p2_idx = np.isin(SMC_p2.vertices, SMC_p1.vertices, invert=True)
#         SMC_p21 = label_subset(SMC_p2, p2_idx, "SMC")
#         SMC_p1 = SMC_p1.__add__(SMC_p21)
#     SMC_p1.name = SMC_p21.name
#     # Assign a color
#     SMC_p1.color = matplotlib.colors.to_rgba("orange")
#     labels.append(SMC_p1)

# ### Inferior frontal junction
# # Located at junction between inferior frontal and inferior precentral sulcus
# label_aparc_names0 = ["S_front_inf","S_precentral-inf-part"]
# temp_labels = []
# for i in range(len(label_aparc_names0)):
#     labels_aparc_idx = [labels_aparc_names.index(l) for l in labels_aparc_names if l.startswith(label_aparc_names0[i])]
#     for i2 in range(len(labels_aparc_idx)):
#         temp_labels.append(labels_aparc[labels_aparc_idx[i2]].copy())

# pos1 = temp_labels[0].pos
# pos2 = temp_labels[2].pos
# distm = scipy.spatial.distance.cdist(pos1,pos2)
# # Find the closest points between the 2 ROIs
# l1_idx = np.unique(np.where(distm<np.quantile(distm, 0.001))[0]) # q chosen to correspond to around 10% of ROI
# l2_idx = np.unique(np.where(distm<np.quantile(distm, 0.0005))[1]) # q chosen to correspond to around 10% of ROI

# IFJ_label_p1 = label_subset(temp_labels[0], l1_idx, "IFJ")
# IFJ_label_p2 = label_subset(temp_labels[2], l2_idx, "IFJ")
# # Combine the 2 parts
# IFJ_label = IFJ_label_p1.__add__(IFJ_label_p2)
# IFJ_label.name = IFJ_label_p1.name
# # Assign a color
# IFJ_label.color = matplotlib.colors.to_rgba("chartreuse")
# # Append to final list
# labels.append(IFJ_label)

# # Do the same for the right hemisphere
# pos1 = temp_labels[1].pos
# pos2 = temp_labels[3].pos
# distm = scipy.spatial.distance.cdist(pos1,pos2)
# # Find the closest points between the 2 ROIs
# l1_idx = np.unique(np.where(distm<np.quantile(distm, 0.00075))[0]) # q chosen to correspond to around 10% of ROI
# l2_idx = np.unique(np.where(distm<np.quantile(distm, 0.0005))[1]) # q chosen to correspond to around 10% of ROI
# IFJ_label_p1 = label_subset(temp_labels[1], l1_idx, "IFJ")
# IFJ_label_p2 = label_subset(temp_labels[3], l2_idx, "IFJ")
# # Combine the 2 parts
# IFJ_label = IFJ_label_p1.__add__(IFJ_label_p2)
# IFJ_label.name = IFJ_label_p1.name
# # Assign a color
# IFJ_label.color = matplotlib.colors.to_rgba("chartreuse")
# # Append to final list
# labels.append(IFJ_label)

# ### Intraparietal sulcus
# label_aparc_names0 = ["S_intrapariet_and_P_trans"]
# labels_aparc_idx = [labels_aparc_names.index(l) for l in labels_aparc_names if l.startswith(label_aparc_names0[0])]
# for i in range(len(labels_aparc_idx)):
#     labels.append(labels_aparc[labels_aparc_idx[i]].copy())
#     labels[-1].name = "IPS-{}".format(labels[-1].hemi)

# ### Frontal eye field as intersection between middle frontal gyrus and precentral gyrus
# label_aparc_names0 = ["G_front_middle","G_precentral"]
# temp_labels = []
# for i in range(len(label_aparc_names0)):
#     labels_aparc_idx = [labels_aparc_names.index(l) for l in labels_aparc_names if l.startswith(label_aparc_names0[i])]
#     for i2 in range(len(labels_aparc_idx)):
#         temp_labels.append(labels_aparc[labels_aparc_idx[i2]].copy())

# # Take 10% of middle frontal gyrus closest to precentral gyrus (most posterior)
# temp_label0 = temp_labels[0]
# G_fm_y = temp_label0.pos[:,1]
# thres_G_fm_y = np.sort(G_fm_y)[len(G_fm_y)//10]
# idx_p1 = np.where(G_fm_y<thres_G_fm_y)[0]
# FEF_label_p1 = label_subset(temp_label0, idx_p1, "FEF")
# # Take 10% closest for precentral gyrus (most anterior)
# temp_label0 = temp_labels[2]
# # I cannot only use y (anterior/posterior) but also need to restrict z-position
# G_pre_cen_z = temp_label0.pos[:,2]
# thres_G_pre_cen_z = 0.04 # visually inspected threshold
# G_pre_cen_y = temp_label0.pos[:,1]
# thres_G_pre_cen_y = np.sort(G_pre_cen_y[G_pre_cen_z>thres_G_pre_cen_z])[-len(G_pre_cen_y)//10] # notice - for anterior
# idx_p2 = np.where((G_pre_cen_y>thres_G_pre_cen_y) & (G_pre_cen_z>thres_G_pre_cen_z))[0]
# FEF_label_p2 = label_subset(temp_label0, idx_p2, "FEF")
# # Combine the 2 parts
# FEF_label = FEF_label_p1.__add__(FEF_label_p2)
# FEF_label.name = FEF_label_p1.name
# # Assign a color
# FEF_label.color = matplotlib.colors.to_rgba("aqua")
# # Append to final list
# labels.append(FEF_label)

# # Do the same for the right hemisphere
# temp_label0 = temp_labels[1]
# G_fm_y = temp_label0.pos[:,1]
# thres_G_fm_y = np.sort(G_fm_y)[len(G_fm_y)//10]
# idx_p1 = np.where(G_fm_y<thres_G_fm_y)[0]
# FEF_label_p1 = label_subset(temp_label0, idx_p1, "FEF")

# temp_label0 = temp_labels[3]
# G_pre_cen_z = temp_label0.pos[:,2]
# thres_G_pre_cen_z = 0.04 # visually inspected threshold
# G_pre_cen_y = temp_label0.pos[:,1]
# thres_G_pre_cen_y = np.sort(G_pre_cen_y[G_pre_cen_z>thres_G_pre_cen_z])[-len(G_pre_cen_y)//10] # notice - for anterior
# idx_p2 = np.where((G_pre_cen_y>thres_G_pre_cen_y) & (G_pre_cen_z>thres_G_pre_cen_z))[0]
# FEF_label_p2 = label_subset(temp_label0, idx_p2, "FEF")
# # Combine the 2 parts
# FEF_label = FEF_label_p1.__add__(FEF_label_p2)
# FEF_label.name = FEF_label_p1.name
# # Assign a color
# FEF_label.color = matplotlib.colors.to_rgba("aqua")
# # Append to final list
# labels.append(FEF_label)

# ### Supplementary eye fields
# # Located at caudal end of frontal gyrus and upper part of paracentral sulcus
# label_aparc_names0 = ["G_and_S_paracentral","G_front_sup"]
# temp_labels = []
# for i in range(len(label_aparc_names0)):
#     labels_aparc_idx = [labels_aparc_names.index(l) for l in labels_aparc_names if l.startswith(label_aparc_names0[i])]
#     for i2 in range(len(labels_aparc_idx)):
#         temp_labels.append(labels_aparc[labels_aparc_idx[i2]].copy())

# pos1 = temp_labels[0].pos
# pos2 = temp_labels[2].pos
# distm = scipy.spatial.distance.cdist(pos1,pos2)
# # Find the closest points between the 2 ROIs
# l1_idx = np.unique(np.where(distm<np.quantile(distm, 0.0005))[0]) # q chosen to correspond to around 15% of ROI
# l2_idx = np.unique(np.where(distm<np.quantile(distm, 0.005))[1]) # q chosen to correspond to around 10% of ROI
# # Notice that superior frontal gyrus is around 4 times bigger than paracentral
# len(l1_idx)/pos1.shape[0]
# len(l2_idx)/pos2.shape[0]
# # Only use upper part
# z_threshold = 0.06 # visually inspected
# l1_idx = l1_idx[pos1[l1_idx,2] > z_threshold]
# l2_idx = l2_idx[pos2[l2_idx,2] > z_threshold]

# SEF_label_p1 = label_subset(temp_labels[0], l1_idx, "SEF")
# SEF_label_p2 = label_subset(temp_labels[2], l2_idx, "SEF")
# # Combine the 2 parts
# SEF_label = SEF_label_p1.__add__(SEF_label_p2)
# SEF_label.name = SEF_label_p1.name
# # Assign a color
# SEF_label.color = matplotlib.colors.to_rgba("royalblue")
# # Append to final list
# labels.append(SEF_label)

# # Do the same for the right hemisphere
# pos1 = temp_labels[1].pos
# pos2 = temp_labels[3].pos
# distm = scipy.spatial.distance.cdist(pos1,pos2)
# # Find the closest points between the 2 ROIs
# l1_idx = np.unique(np.where(distm<np.quantile(distm, 0.0005))[0]) # q chosen to correspond to around 15% of ROI
# l2_idx = np.unique(np.where(distm<np.quantile(distm, 0.005))[1]) # q chosen to correspond to around 10% of ROI
# # Notice that superior frontal gyrus is around 4 times bigger than paracentral
# len(l1_idx)/pos1.shape[0]
# len(l2_idx)/pos2.shape[0]
# # Only use upper part
# z_threshold = 0.06 # visually inspected
# l1_idx = l1_idx[pos1[l1_idx,2] > z_threshold]
# l2_idx = l2_idx[pos2[l2_idx,2] > z_threshold]

# SEF_label_p1 = label_subset(temp_labels[1], l1_idx, "SEF")
# SEF_label_p2 = label_subset(temp_labels[3], l2_idx, "SEF")
# # Combine the 2 parts
# SEF_label = SEF_label_p1.__add__(SEF_label_p2)
# SEF_label.name = SEF_label_p1.name
# # Assign a color
# SEF_label.color = matplotlib.colors.to_rgba("royalblue")
# # Append to final list
# labels.append(SEF_label)

# ### Posterior cingulate cortex
# label_aparc_names0 = ["G_cingul-Post-dorsal", "G_cingul-Post-ventral"]
# temp_labels = []
# for i in range(len(label_aparc_names0)):
#     labels_aparc_idx = [labels_aparc_names.index(l) for l in labels_aparc_names if l.startswith(label_aparc_names0[i])]
#     for i2 in range(len(labels_aparc_idx)):
#         temp_labels.append(labels_aparc[labels_aparc_idx[i2]].copy())
# labels0 = []
# for hem in range(2):
#     PCC_p1 = temp_labels[hem]
#     for i in range(1,len(temp_labels)//2):
#         PCC_p2 = temp_labels[hem+2*i]
#         PCC_p1 = PCC_p1.__add__(PCC_p2)
#     PCC_p1.name = "PCC-{}".format(PCC_p1.hemi)
#     labels0.append(PCC_p1)
# # Combine the 2 hemisphere in 1 label
# labels.append(labels0[0].__add__(labels0[1]))

# ### Medial prefrontal cortex
# # From their schematic it looks like rostral 1/4 of superior frontal gyrus
# label_aparc_names0 = ["G_front_sup"]
# temp_labels = []
# for i in range(len(label_aparc_names0)):
#     labels_aparc_idx = [labels_aparc_names.index(l) for l in labels_aparc_names if l.startswith(label_aparc_names0[i])]
#     for i2 in range(len(labels_aparc_idx)):
#         temp_labels0 = labels_aparc[labels_aparc_idx[i2]].copy()
#         temp_labels0 = temp_labels0.split(4, subjects_dir=subjects_dir)[3]
#         temp_labels0.name = "mPFC-{}".format(temp_labels0.hemi)
#         temp_labels.append(temp_labels0)
# # Combine the 2 hemisphere in 1 label
# labels.append(temp_labels[0].__add__(temp_labels[1]))

# ### Angular gyrus
# label_aparc_names0 = ["G_pariet_inf-Angular"]
# for i in range(len(label_aparc_names0)):
#     labels_aparc_idx = [labels_aparc_names.index(l) for l in labels_aparc_names if l.startswith(label_aparc_names0[i])]
#     for i2 in range(len(labels_aparc_idx)):
#         temp_labels = labels_aparc[labels_aparc_idx[i2]].copy()
#         temp_labels.name = "ANG-{}".format(temp_labels.hemi)
#         labels.append(temp_labels)

# ### Posterior middle frontal gyrus
# label_aparc_names0 = ["G_front_middle"]
# for i in range(len(label_aparc_names0)):
#     labels_aparc_idx = [labels_aparc_names.index(l) for l in labels_aparc_names if l.startswith(label_aparc_names0[i])]
#     for i2 in range(len(labels_aparc_idx)):
#         temp_labels = labels_aparc[labels_aparc_idx[i2]].copy()
#         temp_labels = temp_labels.split(2, subjects_dir=subjects_dir)[0]
#         temp_labels.name = "PMFG-{}".format(temp_labels.hemi)
#         labels.append(temp_labels)

# ### Inferior parietal lobule
# # From their parcellation figure seems to be rostral angular gyrus and posterior supramarginal gyrus
# label_aparc_names0 = ["G_pariet_inf-Angular","G_pariet_inf-Supramar"]
# temp_labels = []
# for i in range(len(label_aparc_names0)):
#     labels_aparc_idx = [labels_aparc_names.index(l) for l in labels_aparc_names if l.startswith(label_aparc_names0[i])]
#     for i2 in range(len(labels_aparc_idx)):
#         temp_labels.append(labels_aparc[labels_aparc_idx[i2]].copy())
# # Split angular in 2 and get rostral part
# temp_labels[0] = temp_labels[0].split(2, subjects_dir=subjects_dir)[1]
# temp_labels[1] = temp_labels[1].split(2, subjects_dir=subjects_dir)[1]
# # Split supramarginal in 2 and get posterior part
# temp_labels[2] = temp_labels[2].split(2, subjects_dir=subjects_dir)[0]
# temp_labels[3] = temp_labels[3].split(2, subjects_dir=subjects_dir)[0]

# for hem in range(2):
#     PCC_p1 = temp_labels[hem]
#     for i in range(1,len(temp_labels)//2):
#         PCC_p2 = temp_labels[hem+2*i]
#         PCC_p1 = PCC_p1.__add__(PCC_p2)
#     PCC_p1.name = "IPL-{}".format(PCC_p1.hemi)
#     labels.append(PCC_p1)

# ### Orbital gyrus
# # From their figure it seems to correspond to orbital part of inferior frontal gyrus
# label_aparc_names0 = ["G_front_inf-Orbital"]
# for i in range(len(label_aparc_names0)):
#     labels_aparc_idx = [labels_aparc_names.index(l) for l in labels_aparc_names if l.startswith(label_aparc_names0[i])]
#     for i2 in range(len(labels_aparc_idx)):
#         temp_labels = labels_aparc[labels_aparc_idx[i2]].copy()
#         temp_labels.name = "ORB-{}".format(temp_labels.hemi)
#         labels.append(temp_labels)

# ### Middle temporal gyrus
# # From their figure it seems to only be 1/4 of MTG at the 2nd to last caudal part
# label_aparc_names0 = ["G_temporal_middle"]
# for i in range(len(label_aparc_names0)):
#     labels_aparc_idx = [labels_aparc_names.index(l) for l in labels_aparc_names if l.startswith(label_aparc_names0[i])]
#     for i2 in range(len(labels_aparc_idx)):
#         temp_labels = labels_aparc[labels_aparc_idx[i2]].copy()
#         temp_labels = temp_labels.split(4, subjects_dir=subjects_dir)[1]
#         temp_labels.name = "MTG-{}".format(temp_labels.hemi)
#         labels.append(temp_labels)

# ### Anterior middle frontal gyrus
# label_aparc_names0 = ["G_front_middle"]
# for i in range(len(label_aparc_names0)):
#     labels_aparc_idx = [labels_aparc_names.index(l) for l in labels_aparc_names if l.startswith(label_aparc_names0[i])]
#     for i2 in range(len(labels_aparc_idx)):
#         temp_labels = labels_aparc[labels_aparc_idx[i2]].copy()
#         temp_labels = temp_labels.split(2, subjects_dir=subjects_dir)[1]
#         temp_labels.name = "AMFG-{}".format(temp_labels.hemi)
#         labels.append(temp_labels)

# ### Insula
# label_aparc_names0 = ["G_Ins_lg_and_S_cent_ins","G_insular_short"]
# temp_labels = []
# for i in range(len(label_aparc_names0)):
#     labels_aparc_idx = [labels_aparc_names.index(l) for l in labels_aparc_names if l.startswith(label_aparc_names0[i])]
#     for i2 in range(len(labels_aparc_idx)):
#         temp_labels.append(labels_aparc[labels_aparc_idx[i2]].copy())
# for hem in range(2):
#     PCC_p1 = temp_labels[hem]
#     for i in range(1,len(temp_labels)//2):
#         PCC_p2 = temp_labels[hem+2*i]
#         PCC_p1 = PCC_p1.__add__(PCC_p2)
#     PCC_p1.name = "INS-{}".format(PCC_p1.hemi)
#     labels.append(PCC_p1)

# ### (Dorsal) Anterior Cingulate Cortex
# label_aparc_names0 = ["G_and_S_cingul-Ant"]
# temp_labels = []
# for i in range(len(label_aparc_names0)):
#     labels_aparc_idx = [labels_aparc_names.index(l) for l in labels_aparc_names if l.startswith(label_aparc_names0[i])]
#     for i2 in range(len(labels_aparc_idx)):
#         temp_labels.append(labels_aparc[labels_aparc_idx[i2]].copy())
#         temp_labels[-1].name = "ACC-{}".format(temp_labels[-1].hemi)
# # Combine the 2 hemisphere in 1 label
# labels.append(temp_labels[0].__add__(temp_labels[1]))

# ### Supramarginal Gyrus
# label_aparc_names0 = ["G_pariet_inf-Supramar"]
# for i in range(len(label_aparc_names0)):
#     labels_aparc_idx = [labels_aparc_names.index(l) for l in labels_aparc_names if l.startswith(label_aparc_names0[i])]
#     for i2 in range(len(labels_aparc_idx)):
#         temp_labels = labels_aparc[labels_aparc_idx[i2]].copy()
#         temp_labels.name = "SUP-{}".format(temp_labels.hemi)
#         labels.append(temp_labels)

# print("{} ROIs have been defined".format(len(labels)))

# # # Visualize positions
# # fig = plt.figure()
# # ax = fig.add_subplot(111, projection="3d")
# # for i in range(0,3):
# #     temp_pos = temp_labels[i].pos
# #     ax.scatter(temp_pos[:,0],temp_pos[:,1],temp_pos[:,2], marker="o", alpha=0.1)
# # # Add to plot
# # ax.scatter(labels[-1].pos[:,0],labels[-1].pos[:,1],labels[-1].pos[:,2], marker="o")

# # # Visualize the labels
# # # temp_l = labels_aparc[labels_aparc_idx[0]]
# # temp_l = labels[-2]
# # l_stc = stc[100].in_label(temp_l)
# # l_stc.vertices

# # l_stc.plot(**surfer_kwargs)

# # Save the annotation file
# with open("custom_aparc2009_Li_et_al_2022.pkl", "wb") as file:
#     pickle.dump(labels, file)

# # %% Calculate orthogonalized power envelope connectivity in source space
# # In non-interpolated channels
# # Updated 22/1 - 2021 to use delta = 1/81 and assumption
# # about non-correlated and equal variance noise covariance matrix for channels
glia's avatar
glia committed

# # Load
# with open("custom_aparc2009_Li_et_al_2022.pkl", "rb") as file:
#     labels = pickle.load(file)
# label_names = [label.name for label in labels]

# # Define function to estimate PEC
# def PEC_estimation(x, freq_bands, sfreq=200):
#     """
#     This function takes a source timeseries signal x and performs:
#         1. Bandpass filtering
#         2. Hilbert transform to yield analytical signal
#         3. Compute all to all connectivity by iteratively computing for each pair
#             a. Orthogonalization
#             b. Computing power envelopes by squaring the signals |x|^2
#             c. Log-transform to enhance normality
#             d. Pearson's correlation between each pair
#             e. Fisher's r-to-z transform to enhance normality
#     The code has been optimized by inspiration from MNE-Python's function:
#     mne.connectivity.enelope_correlation.
glia's avatar
glia committed
    
#     In MNE-python version < 0.22 there was a bug, but after the fix in 0.22
#     the mne function is equivalent to my implementation, although they don't
#     use epsilon but gives same result with a RuntimeWarning about log(0)
glia's avatar
glia committed
    
#     IMPORTANT NOTE:
#         Filtering introduce artifacts for first and last timepoint
#     The values are very low, more than 1e-12 less than the others
#     If they are not removed, then they will heavily influence Pearson's
#     correlation as it is outlier sensitive
glia's avatar
glia committed
    
#     Inputs:
#         x - The signal in source space as np.array with shape (ROIs,Timepoints)
#         freq_bands - The frequency bands of interest as a dictionary e.g.
#                      {"alpha": [8.0, 13.0], "beta": [13.0, 30.0]}
#         sfreq - The sampling frequency in Hertz
glia's avatar
glia committed
    
#     Output:
#         The pairwise connectivity matrix
#     """
#     n_roi, n_timepoints = x.shape
#     n_freq_bands = len(freq_bands)
glia's avatar
glia committed
    
#     epsilon = 1e-100 # small value to prevent log(0) errors
glia's avatar
glia committed
    
#     # Filter the signal in the different freq bands
#     PEC_con0 = np.zeros((n_roi,n_roi,n_freq_bands))
#     for fname, frange in freq_bands.items():
#         fmin, fmax = [float(interval) for interval in frange]
#         signal_filtered = mne.filter.filter_data(x, sfreq, fmin, fmax,
#                                           fir_design="firwin", verbose=0)
#         # Filtering on finite signals will yield very low values for first
#         # and last timepoint, which can create outliers. E.g. 1e-29 compared to 1e-14
#         # Outlier sensitive methods, like Pearson's correlation, is therefore
#         # heavily affected and this systematic error is removed by removing
#         # the first and last timepoint
#         signal_filtered = signal_filtered[:,1:-1]
glia's avatar
glia committed
        
#         # Hilbert transform
#         analytic_signal = scipy.signal.hilbert(signal_filtered)
#         # I will use x and y to keep track of orthogonalization
#         x0 = analytic_signal
#         # Get power envelope
#         x0_mag = np.abs(x0)
#         # Get scaled conjugate used for orthogonalization estimation
#         x0_conj_scaled = x0.conj()
#         x0_conj_scaled /= x0_mag
#         # Take square power envelope
#         PEx = np.square(x0_mag)
#         # Take log transform
#         lnPEx = np.log(PEx+epsilon)
#         # Remove mean for Pearson correlation calculation
#         lnPEx_nomean = lnPEx - np.mean(lnPEx, axis=-1, keepdims=True) # normalize each roi timeseries
#         # Get std for Pearson correlation calculation
#         lnPEx_std = np.std(lnPEx, axis=-1)
#         lnPEx_std[lnPEx_std == 0] = 1 # Prevent std = 0 problems
#         # Prepare con matrix
#         con0 = np.zeros((n_roi,n_roi))
#         for roi_r, y0 in enumerate(x0): # for each y0
#             # Calculate orthogonalized signal y with respect to x for all x
#             # Using y_ort = imag(y*x_conj/|x|)
#             # I checked the formula in temp_v3 and it works as intended
#             # I want to orthogonalize element wise for each timepoint
#             y0_ort = (y0*x0_conj_scaled).imag
#             # Here y0_ort.shape = (n_roi, n_timepoints)
#             # So y is current roi and the first axis gives each x it is orthogonalized to
#             # Take the abs to get power envelope
#             y0_ort = np.abs(y0_ort)
#             # Prevent log(0) error when calculating y_ort on y
#             y0_ort[roi_r] = 1. # this will be 0 zero after mean subtraction
#             # Take square power envelope
#             PEy = np.square(y0_ort) # squared power envelope
#             # Take log transform
#             lnPEy = np.log(PEy+epsilon)
#             # Remove mean for pearson correlation calculation
#             lnPEy_nomean = lnPEy - np.mean(lnPEy, axis=-1, keepdims=True)
#             # Get std for Pearson correlation calculation
#             lnPEy_std = np.std(lnPEy, axis=-1)
#             lnPEy_std[lnPEy_std == 0] = 1.
#             # Pearson correlation is expectation of X_nomean * Y_nomean for each time-series divided with standard deviations
#             PEC = np.mean(lnPEx_nomean*lnPEy_nomean, axis=-1)
#             PEC /= lnPEx_std
#             PEC /= lnPEy_std
#             con0[roi_r] = PEC
#         # The con0 connectivity matrix should be read as correlation between
#         # orthogonalized y (row number) and x (column number)
#         # It is not symmetrical, as cor(roi2_ort, roi1) is not cor(roi1_ort, roi2)
#         # To make it symmetrical the average of the absolute correlation
#         # of the 2 possibilities for each pair are taken
#         con0 = np.abs(con0)
#         con0 = (con0.T+con0)/2.
#         # Fisher's z transform - which is equivalent to arctanh
#         con0 = np.arctanh(con0)
#         # The diagonal is not 0 as I wanted to avoid numerical errors with log(0)
#         # and used a small epsilon value. Thus the diagonal is explicitly set to 0
glia's avatar
glia committed
        
#         # Save to array
#         PEC_con0[:,:,list(freq_bands.keys()).index(fname)] = con0
#     return PEC_con0

# # Prepare variables
# Freq_Bands = {"delta": [1.25, 4.0],
#               "theta": [4.0, 8.0],
#               "alpha": [8.0, 13.0],
#               "beta": [13.0, 30.0],
#               "gamma": [30.0, 49.0]}
# n_freq_bands = len(Freq_Bands)
# n_roi = len(labels)

# # Get current time
# c_time1 = time.localtime()
# c_time1 = time.strftime("%a %d %b %Y %H:%M:%S", c_time1)
# print(c_time1)

# # PEC analysis
# PEC_data_list = [0]*n_subjects
# STCs_list = [0]*n_subjects

# # Using inverse operator as generator interferes with concurrent processes
# # If I run it for multiple subjects I run out of ram
# # Thus concurrent processes are used inside the for loop
# def PEC_analysis(input_args): # iterable epoch number and corresponding ts
#     i2, ts = input_args
#     # Estimate PEC
#     PEC_con0 = PEC_estimation(ts, Freq_Bands, sfreq)
#     print("Finished {} out of {} epochs".format(i2+1,n_epochs))
#     return i2, PEC_con0, ts

# for i in range(n_subjects):
#     n_epochs, n_ch, n_timepoints = source_epochs[i].get_data().shape
#     # Use different forward solutions depending on number of channels
#     cur_subject_id = Subject_id[i]
#     fwd = fwds[i]
glia's avatar
glia committed
    
#     # Using assumption about equal variance and no correlations I make a diagonal matrix
#     # Using the default option for 0.2µV std for EEG data
#     noise_cov = mne.make_ad_hoc_cov(source_epochs[i].info, None)
glia's avatar
glia committed
    
#     # Make inverse operator
#     # Using default depth parameter = 0.8 and free orientation (loose = 1)
#     inverse_operator = mne.minimum_norm.make_inverse_operator(source_epochs[i].info,
#                                                               fwd, noise_cov,
#                                                               loose = 1, depth = 0.8,
#                                                               verbose = 0)
#     src_inv = inverse_operator["src"]
#     # Compute inverse solution and retrieve time series for each label
#     # Preallocate memory
#     label_ts = np.full((n_epochs,len(labels),n_timepoints),np.nan)
#     # Define regularization
#     snr = 9 # Zhang et al, 2020 used delta = 1/81, which is inverse SNR and correspond to lambda2
#     # A for loop is used for each label due to memory issues when doing all labels at the same time
#     for l in range(len(labels)):
#         stc = mne.minimum_norm.apply_inverse_epochs(source_epochs[i],inverse_operator,
#                                                     lambda2 = 1/(snr**2),
#                                                     label = labels[l],
#                                                     pick_ori = "vector",
#                                                     return_generator=False,
#                                                     method = "MNE", verbose = 0)
#         # Use PCA to reduce the 3 orthogonal directions to 1 principal direction with max power
#         # There can be ambiguity about the orientation, thus the one that
#         # is pointing most "normal", i.e. closest 90 degrees to the skull is used
#         stc_pca = [0]*len(stc)
#         for ep in range(n_epochs):
#             stc_pca[ep], pca_dir = stc[ep].project(directions="pca", src=src_inv)
#         # Get mean time series for the whole label
#         temp_label_ts = mne.extract_label_time_course(stc_pca, labels[l], src_inv, mode="mean_flip",
#                                          return_generator=False, verbose=0)
#         # Save to array
#         label_ts[:,l,:] = np.squeeze(np.array(temp_label_ts))
#         print("Finished estimating STC for {} out of {} ROIs".format(l+1,len(labels)))
glia's avatar
glia committed
    
#     # Free up memory
#     del stc

#     # Prepare variables
#     sfreq=source_epochs[i].info["sfreq"]
#     n_epochs = len(source_epochs[i])
#     # Estimate the pairwise PEC for each epoch
#     PEC_con_subject = np.zeros((n_epochs,n_roi,n_roi,n_freq_bands))
#     stcs0 = np.zeros((n_epochs,n_roi,int(sfreq)*4)) # 4s epochs
#     # Make list of arguments to pass into PEC_analysis using the helper func
#     args = []
#     for i2 in range(n_epochs):
#         args.append((i2,label_ts[i2]))
glia's avatar
glia committed
    
#     with concurrent.futures.ProcessPoolExecutor(max_workers=16) as executor:
#         for i2, PEC_result, stc_result in executor.map(PEC_analysis, args): # Function and arguments
#             PEC_con_subject[i2] = PEC_result
#             stcs0[i2] = stc_result
glia's avatar
glia committed
    
#     # Save to list
#     PEC_data_list[i] = PEC_con_subject # [subject](epoch,ch,ch,freq)
#     STCs_list[i] = stcs0 # [subject][epoch,roi,timepoint]
glia's avatar
glia committed
    
#     # Print progress
#     print("Finished {} out of {} subjects".format(i+1,n_subjects))
glia's avatar
glia committed

# # Get current time
# c_time2 = time.localtime()
# c_time2 = time.strftime("%a %d %b %Y %H:%M:%S", c_time2)
# print("Started", c_time1, "\nFinished",c_time2)
glia's avatar
glia committed

# with open(Feature_savepath+"PEC_each_epoch_drop_interpol_ch_fix_snr.pkl", "wb") as file:
#     pickle.dump(PEC_data_list, file)
# with open(Feature_savepath+"STCs_each_epoch_drop_interpol_ch_fix_snr.pkl", "wb") as file:
#     pickle.dump(STCs_list, file)

# # # # Load
# # with open(Feature_savepath+"PEC_each_epoch_drop_interpol_ch_fix_snr.pkl", "rb") as file:
# #     PEC_data_list = pickle.load(file)
glia's avatar
glia committed

# # # Load
# # with open(Feature_savepath+"STCs_each_epoch_drop_interpol_ch_fix_snr.pkl", "rb") as file:
# #     STCs_list = pickle.load(file)

# # Average over eye status
# eye_status = list(source_epochs[0].event_id.keys())
# n_eye_status = len(eye_status)
# pec_data = np.zeros((n_subjects,n_eye_status,n_roi,n_roi,n_freq_bands))
# for i in range(n_subjects):
#     # Get indices for eyes open and closed
#     EC_index = source_epochs[i].events[:,2] == 1
#     EO_index = source_epochs[i].events[:,2] == 2
#     # Average over the indices and save to array
#     pec_data[i,0] = np.mean(PEC_data_list[i][EC_index], axis=0)
#     pec_data[i,1] = np.mean(PEC_data_list[i][EO_index], axis=0)
#     # Only use the lower diagonal as the diagonal should be 0 (or very small due to numerical errors)
#     # And it is symmetric
#     for f in range(n_freq_bands):
#         pec_data[i,0,:,:,f] = np.tril(pec_data[i,0,:,:,f],k=-1)
#         pec_data[i,1,:,:,f] = np.tril(pec_data[i,1,:,:,f],k=-1)

# # Also save as dataframe format for feature selection
# # Convert to Pandas dataframe
# # The dimensions will each be a column with numbers and the last column will be the actual values
# arr = np.column_stack(list(map(np.ravel, np.meshgrid(*map(np.arange, pec_data.shape), indexing="ij"))) + [pec_data.ravel()])
# pec_data_df = pd.DataFrame(arr, columns = ["Subject_ID", "Eye_status", "chx", "chy", "Freq_band", "Value"])
# # Change from numerical coding to actual values
# eye_status = list(source_epochs[0].event_id.keys())
# freq_bands_name = list(Freq_Bands.keys())
# label_names = [label.name for label in labels]

# index_values = [Subject_id,eye_status,label_names,label_names,freq_bands_name]
# for col in range(len(index_values)):
#     col_name = pec_data_df.columns[col]
#     for shape in range(pec_data.shape[col]): # notice not dataframe but the array
#         pec_data_df.loc[pec_data_df.iloc[:,col] == shape,col_name]\
#         = index_values[col][shape]

# # Add group status
# Group_status = np.array(["CTRL"]*len(pec_data_df["Subject_ID"]))
# Group_status[np.array([i in cases for i in pec_data_df["Subject_ID"]])] = "PTSD"
# # Add to dataframe
# pec_data_df.insert(3, "Group_status", Group_status)

# # Remove all diagonal and upper-matrix entries by removing zeros
# pec_data_df = pec_data_df.iloc[pec_data_df["Value"].to_numpy().nonzero()]

# # Save df
# pec_data_df.to_pickle(os.path.join(Feature_savepath,"pec_data_drop_interpol_ch_df.pkl"))

# # %% Sparse clustering of PEC for subtyping PTSD group
# # They did it for both eye status together, so all data in one matrix
# # Load PEC df
# # pec_data_df = pd.read_pickle(os.path.join(Feature_savepath,"pec_data_df.pkl"))
# pec_data_df = pd.read_pickle(os.path.join(Feature_savepath,"pec_data_drop_interpol_ch_df.pkl"))

# # Convert to wide format
# # Make function to add measurement column for indexing
# def add_measurement_column(df, measurement = "Text"):
#     dummy_variable = [measurement]*df.shape[0]
#     df.insert(1, "Measurement", dummy_variable)
#     return df
# # Make function to convert column tuple to string
# def convertTupleHeader(header):
#     header = list(header)
#     str = "_".join(header)
#     return str

# # Prepare overall dataframe
# PEC_df = pd.DataFrame(Subject_id, columns = ["Subject_ID"])
# # Add PEC
# pec_data_df = add_measurement_column(pec_data_df, "PEC")
# temp_df = pec_data_df.pivot_table(index="Subject_ID",columns=["Measurement",
#                                     "Eye_status", "chx", "chy",
#                                     "Freq_band"], dropna=True,
#                                values="Value").reset_index(drop=True)
# # check NaN is properly dropped and subject index is correct
# assert pec_data_df.shape[0] == np.prod(temp_df.shape)
# test1 = pec_data_df.iloc[np.random.randint(n_subjects),:]
# assert test1["Value"] ==\
#     temp_df[test1[1]][test1[2]][test1[3]][test1[5]][test1[6]][Subject_id.index(test1[0])]
# # Fix column names
# temp_df.columns = [convertTupleHeader(temp_df.columns[i]) for i in range(len(temp_df.columns))]

# PEC_df = pd.concat([PEC_df,temp_df], axis=1)

# # Add group status
# Groups = ["CTRL", "PTSD"]
# Group_status = np.array([0]*PEC_df.shape[0]) # CTRL = 0
# Group_status[np.array([i in cases for i in PEC_df["Subject_ID"]])] = 1 # PTSD = 1
# PEC_df.insert(1, "Group_status", Group_status)

# # Only use PTSD patient group
# PEC_df2 = PEC_df.loc[PEC_df["Group_status"]==1,:]

# Subject_info_cols = ["Subject_ID","Group_status"]

# # Use gridsearch and permutations to estimate gap statistic and use it to 
# # determine number of clusters and sparsity s
# # I will use 100 permutations and test 2 to 6 clusters as Zhang 2020
# # Error when trying to determine Gap statistic for 1 cluster? Also in R package
# max_clusters = 6
# n_sparsity_feat = 20
# perm_res = []
# for k in range(1,max_clusters):
#     # Cannot permute with 1 cluster
#     n_clusters = k+1
#     x = np.array(PEC_df2.copy().drop(Subject_info_cols, axis=1))
#     perm = pysparcl.cluster.permute_modified(x, k=n_clusters, verbose=True,
#                                              nvals=n_sparsity_feat, nperms=100)
#     perm_res.append(perm)

# # Save the results
# with open(Feature_savepath+"PEC_drop_interpol_ch_kmeans_perm.pkl", "wb") as file:
#     pickle.dump(perm_res, file)
glia's avatar
glia committed

# # # Load
# # with open(Feature_savepath+"PEC_drop_interpol_ch_kmeans_perm.pkl", "rb") as file:
# #     perm_res = pickle.load(file)

# # Convert results to array
# perm_res_arr = np.zeros((len(perm_res)*n_sparsity_feat,4))
# for i in range(len(perm_res)):
#     _, gaps, sdgaps, wbounds, _ = perm_res[i].values()
#     for i2 in range(n_sparsity_feat):
#         perm_res_arr[20*i+i2,0] = i+2 # cluster size
#         perm_res_arr[20*i+i2,1] = gaps[i2] # gap statistic
#         perm_res_arr[20*i+i2,2] = sdgaps[i2] # gap statistic std
#         perm_res_arr[20*i+i2,3] = wbounds[i2] # sparsity feature s

# # For each sparsity s, determine best k using one-standard-error criterion
# # Meaning the cluster and sparsity is chosen for the smallest value of k for a fixed s
# # that fulfill Gap(k) >= Gap(k+1)-std(k+1)
# def one_standard_deviation_search(gaps, std):
#     best_gaps = np.argmax(gaps)
#     current_gaps = gaps[best_gaps]
#     current_std = std[best_gaps]
#     current_gaps_idx = best_gaps
#     while (gaps[current_gaps_idx-1] >= current_gaps - current_std):
#         if current_gaps_idx == 0:
#             break
#         else:
#             current_gaps_idx -= 1
#             current_gaps = gaps[current_gaps_idx]
#             current_std = std[current_gaps_idx]
#     out = current_gaps, current_std, current_gaps_idx
#     return out

# best_ks = np.zeros((n_sparsity_feat, 2))
# all_s = np.unique(perm_res_arr[:,3])
# plt.figure(figsize=(12,12))
# for i2 in range(n_sparsity_feat):
#     current_s = all_s[i2]
#     gaps = perm_res_arr[perm_res_arr[:,3] == current_s,1]
#     std = perm_res_arr[perm_res_arr[:,3] == current_s,2]
#     _, _, idx = one_standard_deviation_search(gaps, std)
#     # Save to array
#     best_ks[i2,0] = current_s
#     best_ks[i2,1] = perm_res_arr[perm_res_arr[:,3] == current_s,0][idx]
#     # Plot gap
#     plt.errorbar(perm_res_arr[perm_res_arr[:,3] == current_s,0].astype("int"),
#              gaps, yerr=std, capsize=5, label = np.round(current_s,3))
# plt.title("Gap statistic for different fixed s")
# plt.legend(loc=1)
# plt.xlabel("Number of clusters")
# plt.ylabel("Gap statistic")

# best_k = int(scipy.stats.mode(best_ks[:,1])[0])

# # Determine s using fixed k as lowest s within 1 std of max gap statistic
# # According to Witten & Tibshirani, 2010
# best_gaps_idx = np.argmax(perm_res_arr[perm_res_arr[:,0] == best_k,1])
# best_gaps = perm_res_arr[perm_res_arr[:,0] == best_k,1][best_gaps_idx]
# best_gaps_std = perm_res_arr[perm_res_arr[:,0] == best_k,2][best_gaps_idx]
# one_std_crit = perm_res_arr[perm_res_arr[:,0] == best_k,1]>=best_gaps-best_gaps_std

# best_s = np.array([perm_res_arr[perm_res_arr[:,0] == best_k,3][one_std_crit][0]])

# # Perform clustering with k clusters
# x = np.array(PEC_df2.copy().drop(Subject_info_cols, axis=1))
# sparcl = pysparcl.cluster.kmeans(x, k=best_k, wbounds=best_s)[0]

# # Save the results
# with open(Feature_savepath+"PEC_drop_interpol_ch_sparse_kmeans.pkl", "wb") as file:
#     pickle.dump(sparcl, file)

# # Get overview of the features chosen and summarize feature type with countplot
# nonzero_idx = sparcl["ws"].nonzero()
# sparcl_features = PEC_df2.copy().drop(Subject_info_cols, axis=1).columns[nonzero_idx]

# # Prepare variables
# Freq_Bands = {"delta": [1.25, 4.0],
#               "theta": [4.0, 8.0],
#               "alpha": [8.0, 13.0],
#               "beta": [13.0, 30.0],
#               "gamma": [30.0, 49.0]}
# n_freq_bands = len(Freq_Bands)
# eye_status = list(source_epochs[0].event_id.keys())
# n_eye_status = len(eye_status)

# sparcl_feat = []
# sparcl_feat_counts = []
# for e in range(n_eye_status):
#     ee = eye_status[e]
#     for f in range(n_freq_bands):
#         ff = list(Freq_Bands.keys())[f]
#         temp_feat = sparcl_features[sparcl_features.str.contains(("_"+ee))]
#         temp_feat = temp_feat[temp_feat.str.contains(("_"+ff))]
#         # Save to list
#         sparcl_feat.append(temp_feat)
#         sparcl_feat_counts.append(["{}_{}".format(ee,ff), len(temp_feat)])

# # Convert the list to dataframe to use in countplot
# sparcl_feat_counts_df = pd.DataFrame(columns=["Eye_status", "Freq_band"])
# for i in range(len(sparcl_feat_counts)):
#     # If this feature type does not exist, then skip it
#     if sparcl_feat_counts[i][1] == 0:
#         continue
#     ee, ff = sparcl_feat_counts[i][0].split("_")
#     counts = sparcl_feat_counts[i][1]
#     temp_df = pd.DataFrame({"Eye_status":np.repeat(ee,counts),
#                             "Freq_band":np.repeat(ff,counts)})
#     sparcl_feat_counts_df = sparcl_feat_counts_df.append(temp_df, ignore_index=True)

# # Fix Freq_band categorical order
# cat_type = pd.CategoricalDtype(categories=list(Freq_Bands.keys()), ordered=True)
# sparcl_feat_counts_df["Freq_band"] = sparcl_feat_counts_df["Freq_band"].astype(cat_type)

# plt.figure(figsize=(8,8))
# g = sns.countplot(y="Freq_band", hue="Eye_status", data=sparcl_feat_counts_df)
# plt.title("PEC Sparse K-means features")
# plt.xlabel("Number of non-zero weights")
# plt.ylabel("Frequency Band")

# # %% Functional connectivity in source space
# # MNE implementation of PLV and wPLI is phase across trials(epochs), e.g. for ERPs
# # I'll use my own manually implemented PLV and wPLI across time and then average across epochs
# # Notice that the new MNE-connectivity library now also takes phase across time

# sfreq = final_epochs[0].info["sfreq"]
# # error when using less than 5 cycles for spectrum estimation
# # 1Hz too low with epoch length of 4, thus I changed the fmin to 1.25 for delta
# Freq_Bands = {"delta": [1.25, 4.0],
#               "theta": [4.0, 8.0],
#               "alpha": [8.0, 13.0],
#               "beta": [13.0, 30.0],
#               "gamma": [30.0, 49.0]}
# n_freq_bands = len(Freq_Bands)
# freq_centers = np.array([2.5,6,10.5,21.5,40])
# # Convert to tuples for the mne function
# fmin=tuple([list(Freq_Bands.values())[f][0] for f in range(len(Freq_Bands))])
# fmax=tuple([list(Freq_Bands.values())[f][1] for f in range(len(Freq_Bands))])

# # Make linspace array for morlet waves
# freq_centers = np.arange(fmin[0],fmax[-1]+0.25,0.25)
# # Prepare Morlets
# morlets = mne.time_frequency.tfr.morlet(sfreq,freq_centers,n_cycles=3)

# # Make freqs array for indexing
# freqs0 = [0]*n_freq_bands
# for f in range(n_freq_bands):
#     freqs0[f] = freq_centers[(freq_centers>=fmin[f]) & (freq_centers<=fmax[f])]

# # The in-built connectivity function gives an (n_channel, n_channel, freqs output
# # For loop over subject ID and eye status is implemented
# n_subjects = len(Subject_id)
# eye_status = list(final_epochs[0].event_id.keys())
# n_eye_status = len(eye_status)
# ch_names = final_epochs[0].info["ch_names"]

# # Load source labels
# with open("custom_aparc2009_Li_et_al_2022.pkl", "rb") as file:
#     labels = pickle.load(file)
# label_names = [label.name for label in labels]
# n_sources = len(label_names)

# # Connectivity methods
# connectivity_methods = ["coh","imcoh","plv","wpli"]
# n_con_methods=len(connectivity_methods)

# # Number of pairwise ch connections
# n_ch_connections = scipy.special.comb(n_sources,2, exact=True, repetition=False)

# # Load source time series
glia's avatar
glia committed
# with open(Feature_savepath+"STCs_each_epoch_drop_interpol_ch_fix_snr.pkl", "rb") as file:
#     STCs_list = pickle.load(file)

# # I made my own slightly-optimized PLV & WPLI function
# # Version 2 based on Filter + Hilbert instead of Morlets
# def calculate_PLV_WPLI_across_time(data):
#     n_ch, n_time0 = data.shape
#     x = data.copy()
#     # Filter the signal in the different freq bands
#     con_array0 = np.zeros((2,n_ch,n_ch,n_freq_bands))
#     # con_array0[con_array0==0] = np.nan
#     for fname, frange in Freq_Bands.items():
#         fmin, fmax = [float(interval) for interval in frange]
#         signal_filtered = mne.filter.filter_data(x, sfreq, fmin, fmax,
#                                           fir_design="firwin", verbose=0)
#         # Filtering on finite signals will yield very low values for first
#         # and last timepoint, which can create outliers. E.g. 1e-29 compared to 1e-14
#         # This systematic error is removed by removing the first and last timepoint
#         signal_filtered = signal_filtered[:,1:-1]
#         # Hilbert transform to get complex signal
#         analytic_signal = scipy.signal.hilbert(signal_filtered)
#         # Calculate for the lower diagnonal only as it is symmetric
#         for ch_r in range(n_ch):
#             for ch_c in range(n_ch):
#                 if ch_r>ch_c:
#                     # =========================================================================
#                     # PLV over time correspond to mean across time of the absolute value of
#                     # the circular length of the relative phases. So PLV will be 1 if
#                     # the phases of 2 signals maintain a constant lag
#                     # In equational form: PLV = 1/N * |sum(e^i(phase1-phase2))|
#                     # In code: abs(mean(exp(1i*phase_diff)))
#                     # =========================================================================
#                     # The real part correspond to the amplitude and the imaginary part can be used to calculate the phase
#                     phase_diff = np.angle(analytic_signal[ch_r])-np.angle(analytic_signal[ch_c])
#                     # Convert phase difference to complex part i(phase1-phase2)
#                     phase_diff_im = 0*phase_diff+1j*phase_diff
#                     # Take the exponential, then the mean followed by absolute value
#                     PLV = np.abs(np.mean(np.exp(phase_diff_im)))
#                     # Save to array
#                     con_array0[0,ch_r,ch_c,list(Freq_Bands.keys()).index(fname)] = PLV
#                     # =========================================================================
#                     # PLI over time correspond to the sign of the sine of relative phase
#                     # differences. So PLI will be 1 if one signal is always leading or
#                     # lagging behind the other signal. But it is insensitive to changes in
#                     # relative phase, as long as it is the same signal that leads.
#                     # If 2 signals are almost in phase, they might shift between lead/lag
#                     # due to small fluctuations from noise. This would lead to unstable
#                     # estimation of "phase" synchronisation.
#                     # The wPLI tries to correct for this by weighting the PLI with the
#                     # magnitude of the lag, to attenuate noise sources giving rise to
#                     # near zero phase lag "synchronization"
#                     # In equational form: WPLI = |E{|phase_diff|*sign(phase_diff)}| / E{|phase_diff|}
#                     # =========================================================================
#                     # Calculate the magnitude of phase differences
#                     phase_diff_mag = np.abs(np.sin(phase_diff))
#                     # Calculate the signed phase difference (PLI)
#                     sign_phase_diff = np.sign(np.sin(phase_diff))
#                     # Calculate the nominator (abs and average across time)
#                     WPLI_nominator = np.abs(np.mean(phase_diff_mag*sign_phase_diff))
#                     # Calculate denominator for normalization
#                     WPLI_denom = np.mean(phase_diff_mag)
#                     # Calculate WPLI
#                     WPLI = WPLI_nominator/WPLI_denom
#                     # Save to array
#                     con_array0[1,ch_r,ch_c,list(Freq_Bands.keys()).index(fname)] = WPLI
#     return con_array0

# # Pre-allocatate memory
# con_data = np.zeros((n_con_methods,n_subjects,n_eye_status,n_sources,n_sources,n_freq_bands))
# n_epochs_matrix = np.zeros((n_subjects,n_eye_status))

# # Get current time
# c_time = time.localtime()
# c_time = time.strftime("%H:%M:%S", c_time)
# print(c_time)

# def connectivity_estimation(i):
#     con_data0 = np.zeros((n_con_methods,n_eye_status,n_sources,n_sources,n_freq_bands))
#     con_data0[con_data0==0] = np.nan
#     n_epochs_matrix0 = np.zeros((n_eye_status))
#     for e in range(n_eye_status):
#         ee = eye_status[e]
#         eye_idx = final_epochs[i].events[:,2] == e+1 # EC = 1 and EO = 2
#         # Get source time series
#         temp_STC = STCs_list[i][eye_idx]
#         # Calculate the coherence and ImgCoh for the given subject and eye status
#         con, freqs, times, n_epochs, n_tapers = spectral_connectivity(
#             temp_STC, method=connectivity_methods[0:2],
#             mode="multitaper", sfreq=sfreq, fmin=fmin, fmax=fmax,
#             faverage=True, verbose=0)
#         # Save the results in array
#         con_data0[0,e,:,:,:] = con[0] # coherence
#         con_data0[1,e,:,:,:] = np.abs(con[1]) # Absolute value of ImgCoh to reflect magnitude of ImgCoh
glia's avatar
glia committed
        
#         # Calculate PLV and wPLI for each epoch and then average
#         n_epochs0 = temp_STC.shape[0]
#         con_data1 = np.zeros((len(connectivity_methods[2:]),n_epochs0,n_sources,n_sources,n_freq_bands))
#         for epoch in range(n_epochs0):
#             # First the data is retrieved and epoch axis dropped
#             temp_data = temp_STC[epoch,:,:]
#             # PLV and WPLI value is calculated across timepoints in each freq band
#             PLV_WPLI_con = calculate_PLV_WPLI_across_time(temp_data)
#             # Save results
#             con_data1[0,epoch,:,:,:] = PLV_WPLI_con[0] # phase locking value
#             con_data1[1,epoch,:,:,:] = PLV_WPLI_con[1] # weighted phase lag index
#         # Take average across epochs for PLV and wPLI
#         con_data2 = np.mean(con_data1,axis=1)
#         # Save to final array
#         con_data0[2,e,:,:,:] = con_data2[0] # phase locking value
#         con_data0[3,e,:,:,:] = con_data2[1] # weighted phase lag index
#         n_epochs_matrix0[e] = n_epochs
glia's avatar
glia committed
    
#     print("{} out of {} finished".format(i+1,n_subjects))
#     return i, con_data0, n_epochs_matrix0

# with concurrent.futures.ProcessPoolExecutor(max_workers=16) as executor:
#     for i, con_result, n_epochs_mat in executor.map(connectivity_estimation, range(n_subjects)): # Function and arguments
#         con_data[:,i,:,:,:,:] = con_result
#         n_epochs_matrix[i] = n_epochs_mat

# # Get current time
# c_time = time.localtime()
# c_time = time.strftime("%H:%M:%S", c_time)
# print(c_time)

# # Save the results
# np.save(Feature_savepath+"Source_drop_interpol_ch_connectivity_measures_data.npy", con_data) # (con_measure,subject,eye,ch,ch,freq)

# # Also save as dataframe format for feature selection
# # Convert to Pandas dataframe
# # The dimensions will each be a column with numbers and the last column will be the actual values
# arr = np.column_stack(list(map(np.ravel, np.meshgrid(*map(np.arange, con_data.shape), indexing="ij"))) + [con_data.ravel()])
# con_data_df = pd.DataFrame(arr, columns = ["Con_measurement", "Subject_ID", "Eye_status", "chx", "chy", "Freq_band", "Value"])
# # Change from numerical coding to actual values
# eye_status = list(final_epochs[0].event_id.keys())
# freq_bands_name = list(Freq_Bands.keys())

# index_values = [connectivity_methods,Subject_id,eye_status,label_names,label_names,freq_bands_name]
# for col in range(len(index_values)):
#     col_name = con_data_df.columns[col]
#     for shape in range(con_data.shape[col]): # notice not dataframe but the array
#         con_data_df.loc[con_data_df.iloc[:,col] == shape,col_name]\
#         = index_values[col][shape]

# # Add group status
# Group_status = np.array(["CTRL"]*len(con_data_df["Subject_ID"]))
# Group_status[np.array([i in cases for i in con_data_df["Subject_ID"]])] = "PTSD"
# # Add to dataframe
# con_data_df.insert(3, "Group_status", Group_status)

# # Remove all diagonal and upper-matrix entries
# con_data_df = con_data_df.iloc[con_data_df["Value"].to_numpy().nonzero()]

# # Save df
# con_data_df.to_pickle(os.path.join(Feature_savepath,"con_data_source_drop_interpol_df.pkl"))

# # %% Estimate Granger's Causality in source space
# # Load source labels
# with open("custom_aparc2009_Li_et_al_2022.pkl", "rb") as file:
#     labels = pickle.load(file)
# label_names = [label.name for label in labels]
# n_sources = len(label_names)

# # Load source time series
# with open(Feature_savepath+"STCs_each_epoch_drop_interpol_ch_fix_snr.pkl", "rb") as file:
#     STCs_list = pickle.load(file)
glia's avatar
glia committed

# # Granger's causality might be influenced by volume conduction, thus working with CSD might be beneficial
# # But since I already used source modelling to alleviate this problem I will not apply CSD
# # Barrett et al, 2012 also do not apply CSD on source GC

# # GC assumes stationarity, thus I will test for stationarity using ADF test
# # The null hypothesis of ADF is that it has unit root, i.e. is non-stationary
# # I will test how many can reject the null hypothesis, i.e. are stationary

# # Due to the low numerical values in STC the ADF test is unstable, thus I multiply it to be around 1e0

# stationary_test_arr = [0]*n_subjects
# n_tests = [0]*n_subjects
# for i in range(n_subjects):
#     # Get data
#     data_arr = STCs_list[i]
#     # Get shape
#     n_epochs, n_channels, n_timepoints = data_arr.shape
#     # Create array for indices to print out progress
#     ep_progress_idx = np.arange(n_epochs//5,n_epochs,n_epochs//5)
#     # Calculate number of tests performed for each subject
#     n_tests[i] = n_epochs*n_channels
#     # Prepare empty array (with 2's as 0 and 1 will be used)
#     stationary_test_arr0 = np.zeros((n_epochs,n_channels))+2 # make array of 2's
#     for ep in range(n_epochs):
#         for c in range(n_channels):
#             ADF = adfuller(data_arr[ep,c,:]*1e14) # multilying with a constant does not change ADF, but helps against numerical instability
#             p_value = ADF[1]
#             if p_value < 0.05:
#                 stationary_test_arr0[ep,c] = True # Stationary set to 1
#             else:
#                 stationary_test_arr0[ep,c] = False # Non-stationary set to 0
#         # Print partial progress
#         if len(np.where(ep_progress_idx==ep)[0]) > 0:
#             print("Finished epoch number: {} out of {}".format(ep,n_epochs))
#     # Indices that were not tested
#     no_test_idx = np.where(stationary_test_arr0==2)[0]
#     if len(no_test_idx) > 0:
#         print("An unexpected error occurred and {} was not tested".format(no_test_idx))
#     # Save to list
#     stationary_test_arr[i] = stationary_test_arr0
#     # Print progress
#     print("Finished subject {} out of {}".format(i+1,n_subjects))

# with open(Stat_savepath+"Source_drop_interpol_GC_stationarity_tests.pkl", "wb") as filehandle:
#     # The data is stored as binary data stream
#     pickle.dump(stationary_test_arr, filehandle)

# # I used a threshold of 0.05
# # This means that on average I would expect 5% false positives among the tests that showed significance for stationarity
# ratio_stationary = [0]*n_subjects
# for i in range(n_subjects):
#     # Ratio of tests that showed stationarity
#     ratio_stationary[i] = np.sum(stationary_test_arr[i])/n_tests[i]

# print("Ratio of stationary time series: {0:.3f}".format(np.mean(ratio_stationary))) # 88%

# # The pre-processing have already ensured that most of the data fulfills the stationarity assumption.

# # Divide the data into eyes closed and open
# ch_names = label_names
# n_channels = len(ch_names)

# STC_eye_data = []
# for i in range(n_subjects):
#     # Get index for eyes open and eyes closed
#     EC_index = final_epochs[i].events[:,2] == 1
#     EO_index = final_epochs[i].events[:,2] == 2
#     # Get the data
#     EC_epoch_data = STCs_list[i][EC_index,:,:] # eye index
#     EO_epoch_data = STCs_list[i][EO_index,:,:]
#     # Save to list
#     STC_eye_data.append([EC_epoch_data, EO_epoch_data])

# # Make each epoch a TimeSeries object
# # Input for TimeSeries is: (ch, time)
# eye_status = list(final_epochs[0].event_id.keys())
# n_eye_status = len(eye_status)
# sfreq = final_epochs[0].info["sfreq"]

# Timeseries_data = []
# for i in range(n_subjects):
#     temp_list1 = []
#     for e in range(n_eye_status):
#         temp_list2 = []
#         n_epochs = STC_eye_data[i][e].shape[0]
#         for ep in range(n_epochs):
#             # Convert to TimeSeries
#             time_series = nts.TimeSeries(STC_eye_data[i][e][ep,:,:], sampling_rate=sfreq)
#             # Save the object
#             temp_list2.append(time_series)
#         # Save the timeseries across eye status
#         temp_list1.append(temp_list2)
#     # Save the timeseries across subjects
#     Timeseries_data.append(temp_list1) # output [subject][eye][epoch](ch,time)

# # Test multiple specified model orders of AR models, each combination has its own model
# m_orders = np.linspace(1,25,25) # the model orders tested
# m_orders = np.round(m_orders)
# n_timepoints = len(Timeseries_data[0][0][0])
# n_ch_combinations = scipy.special.comb(n_channels,2, exact=True, repetition=False)

# # To reduce computation time I only test representative epochs (1 from each 1 min session)
# # There will be 5 epochs from eyes closed and 5 from eyes open
# n_rep_epoch = 5
# # The subjects have different number of epochs due to dropped epochs
# gaps_trials_idx = np.load("Gaps_trials_idx.npy") # time_points between sessions
# # I convert the gap time points to epoch number used as representative epoch
# epoch_idx = np.zeros((n_subjects,n_eye_status,n_rep_epoch), dtype=int) # prepare array
# epoch_idx[:,:,0:4] = np.round(gaps_trials_idx/n_timepoints,0)-8 # take random epoch from sessions 1 to 4
# epoch_idx[:,:,4] = np.round(gaps_trials_idx[:,:,3]/n_timepoints,0)+5 # take random epoch from session 5

# # Checking if all epoch idx exists
# for i in range(n_subjects):
#     EC_index = final_epochs[i].events[:,2] == 1
#     EO_index = final_epochs[i].events[:,2] == 2
#     assert np.sum(EC_index) >= epoch_idx[i,0,4]
#     assert np.sum(EO_index) >= epoch_idx[i,1,4]

# # Prepare model order estimation
# AIC_arr = np.zeros((len(m_orders),n_subjects,n_eye_status,n_rep_epoch,n_ch_combinations))
# BIC_arr = np.zeros((len(m_orders),n_subjects,n_eye_status,n_rep_epoch,n_ch_combinations))

# def GC_model_order_est(i):
#     AIC_arr0 = np.zeros((len(m_orders),n_eye_status,n_rep_epoch,n_ch_combinations))
#     BIC_arr0 = np.zeros((len(m_orders),n_eye_status,n_rep_epoch,n_ch_combinations))
#     for e in range(n_eye_status):
#         n_epochs = STC_eye_data[i][e].shape[0]
#         N_total = n_timepoints*n_epochs # total number of datapoints for specific eye condition
#         for ep in range(n_rep_epoch):
#             epp = epoch_idx[i,e,ep]
#             for o in range(len(m_orders)):
#                 order = int(m_orders[o])
#                 # Make the Granger Causality object
#                 GCA1 = nta.GrangerAnalyzer(Timeseries_data[i][e][epp-1], order=order,
#                                            n_freqs=2000)
#                 for c in range(n_ch_combinations):
#                     # Retrieve error covariance matrix for all combinations
#                     ecov = np.array(list(GCA1.error_cov.values()))
#                     # Calculate AIC
#                     AIC = ntsu.akaike_information_criterion(ecov[c,:,:], p = n_channels,
#                                                             m=order, Ntotal=N_total)
#                     # Calculate BIC
#                     BIC = ntsu.bayesian_information_criterion(ecov[c,:,:], p = n_channels,
#                                                               m=order, Ntotal=N_total)
#                     # Save the information criterions
#                     AIC_arr0[o,e,ep,c] = AIC
#                     BIC_arr0[o,e,ep,c] = BIC

#     print("{} out of {} finished testing".format(i+1,n_subjects))
#     return i, AIC_arr0, BIC_arr0

# # Get current time
# c_time1 = time.localtime()
# c_time1 = time.strftime("%a %d %b %Y %H:%M:%S", c_time1)
# print(c_time1)

# with concurrent.futures.ProcessPoolExecutor() as executor:
#     for i, AIC_result, BIC_result in executor.map(GC_model_order_est, range(n_subjects)): # Function and arguments
#         AIC_arr[:,i] = AIC_result
#         BIC_arr[:,i] = BIC_result

# # Get current time
# c_time2 = time.localtime()
# c_time2 = time.strftime("%a %d %b %Y %H:%M:%S", c_time2)
# print("Started", c_time1, "\nCurrent Time",c_time2)

# # Save the AIC and BIC results
# np.save(Feature_savepath+"AIC_Source_drop_interpol_GC_model_order.npy", AIC_arr) # (m. order, subject, eye, epoch, combination)
# np.save(Feature_savepath+"BIC_Source_drop_interpol_GC_model_order.npy", BIC_arr) # (m. order, subject, eye, epoch, combination)

# # Load data
# AIC_arr = np.load(Feature_savepath+"AIC_Source_drop_interpol_GC_model_order.npy")
# BIC_arr = np.load(Feature_savepath+"BIC_Source_drop_interpol_GC_model_order.npy")

# # Average across all subjects, eye status, epochs and combinations
# plt.figure(figsize=(8,6))
# plt.plot(m_orders, np.nanmean(AIC_arr, axis=(1,2,3,4)), label="AIC")
# plt.plot(m_orders, np.nanmean(BIC_arr, axis=(1,2,3,4)), label="BIC")
# plt.title("Average information criteria value")
# plt.xlabel("Model order (Lag)")
# plt.legend()

# np.sum(np.isnan(AIC_arr))/AIC_arr.size # around 0.07% NaN due to non-convergence
# np.sum(np.isnan(BIC_arr))/BIC_arr.size # around 0.07% NaN due to non-convergence

# # If we look at each subject
# mean_subject_AIC = np.nanmean(AIC_arr, axis=(2,3,4))

# plt.figure(figsize=(8,6))
# for i in range(n_subjects):
#     plt.plot(m_orders, mean_subject_AIC[:,i])
# plt.title("Average AIC for each subject")
# plt.xlabel("Model order (Lag)")

# mean_subject_BIC = np.nanmean(BIC_arr, axis=(2,3,4))
# plt.figure(figsize=(8,6))
# for i in range(n_subjects):
#     plt.plot(m_orders, mean_subject_BIC[:,i])
# plt.title("Average BIC for each subject")
# plt.xlabel("Model order (Lag)")

# # We see that for many cases in BIC, it does not converge. Monotonic increasing!

# # We can look at the distribution of chosen order for each time series analyzed
# # I.e. I will find the minima in model order for each model
# AIC_min_arr = np.argmin(AIC_arr, axis=0)
# BIC_min_arr = np.argmin(BIC_arr, axis=0)

# # Plot the distributions of the model order chosen
# plt.figure(figsize=(8,6))
# sns.distplot(AIC_min_arr.reshape(-1)+1, kde=False, norm_hist=True,
#              bins=np.linspace(0.75,30.25,60), label="AIC")
# plt.ylabel("Frequency density")
# plt.xlabel("Model order")
# plt.title("AIC Model Order Estimation")

# plt.figure(figsize=(8,6))
# sns.distplot(BIC_min_arr.reshape(-1)+1, kde=False, norm_hist=True, color="blue",
#              bins=np.linspace(0.75,30.25,60), label="BIC")
# plt.ylabel("Frequency density")
# plt.xlabel("Model order")
# plt.title("BIC Model Order Estimation")
# # It is clear from the BIC model that most have model order 1
# # which reflect their monotonic increasing nature without convergence
# # Thus I will only use AIC

# # There is a bias variance trade-off with model order [Stokes & Purdon, 2017]
# # Lower order is associated with higher bias and higher order with variance
# # I will choose the model order that is chosen the most (i.e. majority voting)
# AR_order = int(np.nanquantile(AIC_min_arr.reshape(-1), q=0.5))
# # Order = 5

# # Calculate Granger Causality for each subject, eye and epoch
# Freq_Bands = {"delta": [1.25, 4.0],
#               "theta": [4.0, 8.0],
#               "alpha": [8.0, 13.0],
#               "beta": [13.0, 30.0],
#               "gamma": [30.0, 49.0]}
# n_freq_bands = len(Freq_Bands)

# # Pre-allocate memory
# GC_data = np.zeros((2,n_subjects,n_eye_status,n_channels,n_channels,n_freq_bands))

# def GC_analysis(i):
#     GC_data0 = np.zeros((2,n_eye_status,n_channels,n_channels,n_freq_bands))
#     for e in range(n_eye_status):
#         n_epochs = STC_eye_data[i][e].shape[0]
#         # Make temporary array to save GC for each epoch
#         temp_GC_data = np.zeros((2,n_epochs,n_channels,n_channels,n_freq_bands))
#         for ep in range(n_epochs):
#             # Fit the AR model
#             GCA = nta.GrangerAnalyzer(Timeseries_data[i][e][ep], order=AR_order,
#                                        n_freqs=int(800)) # n_Freq=800 correspond to step of 0.25Hz, the same as multitaper for power estimation
#             for f in range(n_freq_bands):
#                 # Define lower and upper band
#                 f_lb = list(Freq_Bands.values())[f][0]
#                 f_ub = list(Freq_Bands.values())[f][1]
#                 # Get index corresponding to the frequency bands of interest
#                 freq_idx_G = np.where((GCA.frequencies >= f_lb) * (GCA.frequencies < f_ub))[0]
#                 # Calculcate Granger causality quantities
#                 g_xy = np.mean(GCA.causality_xy[:, :, freq_idx_G], -1) # avg on last dimension
#                 g_yx = np.mean(GCA.causality_yx[:, :, freq_idx_G], -1) # avg on last dimension
#                 # Transpose to use same format as con_measurement and save
#                 temp_GC_data[0,ep,:,:,f] = np.transpose(g_xy)
#                 temp_GC_data[1,ep,:,:,f] = np.transpose(g_yx)
glia's avatar
glia committed
        
#         # Average over epochs for each person, eye condition, direction and frequency band
#         temp_GC_epoch_mean = np.nanmean(temp_GC_data, axis=1) # sometimes Log(Sxx/xx_auto_component) is nan
#         # Save to array
#         GC_data0[:,e,:,:,:] = temp_GC_epoch_mean
glia's avatar
glia committed
        
#     print("{} out of {} finished analyzing".format(i+1,n_subjects))
#     return i, GC_data0
glia's avatar
glia committed

# # Get current time
# c_time1 = time.localtime()
# c_time1 = time.strftime("%a %d %b %Y %H:%M:%S", c_time1)
# print(c_time1)
glia's avatar
glia committed

# with concurrent.futures.ProcessPoolExecutor() as executor:
#     for i, GC_result in executor.map(GC_analysis, range(n_subjects)): # Function and arguments
#         GC_data[:,i] = GC_result
glia's avatar
glia committed
        
# # Get current time
# c_time2 = time.localtime()
# c_time2 = time.strftime("%a %d %b %Y %H:%M:%S", c_time2)
# print("Started", c_time1, "\nCurrent Time",c_time2)

# # Output: GC_data (g_xy/g_yx, subject, eye, chx, chy, freq)
# # Notice that for g_xy ([0,...]) it means "chy" Granger causes "chx"
# # and for g_yx ([1,...]) it means "chx" Granger causes "chy"
# # This is due to the transposing which flipped the results on to the lower-part of the diagonal

# # Save the Granger_Causality data
# np.save(Feature_savepath+"Source_drop_interpol_GrangerCausality_data.npy", GC_data)

# # Theoretically negative GC values should be impossible, but in practice
# # they can still occur due to problems with model fitting (see Stokes & Purdon, 2017)
# print("{:.3f}% negative GC values".\
#       format(np.sum(GC_data[~np.isnan(GC_data)]<0)/np.sum(~np.isnan(GC_data))*100)) # 0.08% negative values
# # These values cannot be interpreted, but seems to occur mostly for true non-causal connections
# # Hence I set them to 0
# with np.errstate(invalid="ignore"): # invalid number refers to np.nan, which will be set to False for comparisons
#     GC_data[(GC_data<0)] = 0

# # Save as dataframe for further processing with other features
# # Convert to Pandas dataframe
# # The dimensions will each be a column with numbers and the last column will be the actual values
# arr = np.column_stack(list(map(np.ravel, np.meshgrid(*map(np.arange, GC_data.shape), indexing="ij"))) + [GC_data.ravel()])
# GC_data_df = pd.DataFrame(arr, columns = ["GC_direction", "Subject_ID", "Eye_status", "chx", "chy", "Freq_band", "Value"])
# # Change from numerical coding to actual values
# eye_status = list(final_epochs[0].event_id.keys())
# freq_bands_name = list(Freq_Bands.keys())
# GC_directions_info = ["chy -> chx", "chx -> chy"]

# index_values = [GC_directions_info,Subject_id,eye_status,ch_names,ch_names,freq_bands_name]
# for col in range(len(index_values)):
#     col_name = GC_data_df.columns[col]
#     for shape in range(GC_data.shape[col]): # notice not dataframe but the array
#         GC_data_df.loc[GC_data_df.iloc[:,col] == shape,col_name]\
#         = index_values[col][shape]

# # Add group status
# Group_status = np.array(["CTRL"]*len(GC_data_df["Subject_ID"]))
# Group_status[np.array([i in cases for i in GC_data_df["Subject_ID"]])] = "PTSD"
# # Add to dataframe
# GC_data_df.insert(3, "Group_status", Group_status)

# # Remove all nan (including diagonal and upper-matrix entries)
# GC_data_df = GC_data_df.iloc[np.invert(np.isnan(GC_data_df["Value"].to_numpy()))]

# # Swap ch values for GC_direction chy -> chx (so it is always chx -> chy)
# tempchy = GC_data_df[GC_data_df["GC_direction"] == "chy -> chx"]["chy"] # save chy
# GC_data_df.loc[GC_data_df["GC_direction"] == "chy -> chx","chy"] =\
#              GC_data_df.loc[GC_data_df["GC_direction"] == "chy -> chx","chx"] # overwrite old chy
# GC_data_df.loc[GC_data_df["GC_direction"] == "chy -> chx","chx"] = tempchy # overwrite chx

# # Drop the GC_direction column
# GC_data_df = GC_data_df.drop("GC_direction", axis=1)

# # Save df
# GC_data_df.to_pickle(os.path.join(Feature_savepath,"GC_data_source_drop_interpol_df.pkl"))

# # Testing if df was formatted correctly
# expected_GC_values = n_subjects*n_eye_status*n_ch_combinations*n_freq_bands*2 # 2 because it is bidirectional
# assert GC_data_df.shape[0] == expected_GC_values
# # Testing a random GC value
# random_connection = np.random.randint(0,GC_data_df.shape[0])
# test_connection = GC_data_df.iloc[random_connection,:]
# i = np.where(Subject_id==test_connection["Subject_ID"])[0]
# e = np.where(np.array(eye_status)==test_connection["Eye_status"])[0]
# chx = np.where(np.array(ch_names)==test_connection["chx"])[0]
# chy = np.where(np.array(ch_names)==test_connection["chy"])[0]
# f = np.where(np.array(freq_bands_name)==test_connection["Freq_band"])[0]
# value = test_connection["Value"]
# if chx < chy: # the GC array is only lower diagonal to save memory
#     assert GC_data[0,i,e,chy,chx,f] == value
# if chx > chy:
#     assert GC_data[1,i,e,chx,chy,f] == value