Newer
Older
import numpy as np
import itertools
def bacteriaGrowth(n0, alpha, K, N): #!f
"""
Calculate time until bacteria growth exceed N starting from a population of n0 bacteria.
hints:
"""
if n0 > N:
return 0
for t in itertools.count():
n0 = (1 + alpha * (1-n0 / K) ) * n0
if n0 > N:
break
def clusterAnalysis(reflectance):
reflectance = np.asarray(reflectance)
I1 = np.arange(len(reflectance)) % 2 == 1
while True:
m = np.asarray( [np.mean( reflectance[~I1] ), np.mean( reflectance[I1] ) ] )
I1_ = np.argmin( np.abs( reflectance[:, np.newaxis] - m[np.newaxis, :] ), axis=1) == 1
if all(I1_ == I1):
break
I1 = I1_
return I1 + 1
def fermentationRate(measuredRate, lowerBound, upperBound):
"""
Compute and return the mean value of the rates in 'measuredRate'
which falls within lowerBound and upperBound.
"""
mean_value = np.mean( [r for r in measuredRate if lowerBound < r < upperBound] )
return mean_value
"""
id = np.asarray(id)
id2 = []
for i, v in enumerate(id):
if len( [x for x in id if int(x) == int(v) ] ) == 3:
id2.append(v)
return np.asarray(id2)
if __name__ == "__main__":
# I = clusterAnalysis([1.7, 1.6, 1.3, 1.3, 2.8, 1.4, 2.8, 2.6, 1.6, 2.7])
# print(I)
print(fermentationRate(np.array([20.1, 19.3, 1.1, 18.2, 19.7, 121.1, 20.3, 20.0]), 15, 25))
# print(removeIncomplete(np.array([1.3, 2.2, 2.3, 4.2, 5.1, 3.2, 5.3, 3.3, 2.1, 1.1, 5.2, 3.1])))
# Problem 1: Write a function which add two numbers
# clusterAnalysis([2, 1, 2, 4, 5])