Skip to content
Snippets Groups Projects
Select Git revision
  • acc45dbea61cd2587c5fd4c9db77d036edc61672
  • master default protected
2 results

homework1.py

Blame
  • user avatar
    Tue Herlau authored
    ca122505
    History
    Code owners
    Assign users and groups as approvers for specific file changes. Learn more.
    homework1.py 1.34 KiB
    import numpy as np
    from sklearn.datasets import load_boston
    from sklearn.linear_model import LinearRegression
    from sklearn.metrics import mean_squared_error, r2_score
    
    ####################
    # Question 1. Write a function reverse_list which accepts a list, and returns a new list
    # with the same elements but in opposite order.
    ####################
    def reverse_list(mylist):
        # TODO: Your solution here
        result = []
        for k in mylist:
            result = [k] + result
    
        return result
    
    def simple_list_question():
        print("The reverse list function can reverse a list")
        l = [1, 2, 3, 4]
        print("List was:", l, "reversed version", reverse_list(l))
    
    
    ####################
    # Question 2: Write a function which performs linear regression on the Boston housing dataset using scipy
    ####################
    def boston_linear():
        X,y = load_boston(return_X_y=True) # Load the dataset here
        y += np.random.randn(y.size ) * 0.01
        # TODO: Fit a linear regression model and print the coefficients
        lin_model = LinearRegression()
        lin_model.fit(X, y)
        print("Coefficients are", lin_model.coef_)
        # TODO: Compute the RMSE here (on the training set) and print it
        y_predict = lin_model.predict(X)
        rmse = (np.sqrt(mean_squared_error(y, y_predict)))
        print("RMSE is", rmse)
    
    if __name__ == "__main__":
        simple_list_question()
        boston_linear()