Skip to content
Snippets Groups Projects

Compare revisions

Changes are shown as if the source revision was being merged into the target revision. Learn more about comparing revisions.

Source

Select target project
No results found

Target

Select target project
  • QIM/tools/qim3d
1 result
Show changes
Commits on Source (2)
......@@ -6,14 +6,14 @@ import matplotlib.pyplot as plt
from matplotlib.colors import LinearSegmentedColormap
from matplotlib import colormaps
from qim3d.utils._logger import log
import torch
import matplotlib
def plot_metrics(
*metrics: tuple[dict[str, float]],
linestyle: str = "-",
batch_linestyle: str = "dotted",
labels: list|None = None,
labels: list | None = None,
figsize: tuple = (16, 6),
show: bool = False
):
......@@ -81,13 +81,13 @@ def plot_metrics(
def grid_overview(
data: list|torch.utils.data.Dataset,
num_images: int = 7,
cmap_im: str = "gray",
cmap_segm: str = "viridis",
alpha: float = 0.5,
show: bool = False
)-> matplotlib.figure.Figure:
data: list,
num_images: int = 7,
cmap_im: str = "gray",
cmap_segm: str = "viridis",
alpha: float = 0.5,
show: bool = False,
) -> matplotlib.figure.Figure:
"""Displays an overview grid of images, labels, and masks (if they exist).
Labels are the annotated target segmentations
......@@ -121,6 +121,7 @@ def grid_overview(
and the length of the data.
- The grid layout and dimensions vary based on the presence of a mask.
"""
import torch
# Check if data has a mask
has_mask = len(data[0]) > 2 and data[0][-1] is not None
......@@ -187,7 +188,7 @@ def grid_pred(
cmap_segm: str = "viridis",
alpha: float = 0.5,
show: bool = False,
)-> matplotlib.figure.Figure:
) -> matplotlib.figure.Figure:
"""Displays a grid of input images, predicted segmentations, ground truth segmentations, and their comparison.
Displays a grid of subplots representing different aspects of the input images and segmentations.
......@@ -290,7 +291,9 @@ def grid_pred(
return fig
def vol_masked(vol: np.ndarray, vol_mask: np.ndarray, viz_delta: int=128) -> np.ndarray:
def vol_masked(
vol: np.ndarray, vol_mask: np.ndarray, viz_delta: int = 128
) -> np.ndarray:
"""
Applies masking to a volume based on a binary volume mask.
......