Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Thu Aug 29 11:30:17 2019
@author: vand@dtu.dk
"""
import numpy as np
import scipy.io
import scipy.ndimage
import matplotlib.pyplot as plt
#% STRUCTURE TENSOR 3D
def structure_tensor(volume, sigma, rho):
""" Structure tensor for 3D image data
Arguments:
volume: a 3D array of size N = slices(z)*rows(y)*columns(x)
sigma: a noise scale, structures smaller than sigma will be
removed by smoothing
rho: an integration scale giving the size over the neighborhood in
which the orientation is to be analysed
Returns:
an array with shape (6,N) containing elements of structure tensor
s_xx, s_yy, s_zz, s_xy, s_xz, s_yz ordered acording to
volume.ravel().
Author: vand@dtu.dk, 2019
""" # computing derivatives (scipy implementation truncates filter at 4 sigma)
volume = volume.astype(np.float);
Vx = scipy.ndimage.gaussian_filter(volume, sigma, order=[0,0,1], mode='nearest')
Vy = scipy.ndimage.gaussian_filter(volume, sigma, order=[0,1,0], mode='nearest')
Vz = scipy.ndimage.gaussian_filter(volume, sigma, order=[1,0,0], mode='nearest')
# integrating elements of structure tensor (scipy uses sequence of 1D)
Jxx = scipy.ndimage.gaussian_filter(Vx**2, rho, mode='nearest')
Jyy = scipy.ndimage.gaussian_filter(Vy**2, rho, mode='nearest')
Jzz = scipy.ndimage.gaussian_filter(Vz**2, rho, mode='nearest')
Jxy = scipy.ndimage.gaussian_filter(Vx*Vy, rho, mode='nearest')
Jxz = scipy.ndimage.gaussian_filter(Vx*Vz, rho, mode='nearest')
Jyz = scipy.ndimage.gaussian_filter(Vy*Vz, rho, mode='nearest')
S = np.vstack((Jxx.ravel(), Jyy.ravel(), Jzz.ravel(), Jxy.ravel(),\
Jxz.ravel(), Jyz.ravel()));
return S
def eig_special(S, full=False):
""" Eigensolution for symmetric real 3-by-3 matrices
Arguments:
S: an array with shape (6,N) containing structure tensor
full: a flag indicating that all three eigenvalues should be returned
Returns:
val: an array with shape (3,N) containing sorted eigenvalues
vec: an array with shape (3,N) containing eigenvector corresponding to
the smallest eigenvalue. If full, vec has shape (6,N) and contains
all three eigenvectors
More:
An analytic solution of eigenvalue problem for real symmetric matrix,
using an affine transformation and a trigonometric solution of third
order polynomial. See https://en.wikipedia.org/wiki/Eigenvalue_algorithm
which refers to Smith's algorithm https://dl.acm.org/citation.cfm?id=366316
Author: vand@dtu.dk, 2019
"""
# TODO -- deal with special cases, decide treatment of full (i.e. maybe return 2 for full)
# computing eigenvalues
s = S[3]**2 + S[4]**2 + S[5]**2 # off-diagonal elements
q = (1/3)*(S[0]+S[1]+S[2]) # mean of on-diagonal elements
p = np.sqrt((1/6)*(np.sum((S[0:3] - q)**2, axis=0) + 2*s)) # case p==0 treated below
p_inv = np.zeros(p.shape)
p_inv[p!=0] = 1/p[p!=0] # to avoid division by 0
B = p_inv * (S - np.outer(np.array([1,1,1,0,0,0]),q)) # B represents a 3-by-3 matrix, A = pB+2I
d = B[0]*B[1]*B[2] + 2*B[3]*B[4]*B[5] - B[3]**2*B[2]\
- B[4]**2*B[1] - B[5]**2*B[0] # determinant of B
phi = np.arccos(np.minimum(np.maximum(d/2,-1),1))/3 # min-max to ensure -1 <= d/2 <= 1
val = q + 2*p*np.cos(phi.reshape((1,-1))+np.array([[2*np.pi/3],[4*np.pi/3],[0]])) # ordered eigenvalues
# computing eigenvectors -- either only one or all three
if full:
l = val
else:
l=val[0]
u = S[4]*S[5]-(S[2]-l)*S[3]
v = S[3]*S[5]-(S[1]-l)*S[4]
w = S[3]*S[4]-(S[0]-l)*S[5]
vec = np.vstack((u*v, u*w, v*w)) # contains one or three vectors
# normalizing -- depends on number of vectors
if full: # vec is [x1 x2 x3 y1 y2 y3 z1 z2 z3]
vec = vec[[0,3,6,1,4,7,2,5,8]] # vec is [v1, v2, v3]
l = np.sqrt(np.vstack((np.sum(vec[0:3]**2,axis=0), np.sum(vec[3:6]**2,\
axis=0), np.sum(vec[6:]**2, axis=0))))
vec = vec/l[[0,0,0,1,1,1,2,2,2]] # division by 0 should not occur
else: # vec is [x1 y1 z1] = v1
vec = vec/np.sqrt(np.sum(vec**2, axis=0));
return val,vec
def solve_flow(S):
""" Solving 2D optic flow, returns LLS optimal x and y for flow along z axis
(A solution of a 2x2 linear system.)
Arguments:
S: an array with shape (6,N) containing 3D structure tensor
Returns:
xy: an array with shape (2,N) containing x and y components of the flow
Author: vand@dtu.dk, 2019
"""
d = S[0]*S[1]-S[3]**2 # denominator
aligned = d==0 # 0 or inf solutions
n = np.vstack((S[3]*S[5]-S[1]*S[4],S[3]*S[4]-S[0]*S[5]))
xy = np.zeros((2,S.shape[1]))
xy[:,~aligned] = n[:,~aligned]/d[~aligned]
return xy
def tensor_vector_distance(S, u):
""" Caclulating pairwise distance between tensors and vectors
Arguments:
S: an array with shape (6,N) containing tensor
v: an array with shape (M,3) containing vectors
Returns:
v: an array with shape (N,M) containing pairwise distances
Author: vand@dtu.dk, 2019
"""
dist = np.dot(S[0:3].T,u**2) + 2*np.dot(S[3:].T,u[[0,0,1]]*u[[1,2,2]])
return dist
#% INTERACTIVE VISUALIZATION FUNCTIONS - DOES NOT WORK WITH INLINE FIGURES
def arrow_navigation(event,z,Z):
if event.key == "up":
z = min(z+1,Z-1)
elif event.key == 'down':
z = max(z-1,0)
elif event.key == 'right':
z = min(z+10,Z-1)
elif event.key == 'left':
z = max(z-10,0)
elif event.key == 'pagedown':
z = min(z+50,Z+1)
elif event.key == 'pageup':
z = max(z-50,0)
return z
def show_vol(V,cmap='gray'):
"""
Shows volumetric data and colored orientation for interactive inspection.
@author: vand at dtu dot dk
"""
def update_drawing():
ax.images[0].set_array(V[z])
ax.set_title(f'slice z={z}')
fig.canvas.draw()
def key_press(event):
nonlocal z
z = arrow_navigation(event,z,Z)
update_drawing()
Z = V.shape[0]
z = (Z-1)//2
fig, ax = plt.subplots()
vmin = np.min(V)
vmax = np.max(V)
ax.imshow(V[z], cmap=cmap, vmin=vmin, vmax=vmax)
ax.set_title(f'slice z={z}')
fig.canvas.mpl_connect('key_press_event', key_press)
def show_vol_flow(V, fxy, s=5, double_arrow = False):
"""
Shows volumetric data and xy optical flow for interactive inspection.
Arguments:
V: volume
fxy: flow in x and y direction
s: spacing of quiver arrows
@author: vand at dtu dot dk
"""
def update_drawing():
ax.images[0].set_array(V[z])
ax.collections[0].U = fxy[0,z,s//2::s,s//2::s].ravel()
ax.collections[0].V = fxy[1,z,s//2::s,s//2::s].ravel()
if double_arrow:
ax.collections[1].U = -fxy[0,z,s//2::s,s//2::s].ravel()
ax.collections[1].V = -fxy[1,z,s//2::s,s//2::s].ravel()
ax.set_title(f'slice z={z}')
fig.canvas.draw()
def key_press(event):
nonlocal z
z = arrow_navigation(event,z,Z)
update_drawing()
Z = V.shape[2]
z = (Z-1)//2
xmesh, ymesh = np.meshgrid(np.arange(V.shape[1]), np.arange(V.shape[2]), indexing='ij')
# TODO: figure out exactly why this ij later needs 'xy'
fig, ax = plt.subplots()
ax.imshow(V[z],cmap='gray')
ax.quiver(ymesh[s//2::s,s//2::s], xmesh[s//2::s,s//2::s],
fxy[0,z,s//2::s,s//2::s], fxy[1,z,s//2::s,s//2::s],
color='r', angles='xy')
if double_arrow:
ax.quiver(ymesh[s//2::s,s//2::s], xmesh[s//2::s,s//2::s],
-fxy[0,z,s//2::s,s//2::s], -fxy[1,z,s//2::s,s//2::s],
color='r', angles='xy')
ax.set_title(f'slice z={z}')
fig.canvas.mpl_connect('key_press_event', key_press)
def fan_coloring(vec):
"""
Fan-based colors for orientations in xy plane
Arguments:
vec: an array with shape (3,N) containing orientations
Returns:
rgba: an array with shape (4,N) containing rgba colors
@author:vand@dtu.dk
"""
h = (vec[2]**2).reshape((vec.shape[1],1)) # no discontinuity and less gray
s = np.mod(np.arctan(vec[0]/vec[1]),np.pi) # hue angle
hue = plt.cm.hsv(s/np.pi)
rgba = hue*(1-h) + 0.5*h
rgba[:,3] = 1 # fixing alpha value
return rgba
def show_vol_orientation(V, vec,
coloring = lambda v : np.c_[abs(v).T,np.ones((v.shape[1],1))],
blending = lambda g,c : 0.5*(g+c)):
"""
Shows volumetric data and colored orientation for interactive inspection.
@author: vand at dtu dot dk
"""
rgba = coloring(vec).reshape(V.shape+(4,))
def update_drawing():
ax.images[0].set_array(blending(plt.cm.gray(V[z]), rgba[z]))
ax.set_title(f'slice z={z}')
fig.canvas.draw()
def key_press(event):
nonlocal z
z = arrow_navigation(event,z,Z)
update_drawing()
Z = V.shape[0]
z = (Z-1)//2
fig, ax = plt.subplots()
ax.imshow(blending(plt.cm.gray(V[z]), rgba[z]))
ax.set_title(f'slice z={z}')
fig.canvas.mpl_connect('key_press_event', key_press)