Newer
Older
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE NoMonomorphismRestriction #-}
-- * Context
Context (..),
defaultContext,
-- * Helpers
prettyIdent,
) where
import qualified Data.Set as Set
import Data.Vector.Internal.Check (HasCallStack)
, typeDefs :: !(Map.Map C.Ident InlineType)
, inlineExprs :: !(Map.Map C.Ident InlineExpr)
, fields :: !(Map.Map C.Ident (Maybe C.Ident))
, structs :: !(Map.Map C.Ident (Maybe C.CStructUnion))
= ITKeep
| ITInline ![C.CDeclarationSpecifier C.NodeInfo]
deriving (Show, Eq)
data InlineExpr
= IEDelete
| IEInline !C.CExpr
| IEKeep
defaultReduceC :: (MonadReduce (String, C.Position) m) => C.CTranslUnit -> m C.CTranslUnit
defaultReduceC a = reduceCTranslUnit a defaultContext
{-# SPECIALIZE defaultReduceC :: C.CTranslUnit -> IRTree.IRTree (String, C.Position) C.CTranslUnit #-}
addTypeDefs :: [C.Ident] -> InlineType -> Context -> Context
addTypeDefs ids cs Context{..} =
Context
{ typeDefs =
foldl' (\a i -> Map.insert i cs a) typeDefs ids
, ..
}
addInlineExpr :: C.Ident -> InlineExpr -> Context -> Context
addInlineExpr i e Context{..} =
Context
{ inlineExprs = Map.insert i e inlineExprs
, ..
}
addKeyword :: Keyword -> Context -> Context
addKeyword k Context{..} =
Context
{ keywords = Set.insert k keywords
, ..
}
addStruct :: StructDef -> Context -> Context
addStruct (StructDef k fs _) Context{..} =
Context
{ structs = Map.insert k Nothing structs
, fields = foldr (`Map.insert` Just k) fields fs
, ..
}
removeStruct :: StructDef -> Context -> Context
removeStruct (StructDef k fs un) Context{..} =
Context
{ structs = Map.insert k (Just un) structs
, fields = foldr (`Map.insert` Nothing) fields fs
, ..
}
-- deleteKeyword :: Keyword -> Context -> Context
-- deleteKeyword k Context{..} =
-- Context
-- { keywords = Set.delete k keywords
-- , ..
-- }
defaultContext :: Context
defaultContext =
Context
, inlineExprs =
Map.fromList
[ (C.builtinIdent "fabsf", IEKeep)
, (C.builtinIdent "fabs", IEKeep)
, (C.builtinIdent "__PRETTY_FUNCTION__", IEKeep)
, (C.builtinIdent "__FUNCTION__", IEKeep)
]
, fields = Map.empty
, structs = Map.empty
isIn :: Keyword -> Context -> Bool
isIn k = Set.member k . keywords
prettyIdent :: C.Identifier C.NodeInfo -> [Char]
prettyIdent (C.Ident s _ a) = s ++ " at " ++ show (C.posOfNode a)
reduceCTranslUnit
:: (MonadReduce Lab m)
=> C.CTranslationUnit C.NodeInfo
-> Context
-> m (C.CTranslationUnit C.NodeInfo)
reduceCTranslUnit (C.CTranslUnit es ni) ctx = do
res' <- foldr reduceCExternalDeclaration (\_ -> pure []) es ctx
es' <- sequence res'
pure $ C.CTranslUnit es' ni
reduceCExternalDeclaration
:: (MonadReduce Lab m)
=> C.CExternalDeclaration C.NodeInfo
-> (Context -> m [m (C.CExternalDeclaration C.NodeInfo)])
C.CFDefExt fun
| KeepMain `isIn` ctx && maybe False (("main" ==) . C.identToString) (functionName fun) -> do
((C.CFDefExt <$> reduceCFunDef fun ctx) :) <$> cont ctx
("remove function " <> C.identToString fid, C.posOf r)
((C.CFDefExt <$> reduceCFunDef fun ctx) :) <$> cont (addInlineExpr fid IEKeep ctx)
(((C.CFDefExt <$> reduceCFunDef fun ctx) :) <$> cont ctx)
C.CDeclExt decl -> do
(decl', ctx') <- handleDecl decl ctx
case decl' of
Just d -> (pure (C.CDeclExt d) :) <$> cont ctx'
Nothing -> cont ctx'
data StructDef = StructDef
{ structId :: !C.Ident
, fieldIds :: ![C.Ident]
, structDef :: !C.CStructUnion
}
deriving (Show, Eq)
structIds
:: (Foldable f)
=> f (C.CDeclarationSpecifier C.NodeInfo)
-> [StructDef]
structIds = concatMap \case
C.CTypeSpec (C.CSUType (C.CStruct a (Just n) (Just ma) b c) _) ->
[ StructDef
n
[ x
| C.CDecl _ itms _ <- ma
, C.CDeclarationItem (C.CDeclr (Just x) _ _ _ _) _ _ <- itms
]
(C.CStruct a (Just n) (Just ma) b c)
]
_ow -> []
trySplit :: (MonadReduce l m, Eq a) => l -> a -> (a -> a) -> m a
trySplit l a action = do
let a' = action a
if a /= a'
then split l (pure a') (pure a)
else pure a
=> C.CFunctionDef C.NodeInfo
-> Context
-> m (C.CFunctionDef C.NodeInfo)
reduceCFunDef (C.CFunDef spc dec cdecls smt ni) ctx = do
spc1 <- trySplit ("remove static", C.posOf ni) spc $ filter \case
C.CStorageSpec (C.CStatic _) -> False
_ow -> True
spc2 <- trySplit ("remove inline", C.posOf ni) spc1 $ filter \case
C.CFunSpec (C.CInlineQual _) -> False
_ow -> True
smt' <- reduceCStatementOrEmptyBlock smt ctx'
pure $
C.CFunDef
(inlineTypeDefsCDeclarator dec ctx)
(map (`inlineTypeDefsCDeclaration` ctx) cdecls)
!ctx' = foldr (`addInlineExpr` IEKeep) ctx ids
ids = params dec
params :: C.CDeclarator C.NodeInfo -> [C.Ident]
params (C.CDeclr _ declrs _ _ _) =
declrs & concatMap \case
C.CFunDeclr (C.CFunParamsNew decls _) _ _ ->
decls & concatMap \case
C.CDecl _ items _ ->
items & concatMap \case
C.CDeclarationItem (C.CDeclr (Just idx) _ _ _ _) _ _ -> [idx]
_ow -> []
a -> don'tHandleWithPos a
_ow -> []
=> C.CCompoundBlockItem C.NodeInfo
-> (Context -> m [C.CCompoundBlockItem C.NodeInfo])
-> Context
-> m [C.CCompoundBlockItem C.NodeInfo]
reduceCCompoundBlockItem r cont ctx = do
case r of
C.CBlockStmt smt -> do
case reduceCStatement smt ctx of
Just rsmt -> split ("remove statement", C.posOf r) (cont ctx) do
smt' <- rsmt
case smt' of
C.CCompound [] ss _ -> do
split ("expand compound statment", C.posOf r) ((ss <>) <$> cont ctx) do
(C.CBlockStmt smt' :) <$> cont ctx
_ow -> do
(C.CBlockStmt smt' :) <$> cont ctx
Nothing -> cont ctx
C.CBlockDecl declr -> do
(declr', ctx') <- handleDecl declr ctx
case declr' of
Just d -> (C.CBlockDecl d :) <$> cont ctx'
Nothing -> cont ctx'
handleDecl
:: (MonadReduce Lab m)
=> C.CDeclaration C.NodeInfo
-> Context
-> m (Maybe (C.CDeclaration C.NodeInfo), Context)
handleDecl d ctx = case inlineTypeDefsCDeclaration d ctx of
-- A typedef
C.CDecl (C.CStorageSpec (C.CTypedef _) : rst) decl _ -> do
let [ids] = identifiers decl
split
("inline typedef " <> C.identToString ids, C.posOf d)
(pure (Nothing, addTypeDefs [ids] (ITInline rst) ctx))
(pure (Just d, addTypeDefs [ids] ITKeep ctx))
-- A const
C.CDecl spc decl ni' -> do
spc1 <- trySplit ("remove static", C.posOf ni') spc $ filter \case
C.CStorageSpec (C.CStatic _) -> False
_ow -> True
(decl', ctx') <- foldr reduceCDeclarationItem (pure ([], ctx)) decl
([], [])
| AllowEmptyDeclarations `isIn` ctx' ->
split ("remove empty declaration", C.posOf d) (pure (Nothing, ctx')) do
| otherwise -> pure (Nothing, ctx')
([], stcts) ->
split
("remove declaration", C.posOf d)
(pure (Nothing, foldr removeStruct ctx' stcts))
do
pure
, foldr addStruct ctx' stcts
)
(_, stcts) ->
pure
, foldr addStruct ctx' stcts
)
a -> don'tHandleWithPos a
-> m ([C.CDeclarationItem C.NodeInfo], Context)
-> m ([C.CDeclarationItem C.NodeInfo], Context)
dr@(C.CDeclr (Just i) [] Nothing [] ni)
(Just (C.CInitExpr c ni'))
(ds, ctx) <- ma
c' <- fromMaybe (pure zeroExpr) (reduceCExpr c ctx)
( inlineTypeDefsCDI (C.CDeclarationItem dr (Just (C.CInitExpr c' ni')) Nothing) ctx : ds
, addInlineExpr i IEKeep ctx
C.CDeclarationItem (C.CDeclr (Just i) _ Nothing _ ni) _ Nothing -> do
(ds, ctx) <- ma
split
("remove variable " <> C.identToString i, C.posOf ni)
(pure (ds, addInlineExpr i IEDelete ctx))
(pure (inlineTypeDefsCDI d ctx : ds, addInlineExpr i IEKeep ctx))
a@(C.CDeclarationItem (C.CDeclr _ _ _ _ ni) _ _) -> do
don'tHandleWithNodeInfo a ni
=> C.CStatement C.NodeInfo
-> Context
-> m (C.CStatement C.NodeInfo)
reduceCStatementOrEmptyBlock stmt ctx = do
case reduceCStatement stmt ctx of
Just ex -> do
ex
Nothing -> do
pure emptyBlock
emptyBlock :: C.CStatement C.NodeInfo
emptyBlock = C.CCompound [] [] C.undefNode
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
=> C.CStatement C.NodeInfo
-> Context
-> Maybe (m (C.CStatement C.NodeInfo))
reduceCStatement smt ctx = case smt of
C.CCompound is cbi ni -> Just do
cbi' <- foldr reduceCCompoundBlockItem (\_ -> pure []) cbi ctx
pure $ C.CCompound is cbi' ni
C.CWhile e s dow ni -> do
rs <- reduceCStatement s ctx
Just do
e' <- reduceCExprOrZero e ctx
s' <- rs
pure $ C.CWhile e' s' dow ni
C.CExpr me ni -> do
case me of
Just e -> do
if DoNoops `isIn` ctx
then Just do
e' <- maybeSplit ("change to noop", C.posOf smt) $ reduceCExpr e ctx
pure $ C.CExpr e' ni
else do
re <- reduceCExpr e ctx
Just do
e' <- re
pure $ C.CExpr (Just e') ni
Nothing ->
Just $ pure $ C.CExpr Nothing ni
C.CReturn me ni -> Just do
case me of
Just e -> do
e' <- reduceCExprOrZero e ctx
pure $ C.CReturn (Just e') ni
Nothing ->
pure $ C.CReturn Nothing ni
C.CIf e s els ni -> Just do
e' <- maybeSplit ("remove condition", C.posOf e) $ reduceCExpr e ctx
els' <- case els of
Just els' -> do
maybeSplit ("remove else branch", C.posOf els') do
reduceCStatement els' ctx
Nothing -> pure Nothing
ms' <- maybeSplit ("remove if branch", C.posOf s) do
reduceCStatement s ctx
case (e', ms', els') of
(Nothing, Nothing, Nothing) -> pure emptyBlock
(Just e'', Just s', Nothing) -> pure $ C.CIf e'' s' Nothing ni
(Nothing, Just s', Just x) -> pure $ C.CIf zeroExpr s' (Just x) ni
(Just e'', Just s', Just x) -> pure $ C.CIf e'' s' (Just x) ni
(Just e'', Nothing, Nothing) -> pure $ C.CExpr (Just e'') C.undefNode
(Nothing, Nothing, Just x) -> pure x
(Just e'', Nothing, Just x) -> pure $ C.CIf e'' emptyBlock (Just x) ni
(Nothing, Just s', Nothing) -> pure s'
C.CFor e1 e2 e3 s ni -> Just $ do
(me1', ctx') <- case e1 of
C.CForDecl (C.CDecl rec decl ni') -> do
(decl', ctx') <- foldr reduceCDeclarationItem (pure ([], ctx)) decl
res <-
if null decl'
then
whenSplit
(AllowEmptyDeclarations `isIn` ctx')
("remove empty declaration", C.posOf ni')
(pure Nothing)
(pure $ Just $ C.CForDecl (C.CDecl rec decl' ni'))
else pure $ Just $ C.CForDecl (C.CDecl rec decl' ni')
pure (res, ctx')
C.CForInitializing e -> do
e' <- maybeSplit ("remove initializer", C.posOf ni) (e >>= \e' -> reduceCExpr e' ctx)
whenSplit
(AllowEmptyDeclarations `isIn` ctx)
("remove empty declaration", C.posOf ni)
(pure (Nothing, ctx))
s' <- reduceCStatementOrEmptyBlock s ctx'
case me1' of
Nothing -> do
split ("remove the for loop", C.posOf smt) (pure s') do
e2' <- case e2 of
Just e2' -> maybeSplit ("remove check", C.posOf e2') (reduceCExpr e2' ctx')
Nothing -> pure Nothing
e3' <- case e3 of
Just e3' -> maybeSplit ("remove iterator", C.posOf e3') (reduceCExpr e3' ctx')
Nothing -> pure Nothing
pure $ C.CFor (C.CForInitializing Nothing) e2' e3' s' ni
Just e1' -> do
e2' <- case e2 of
Just e2' -> maybeSplit ("remove check", C.posOf e2') (reduceCExpr e2' ctx')
Nothing -> pure Nothing
e3' <- case e3 of
Just e3' -> maybeSplit ("remove iterator", C.posOf e3') (reduceCExpr e3' ctx')
Nothing -> pure Nothing
pure $ C.CFor e1' e2' e3' s' ni
C.CBreak ni -> Just do
pure (C.CBreak ni)
C.CLabel i s [] ni -> Just do
s' <- reduceCStatementOrEmptyBlock s ctx
pure $ C.CLabel i s' [] ni
C.CGoto i ni -> Just do
pure $ C.CGoto i ni
-- | If the condition is statisfied try to reduce to the a.
whenSplit :: (MonadReduce Lab m) => Bool -> Lab -> m a -> m a -> m a
whenSplit cn lab a b
| cn = split lab a b
| otherwise = b
maybeSplit :: (MonadReduce Lab m) => Lab -> Maybe (m a) -> m (Maybe a)
maybeSplit lab = \case
Just r -> do
split lab (pure Nothing) (Just <$> r)
Nothing -> do
pure Nothing
zeroExpr :: C.CExpression C.NodeInfo
zeroExpr = C.CConst (C.CIntConst (C.cInteger 0) C.undefNode)
reduceCExprOrZero :: (MonadReduce Lab m, HasCallStack) => C.CExpr -> Context -> m C.CExpr
reduceCExprOrZero expr ctx = do
case reduceCExpr expr ctx of
Just ex -> do
r <- ex
if r == zeroExpr
then pure r
else split ("replace by zero", C.posOf expr) (pure zeroExpr) (pure r)
reduceCExpr :: (MonadReduce Lab m, HasCallStack) => C.CExpr -> Context -> Maybe (m C.CExpr)
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
reduceCExpr expr ctx = case expr of
C.CBinary o elhs erhs ni -> do
case reduceCExpr elhs ctx of
Just elhs' -> case reduceCExpr erhs ctx of
Just erhs' -> pure do
split ("reduce to left", C.posOf elhs) elhs' do
split ("reduce to right", C.posOf erhs) erhs' do
l' <- elhs'
r' <- erhs'
pure $ C.CBinary o l' r' ni
Nothing ->
fail "could not reduce right hand side"
Nothing
| otherwise -> fail "could not reduce left hand side"
C.CAssign o elhs erhs ni ->
case reduceCExpr elhs (addKeyword DisallowVariableInlining ctx) of
Just elhs' -> case reduceCExpr erhs ctx of
Just erhs' -> pure do
split ("reduce to left", C.posOf elhs) elhs' do
split ("reduce to right", C.posOf erhs) erhs' do
l' <- elhs'
r' <- erhs'
pure $ C.CAssign o l' r' ni
Nothing ->
fail "could not reduce right hand side"
Nothing
| otherwise -> fail "could not reduce left hand side"
C.CVar i _ ->
case Map.lookup i . inlineExprs $ ctx of
Just mx -> case mx of
Nothing
Nothing -> error ("Could not find " <> show i <> " at " <> show (C.posOf expr) <> "\n" <> show (inlineExprs ctx))
C.CConst x -> Just do
pure $ C.CConst x
C.CUnary o elhs ni -> do
elhs' <- reduceCExpr elhs (addKeyword DisallowVariableInlining ctx)
Just $ split ("reduce to operant", C.posOf expr) elhs' do
e <- elhs'
pure $ C.CUnary o e ni
let re = reduceCExpr e (addKeyword DisallowVariableInlining ctx)
res = map (`reduceCExpr` ctx) es
case (re, catMaybes res) of
(Nothing, []) -> Nothing
(Nothing, [r]) -> Just r
(_, _) -> Just do
e' <- maybeSplit ("do without function", C.posOf e) re
es' <- res & traverse (maybeSplit ("do without pram", C.posOf e))
case (e', catMaybes es') of
(Nothing, []) -> pure zeroExpr
(Nothing, [e'']) -> pure e''
(Nothing, es'') -> pure $ C.CComma es'' C.undefNode
(Just f, _) -> pure $ C.CCall f (map (fromMaybe zeroExpr) es') ni
C.CCond ec et ef ni -> do
-- TODO: More fine grained reduction is possible here.
Just $ do
ec' <- reduceCExprOrZero ec ctx
ef' <- reduceCExprOrZero ef ctx
et' <- case et of
Just et' -> Just <$> reduceCExprOrZero et' ctx
Nothing -> pure Nothing
pure $ C.CCond ec' et' ef' ni
C.CCast decl e ni -> do
re <- reduceCExpr e ctx
Just do
split ("don't cast", C.posOf ni) re do
e' <- re
pure (C.CCast (inlineTypeDefsCDeclaration decl ctx) e' ni)
C.CIndex e1 e2 ni -> do
-- TODO: Better reduction is posisble here.
re1 <- reduceCExpr e1 ctx
Just do
e1' <- re1
e2' <- reduceCExprOrZero e2 ctx
pure $ C.CIndex e1' e2' ni
C.CComma items ni -> Just do
let Just (x, rst) = List.uncons (reverse items)
rst' <-
foldr
( \e cc -> do
maybeSplit ("remove expression", C.posOf e) (reduceCExpr e ctx) >>= \case
Just e' -> (e' :) <$> cc
Nothing -> cc
)
(pure [])
rst
x' <- reduceCExprOrZero x ctx
if List.null rst'
then pure x'
else pure $ C.CComma (reverse (x' : rst')) ni
C.CMember e i l ni -> do
re <- reduceCExpr e ctx
Just do
e' <- re
pure (C.CMember e' i l ni)
inlineTypeDefsCDeclaration :: C.CDeclaration C.NodeInfo -> Context -> C.CDeclaration C.NodeInfo
inlineTypeDefsCDeclaration decl ctx =
case decl of
C.CDecl items decli ni ->
C.CDecl (inlineTypeDefsSpecs items ctx) (map (`inlineTypeDefsCDI` ctx) decli) ni
a -> don'tHandle a
inlineTypeDefsSpecs :: [C.CDeclarationSpecifier C.NodeInfo] -> Context -> [C.CDeclarationSpecifier C.NodeInfo]
inlineTypeDefsSpecs r ctx =
r & concatMap \case
a@(C.CTypeSpec (C.CTypeDef idx _)) -> do
case Map.lookup idx . typeDefs $ ctx of
Just ITKeep -> [a]
Just (ITInline res) -> res
Nothing -> error ("could not find typedef:" <> show idx)
a@(C.CTypeSpec (C.CSUType (C.CStruct _ (Just idx) Nothing _ _) _)) ->
case Map.lookup idx . structs $ ctx of
Just (Just def) -> [C.CTypeSpec (C.CSUType def C.undefNode)]
Just Nothing -> [a]
Nothing -> error ("could not find struct:" <> show idx)
C.CTypeSpec (C.CSUType (C.CStruct a b (Just c) d e) f) ->
[C.CTypeSpec (C.CSUType (C.CStruct a b (Just $ map (`inlineTypeDefsCDeclaration` ctx) c) d e) f)]
a -> [a]
{-# NOINLINE inlineTypeDefsSpecs #-}
inlineTypeDefsCDeclarator
:: C.CDeclarator C.NodeInfo
-> Context
-> C.CDeclarator C.NodeInfo
inlineTypeDefsCDeclarator (C.CDeclr idn derivedd st atr ni) ctx =
C.CDeclr idn (map (inlineTypeDefsX ctx) derivedd) st atr ni
inlineTypeDefsX :: Context -> C.CDerivedDeclarator C.NodeInfo -> C.CDerivedDeclarator C.NodeInfo
inlineTypeDefsX ctx = \case
C.CFunDeclr (C.CFunParamsNew x y) b c ->
C.CFunDeclr (C.CFunParamsNew (map (`inlineTypeDefsCDeclaration` ctx) x) y) b c
C.CArrDeclr a b c -> C.CArrDeclr a b c
C.CPtrDeclr a b -> C.CPtrDeclr a b
a -> don'tHandle a
inlineTypeDefsCDI :: C.CDeclarationItem C.NodeInfo -> Context -> C.CDeclarationItem C.NodeInfo
inlineTypeDefsCDI di ctx = case di of
C.CDeclarationItem a b ni -> C.CDeclarationItem (inlineTypeDefsCDeclarator a ctx) b ni
a -> don'tHandle a
identifiers :: forall a. (Data a) => a -> [C.Ident]
identifiers d = appEndo (go d) []
where
go :: forall a'. (Data a') => a' -> Endo [C.Ident]
go d' = case cast d' of
Just l -> Endo (l :)
Nothing -> gmapQl (<>) mempty go d'
functionName :: C.CFunctionDef C.NodeInfo -> Maybe C.Ident
functionName = \case
C.CFunDef _ (C.CDeclr ix _ _ _ _) _ _ _ -> ix
don'tHandle :: (HasCallStack, Functor f, Show (f ())) => f C.NodeInfo -> b
don'tHandle f = error (show (f $> ()))
don'tHandleWithPos :: (HasCallStack, Functor f, Show (f ()), C.Pos (f C.NodeInfo)) => f C.NodeInfo -> b
don'tHandleWithPos f = error (show (f $> ()) <> " at " <> show (C.posOf f))
don'tHandleWithNodeInfo :: (HasCallStack, Functor f, Show (f ())) => f C.NodeInfo -> C.NodeInfo -> b
don'tHandleWithNodeInfo f ni = error (show (f $> ()) <> " at " <> show (C.posOf ni))