Newer
Older
-- in this case we change type, so we need to keep the operation
rl <- reduceCExpr elhs t' ctx
rr <- reduceCExpr erhs t' ctx
Just do
msplit ("reduce to left", C.posOf elhs) (reduceCExpr elhs t ctx) do
msplit ("reduce to right", C.posOf erhs) (reduceCExpr erhs t ctx) do
c <- inferType ctx elhs
checkExpectedType c t
let t' = fromVoid etAny exactly c
-- in this case we change type, so we need to keep the operation
rl <- reduceCExpr elhs t'{etAssignable = True} ctx
rr <- reduceCExpr erhs t' ctx
Just do
l' <- rl
r' <- rr
pure $ C.CAssign o l' r' ni
case lookupVariable ctx i of
IEKeep c -> do
Just (pure expr)
IEInline mx' -> do
guard (not $ DisallowVariableInlining `isIn` ctx)
reduceCExpr mx' t ctx
IEDelete ->
Nothing
C.CConst x -> do
case x of
C.CStrConst _ _ -> do
checkNotAssignable t
checkExpectedType (NonVoid (TPointer (NonVoid TNum))) t
-- guard ( `match` etSet t)
Just (pure expr)
C.CIntConst (C.getCInteger -> 0) _ -> do
checkNotAssignable t
checkExpectedType (NonVoid (TPointer Void)) t
<|> checkExpectedType (NonVoid TNum) t
Just (pure expr)
_ow -> do
checkNotAssignable t
Just (pure expr)
C.CUnary o eopr ni -> do
msplit ("reduce to operant", C.posOf eopr) (reduceCExpr eopr t ctx) do
case o of
C.CIndOp -> do
ropr <- reduceCExpr eopr (t{etSet = ETPointer (etSet t), etAssignable = True}) ctx
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
Just do
eopr' <- ropr
pure $ C.CUnary o eopr' ni
C.CAdrOp -> do
t' <- etUnPointer t
-- pTraceShowM (t', void eopr)
ropr <- reduceCExpr eopr (t'{etAssignable = True}) ctx
Just do
eopr' <- ropr
pure $ C.CUnary o eopr' ni
e
| e `List.elem` [C.CPreIncOp, C.CPreDecOp, C.CPostIncOp, C.CPostDecOp] -> do
reduceCExpr eopr t{etAssignable = True} ctx <&> \ropr -> do
eopr' <- ropr
pure $ C.CUnary o eopr' ni
| otherwise -> do
reduceCExpr eopr t ctx <&> \ropr -> do
eopr' <- ropr
pure $ C.CUnary o eopr' ni
C.CCall ef args ni -> do
(\fn a -> foldr fn a args)
(\e -> msplit ("reduce to expression", C.posOf e) (reduceCExpr e t ctx))
do
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
checkNotAssignable t
-- unless (etSet t == ETAny) do
-- rt <- fromVoid mzero pure mrt
-- guard (rt `match` etSet t)
-- TODO (should be function?)
ref <- reduceCExpr ef (exactly ft) ctx
let targs = case fargs of
Params targs' v ->
let cons = if v then repeat (Just ETAny) else []
in map (fmap ETExactly) targs' <> cons
VoidParams -> repeat (Just ETAny)
let pargs = mapMaybe (\(ta, a) -> (,a) <$> ta) (zip targs args)
rargs <- forM pargs \(ta, a) ->
reduceCExpr a (EType ta False) ctx
Just do
ef' <- ref
args' <- sequence rargs
pure $ C.CCall ef' args' ni
ow -> do
error $
"Original c code does not type-check: exepected function, got "
<> show ow
<> " at "
<> show (C.posOf ef)
C.CCond et (Just ec) ef ni -> do
msplit ("reduce to true branch", C.posOf et) (reduceCExpr et t ctx) do
msplit ("reduce to false branch", C.posOf ef) (reduceCExpr ef t ctx) do
msplit ("reduce to condtion", C.posOf ef) (reduceCExpr ec t ctx) do
checkNotAssignable t
ret <- reduceCExpr et t ctx
ref <- reduceCExpr ef t ctx
rec <- reduceCExpr ec etAny ctx
et' <- ret
ef' <- ref
ec' <- rec
pure $ C.CCond et' (Just ec') ef' ni
msplit ("do not cast", C.posOf ni) (reduceCExpr e t ctx) do
(bt, spec') <- evalStateT (updateCDeclarationSpecifiers keepAll spec) ctx
(items', re) <- case items of
[C.CDeclarationItem (C.CDeclr Nothing dd Nothing [] a) b c] -> do
(_, dd') <- evalStateT (updateCDerivedDeclarators bt (repeat True) dd) ctx
([C.CDeclarationItem (C.CDeclr Nothing dd' Nothing [] a) b c],) <$> do
[] ->
([],) <$> case bt of
Void ->
reduceCExpr e etAny ctx
NonVoid _ -> do
-- checkExpectedType ct' t
reduceCExpr e etAny ctx
msplit ("reduce to indexee", C.posOf e1) (reduceCExpr e1 t ctx) do
msplit ("reduce to index", C.posOf e2) (reduceCExpr e2 t ctx) do
re1 <- reduceCExpr e1 t{etSet = ETPointer (etSet t)} ctx
Just do
e1' <- re1
e2' <-
fromMaybe (pure zeroExpr) $
reduceCExpr e2 etNum ctx
pure $ C.CIndex e1' e2' ni
(x, rst) <- List.uncons (reverse items)
(\fn a -> foldr fn a (reverse items))
(\e -> msplit ("reduce to expression", C.posOf e) (reduceCExpr e t ctx))
do
rx <- reduceCExpr x t ctx
Just do
rst' <- flip collect rst \e -> do
re <- liftMaybe (reduceCExpr e (EType ETAny False) ctx)
e' <- re
exceptIf ("remove expression", C.posOf e)
pure (e' :: C.CExpr)
x' <- rx
pure $ C.CComma (reverse (x' : rst')) ni
re <- reduceCExpr e t{etSet = ETStructWithField i (etSet t)} ctx
Just do
e' <- re
pure (C.CMember e' i l ni)
-- shouldDeleteFunction :: Context -> C.CFunctionDef C.NodeInfo -> Bool
-- shouldDeleteFunction ctx (C.CFunDef spec _ _ _ _) =
-- any (shouldDeleteDeclSpec ctx) spec
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
-- shouldDeleteDeclaration :: Context -> C.CDeclaration C.NodeInfo -> Bool
-- shouldDeleteDeclaration ctx decl =
-- case decl of
-- C.CDecl items decli _ -> any (shouldDeleteDeclSpec ctx) items || any shouldDeleteDeclItem decli
-- a -> notSupportedYet' a
-- where
-- shouldDeleteDeclItem = \case
-- C.CDeclarationItem a _ _ -> shouldDeleteDeclartor a
-- a -> notSupportedYet a decl
--
-- shouldDeleteDeclartor = \case
-- C.CDeclr _ def _ _ _ -> any shouldDeleteDerivedDeclartor def
--
-- shouldDeleteDerivedDeclartor = \case
-- C.CFunDeclr (C.CFunParamsNew x _) _ _ ->
-- any (shouldDeleteDeclaration ctx) x
-- C.CArrDeclr{} -> False
-- C.CPtrDeclr _ _ -> False
-- a -> notSupportedYet' a
--
-- shouldDeleteDeclSpec :: Context -> C.CDeclarationSpecifier C.NodeInfo -> Bool
-- shouldDeleteDeclSpec ctx = \case
-- C.CTypeSpec (C.CSUType (C.CStruct _ (Just idx) Nothing _ _) _) ->
-- case Map.lookup idx . structs $ ctx of
-- Just (_, Just _) -> False
-- Just (_, Nothing) -> True
-- Nothing -> error ("could not find struct:" <> show idx)
-- C.CTypeSpec (C.CSUType (C.CStruct _ _ (Just c) _ _) _) ->
-- any (shouldDeleteDeclaration ctx) c
-- _ow -> False
lookupFunction :: (HasCallStack) => Context -> C.Ident -> Maybe Function
lookupFunction ctx k =
fromMaybe (error ("could not find function " <> C.identToString k)) $
functions ctx Map.!? k
lookupVariable :: (HasCallStack) => Context -> C.Ident -> InlineExpr
lookupVariable ctx k =
fromMaybe (error ("could not find variable " <> C.identToString k)) $
inlineExprs ctx Map.!? k
lookupStruct :: (HasCallStack) => Context -> C.Ident -> Maybe StructType
fromMaybe (error ("could not find struct " <> C.identToString k)) $
structs ctx Map.!? k
labelsOf :: C.CStatement C.NodeInfo -> [C.Ident]
labelsOf = \case
C.CLabel i s [] _ -> i : labelsOf s
C.CWhile _ s _ _ -> labelsOf s
C.CCase _ s _ -> labelsOf s
C.CDefault s _ -> labelsOf s
C.CCompound _ ss _ ->
ss & concatMap \case
C.CBlockStmt s -> labelsOf s
_ow -> []
C.CCases _ _ s _ -> labelsOf s
C.CIf _ l r _ -> labelsOf l <> maybe [] labelsOf r
C.CSwitch _ s _ -> labelsOf s
C.CFor _ _ _ s _ -> labelsOf s
_ow -> []
-- applyDerivedDeclarators :: [C.CDerivedDeclarator C.NodeInfo] -> Maybe CType -> Maybe CType
-- applyDerivedDeclarators [] ct = ct
-- applyDerivedDeclarators _ _ = Just (CTPointer undefined)
-- -- \| Returns nothing if void is used
-- functionParameters
-- :: Context
-- -> [C.CDerivedDeclarator C.NodeInfo]
-- -> Maybe FunctionParams
-- functionParameters ctx = \case
-- (C.CFunDeclr (C.CFunParamsNew x b) _ _) : rst ->
-- case x of
-- [C.CDecl [C.CTypeSpec (C.CVoidType _)] _ _] ->
-- Just VoidParams
-- params ->
-- Just (Params (fmap (Just . snd) . map (functionParameter ctx) $ params) b)
-- _ow -> Nothing
, structs :: !(Map.Map C.Ident (Maybe StructType))
= ITKeep !Type
| ITInline !Type ![C.CDeclarationSpecifier C.NodeInfo]
| ITDelete
deriving (Show, Eq)
data InlineExpr
= IEDelete
| IEInline !C.CExpr
deriving (Show, Eq)
data Keyword
= LoseMain
| DoNoops
| InlineTypeDefs
| NoSemantics
| AllowEmptyDeclarations
| DisallowVariableInlining
| AllowInfiniteForLoops
deriving (Show, Read, Enum, Eq, Ord)
type Lab = (String, C.Position)
addTypeDef :: C.Ident -> InlineType -> Context -> Context
addTypeDef i cs ctx = ctx{typeDefs = Map.insert i cs $ typeDefs ctx}
addInlineExpr :: C.Ident -> InlineExpr -> Context -> Context
addInlineExpr i e Context{..} =
Context{inlineExprs = Map.insert i e inlineExprs, ..}
addStruct :: C.Identifier C.NodeInfo -> Maybe StructType -> Context -> Context
addStruct i cs ctx = ctx{structs = Map.insert i cs $ structs ctx}
defaultContext :: Context
defaultContext =
Context
{ keywords = Set.fromList []
, typeDefs = Map.empty
, inlineExprs =
Map.fromList
[ (C.builtinIdent "__PRETTY_FUNCTION__", IEKeep (TPointer (NonVoid TNum)))
, (C.builtinIdent "__FUNCTION__", IEKeep (TPointer (NonVoid TNum)))
}
isIn :: Keyword -> Context -> Bool
isIn k = Set.member k . keywords
prettyIdent :: C.Identifier C.NodeInfo -> [Char]
prettyIdent (C.Ident s _ a) = s ++ " at " ++ show (C.posOfNode a)
data Struct = Struct
{ structName :: !C.Ident
, structPosition :: !C.Position
}
deriving (Show, Eq)
findStructs
:: forall m
. (Monoid m)
=> (Struct -> m)
-> C.CExternalDeclaration C.NodeInfo
-> m
C.CDeclExt decl -> findStructsInDeclaration decl
C.CFDefExt (C.CFunDef spec declr params stmt _ni) ->
findStructsInDeclarator declr
<> foldMap findStructsInSpecifier spec
<> foldMap findStructsInDeclaration params
<> findStructsInStatement stmt
C.CAsmExt _ _ -> mempty
where
toStruct (C.CStruct _ mid mfields _attr ni) = fromMaybe mempty do
let fields' = Just <$> concatMap structField fields
pure $ inject (Struct sid fields' (C.posOf ni))
structField = \case
C.CDecl _ items _ ->
map (\(C.CDeclarationItem decl _ _) -> fromMaybe (error "all struct fields should be named") (name decl)) items
a@(C.CStaticAssert{}) -> notSupportedYet' a
-- TODO currently we do not look for structs inside of expressions.
-- (Can hide in CCompoundLiterals)
findStructsInStatement = \case
C.CCompound _ blocks _ -> flip foldMap blocks \case
C.CBlockDecl decl -> findStructsInDeclaration decl
C.CBlockStmt stmt -> findStructsInStatement stmt
a@(C.CNestedFunDef _) -> notSupportedYet' a
C.CFor (C.CForDecl decl) _ _ _ _ ->
findStructsInDeclaration decl
_ow -> mempty
findStructsInDeclarator = \case
C.CDeclr _ dd Nothing [] _ -> flip foldMap dd \case
C.CPtrDeclr _ _ -> mempty
C.CArrDeclr{} -> mempty
C.CFunDeclr (C.CFunParamsOld _) _ _ -> mempty
C.CFunDeclr (C.CFunParamsNew params _) _ _ ->
foldMap findStructsInDeclaration params
findStructsInDeclaration = \case
C.CDecl spec items ni ->
foldMap findStructsInSpecifier spec <> flip foldMap items \case
C.CDeclarationItem d _minit _mexpr -> do
findStructsInDeclarator d
a@(C.CStaticAssert _ _ ni) -> notSupportedYet (a $> ()) ni
findStructsInSpecifier = \case
C.CTypeSpec (C.CSUType cu _) -> toStruct cu
_ow -> mempty
data Function = Function
{ funName :: !C.Ident
, funIsStatic :: !Bool
, funSize :: !Int
, funPosition :: !C.Position
}
deriving (Show, Eq)
findFunctions
:: (Monoid m)
=> (Function -> m)
-> C.CExternalDeclaration C.NodeInfo
-> m
C.CFDefExt (C.CFunDef spec declr [] _ ni) ->
findFunctionsInDeclarator ni spec declr
-- # for now let's not anlyse function declarations.
C.CFDefExt def@(C.CFunDef{}) ->
notSupportedYet (void def) def
C.CDeclExt (C.CDecl spec items ni) -> flip foldMap items \case
C.CDeclarationItem declr Nothing Nothing ->
findFunctionsInDeclarator ni spec declr
_ow -> mempty
C.CDeclExt a@(C.CStaticAssert{}) ->
notSupportedYet (void a) a
C.CAsmExt _ _ -> mempty
where
findFunctionsInDeclarator ni spec = \case
decl@(C.CDeclr mid (C.CFunDeclr param _ _ : _) Nothing [] _) ->
case mid of
Just funName -> inject Function{..}
where
funIsStatic = isStaticFromSpecs spec
funSize = fromMaybe 0 (C.lengthOfNode ni)
funPosition = C.posOf ni
funParams = case param of
C.CFunParamsNew declr var ->
case declr of
[C.CDecl [C.CTypeSpec (C.CVoidType _)] [] _] ->
Nothing
_
| var ->
Nothing
| otherwise ->
Just [True | _ <- declr]
a -> notSupportedYet (void a) ni
Nothing -> mempty
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
-- nonVoidTypeOfFromContext
-- :: (HasCallStack) => Context -> [C.CDeclarationSpecifier C.NodeInfo] -> C.CDeclarator C.NodeInfo -> Type
-- nonVoidTypeOfFromContext ctx spec decl =
-- fromVoid (notSupportedYet' decl) id $
-- typeOf
-- (\t -> fst <$> Map.lookup t (structs ctx))
-- (\t -> fst <$> Map.lookup t (typeDefs ctx))
-- spec
-- decl
-- nonVoidExtendType
-- :: (HasCallStack, MonadState Context m, MonadPlus m)
-- => C.CDeclarator C.NodeInfo
-- -> Voidable
-- -> m Type
-- nonVoidExtendType decl bt = do
-- ctx <- get
-- pure $
-- fromVoid (notSupportedYet' decl) id $
-- extendTypeWith
-- (\t -> fst <$> Map.lookup t (structs ctx))
-- (\t -> case Map.lookup t (typeDefs ctx) of
-- Nothing -> error ("could not find " <> show t)
-- Just (ITKeep )
-- decl
-- bt
class Named f where
name :: f a -> Maybe (C.Identifier a)
instance Named C.CDeclarator where
name (C.CDeclr idx _ _ _ _) = idx
instance Named C.CDeclarationItem where
name = \case
C.CDeclarationItem decl _ _ -> name decl
C.CDeclarationExpr _ -> Nothing
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
-- filterParams
-- :: Context
-- -> [Maybe Type]
-- -> [C.CDeclaration C.NodeInfo]
-- -> ([C.CDeclaration C.NodeInfo], [(C.Ident, InlineExpr)])
-- filterParams ctx typefilter params = flip evalState typefilter do
-- (params', mapping) <- flip mapAndUnzipM params \case
-- decl@(C.CDecl def items l) -> do
-- t' <- state (\(t : tps) -> (t, tps))
-- case t' of
-- Just t
-- | not (shouldDeleteDeclaration ctx decl) -> do
-- let defs = [(idx', IEKeep t) | i <- items, idx' <- maybeToList (name i)]
-- pure ([C.CDecl def items l], defs)
-- _ow -> do
-- let defs = [(idx', IEDelete) | i <- items, idx' <- maybeToList (name i)]
-- pure ([], defs)
-- a' -> notSupportedYet' a'
-- pure (concat params', concat mapping)
--
-- filterStorageModifiers :: Bool -> [C.CDeclarationSpecifier C.NodeInfo] -> [C.CDeclarationSpecifier C.NodeInfo]
-- filterStorageModifiers isStatic = filter \case
-- C.CStorageSpec (C.CStatic _) -> isStatic
-- C.CFunSpec (C.CInlineQual _) -> isStatic
-- _ow -> True