Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
# -*- coding: utf-8 -*-
"""
Updated Aug 7 2024
@author: Qianliang Li (glia@dtu.dk)
This is the main Python file containing the code that support the findings of
https://doi.org/10.1101/2024.05.06.592342
The data used in this analysis was previously described and preprocessed
by Zimmermann, M., Lomoriello, A. S., and Konvalinka, I.
Intra-individual behavioural and neural signatures of audience effects and
interactions in a mirror-game paradigm. Royal Society Open Science, 9(2) 2022
"""
# %% Load libraries
import os
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import mne
import pickle
import mat73
import time
import seaborn as sns
import nolds
from tqdm import tqdm # progress bar
# import Python script for microstates [von Wegner & Lauf, 2018]
# originally downloaded from https://github.com/Frederic-vW/eeg_microstates
# I modified the script for estimating two-brain microstates
# by defining kmeans_return_all and kmeans_dualmicro
from eeg_microstates3 import (kmeans_return_all, kmeans_dualmicro)
# import helper functions
from helper import (numpy_arr_to_pandas_df, time_now)
from dualmicro_functions import (load_epoch_from_fieldtrip, prepare_1P_micro_arr,
plot_microstates, reorder_microstate_results,
single_micro_fit_all_feature_computation,
interbrain_microstate_feature_computation,
prepare_2P_micro_arr_collapsed_events,
plot_dualmicro, sign_swap_microstates,
dualmicro_fit_all_feature_computation,
load_microstate_arrays,
get_synch_events_from_pseudo_pairs,
combine_two_person_microstate_arrays,
pseudo_pair_dualmicro_backfitting,
dualmicro_fit_all_pseudo_pair_feature_computation,
compute_dualmicro_DFA, compute_dualmicro_DFA_pseudo,
shifted_interbrain_microstate_feature_computation)
# Style for matplotlib/seaborn
plt.style.use('default')
# Root for project
os.chdir("C:/Users/glia/Documents/MirrorGame")
# Paths
data_path = "./data/external/EEG/"
mov_data_path = "./data/external/movement/"
fig_save_path = "./reports/figures/"
feat_save_path = "./data/features/"
microstate_save_path = "./data/features/microstates2/"
mov_save_path = "./data/features/movement/"
# %% Load preprocessed EEG data
# The data was originally preprocessed in Fieldtrip by Marius Zimmermann
# Get filenames for the EEG data
files = []
for r, d, f in os.walk(data_path):
for file in f:
if (".mat" in file) & ("ppn" in file):
files.append(os.path.join(r, file))
# Sort the filenames
files.sort()
n_subjects = len(files)
# Get Subject_id
Subject_id = [0]*n_subjects
for i in range(n_subjects):
id_number = files[i].split("/")[-1].split(".")[0].split("pair")[-1].split("pair")[-1].replace("_ppn","")
Subject_id[i] = int(id_number)+1000 # add 1000 to keep the first 0
# There are data from 23 pairs
# Pair 21 and 25 were excluded in the original analysis
# After looking at the data, it seems pair 21, participant 1 and pair 25
# participant 2 only had 1254 and 1440 epochs respectively.
# Their data also do not end with resting-state condition
# All the other EEG data have around 2400 1s epochs and start and ends with rest
bad_subjects = [1211, 1212, 1251, 1252] # the whole pair is dropped
good_subject_idx = [not i in bad_subjects for i in Subject_id]
# Update Subject_id and files
Subject_id = list(np.array(Subject_id)[good_subject_idx])
n_subjects = len(Subject_id)
files = list(np.array(files)[good_subject_idx])
Pair_id = [0]*(n_subjects//2)
for i in range(n_subjects//2):
Pair_id[i] = int(str(Subject_id[2*i])[1:-1])
# Add 100 to pair_id to fix sorting for 1 digit numbers, e.g. 03
Pair_id = [ele+100 for ele in Pair_id]
n_pairs = len(Pair_id)
# Save the IDs as environmental variables to be used in functions
# from dualmicro_functions.py
os.environ["Subject_id"] = Subject_id
os.environ["Pair_id"] = Pair_id
event_id = {"rest":1, "uncoupled":2, "coupled": 3, "observe, actor": 4,
"observe, observer": 6, "imitate, leader": 5, "imitate, follower": 7,
"control": 8}
# Clarification of the labels
# Cond4: ppn1 is observer, ppn2 is actor
# Cond6: ppn1 is actor, ppn2 is observer
# Cond5: ppn1 is follower, ppn2 is leader
# Cond5: ppn1 is leader, ppn2 is follower
event_id_inv = {v: k for k, v in event_id.items()}
# We collapsed condition 4 and 6 & 5 and 7 for two-brain microstates
# By swapping the EEG of ppn1 and ppn2 so ppn1 is always observer/follower and
# ppn2 actor/leader
collapsed_event_id = {"rest":1, "uncoupled":2, "coupled": 3,
"observer_actor": 4, "follower_leader": 5, "control": 8}
collapsed_event_id_inv = {v: k for k, v in collapsed_event_id.items()}
# Load the first EEG to get info about sfreq and n_channels
i = 0
epoch, trialinfo = load_epoch_from_fieldtrip(0, files, event_id)
n_channels = epoch.info["nchan"]
sfreq = int(epoch.info["sfreq"])
# Visualize the data
# epoch.plot(scalings=40e-6, n_channels=32)
# mne.viz.plot_events(epoch.events, sfreq = 1, event_id = event_id, first_samp=-3) # sfreq set to epoch length in s to reflect experiment time
# We compute microstates for the three frequency ranges
alpha_range = [8.0, 13.0]
beta_range = [13.0, 30.0]
broadband_range = None # Data is already 1 to 40 Hz broadband filtered
freq_names = ["alpha","beta","broadband"]
all_freq_ranges = [alpha_range, beta_range, broadband_range]
# %% Intrabrain microstates fit all data
# All subjects from all pairs are concatenated to find common microstates
single_brain_event_id = {"rest":1, "uncoupled":2, "coupled": 3, "observer": 4,
"actor": 6, "follower": 5, "leader": 7, "control": 8}
ppn2_correction = {6:4, 4:6, 7:5, 5:7}
# Loop over frequencies
for f in len(all_freq_ranges):
ff = freq_names[f]
freq_range0 = all_freq_ranges[f]
# =========================================================================
# First the microstate topographies are determined
# It might be an advantage to run the estimation of microstates on a HPC
# =========================================================================
# Get data from all pairs before performing kmeans
np.random.seed(1234)
n_clusters=[3, 4, 5, 6, 7, 8, 9, 10]
n_runs = 100 # increased to 100 runs!
# Get current time
c_time1 = time_now(); print(c_time1)
# Save RAM by appending directly to array instead of making list and then array
sub_arr_indices = [0]
trialinfo_list = []
for i in range(n_subjects):
tmp_data, trialinfo = prepare_1P_micro_arr(i, ppn2_correction, sfreq,
freq_range=freq_range0, standardize=True)
sub_arr_indices.append(len(tmp_data))
trialinfo_list.append([Subject_id[i],trialinfo])
if i == 0: # first run initiation
micro_data_all = tmp_data
else:
micro_data_all = np.append(micro_data_all, tmp_data, axis=0)
del tmp_data # clear up space
print(f"Finished preparing microstate data for pair {Subject_id[i]}")
# Use cumulative sum to determine indices for each subjects's data
subject_indices = np.cumsum(sub_arr_indices)
# Save the trialinfos from all subjects, for easier access in later steps
with open(f"{microstate_save_path}Intrabrain_microstate_fit_all_{ff}_trialinfos.pkl", "wb") as filehandle:
pickle.dump(trialinfo_list, filehandle)
# # with args parser in hpc
# n_maps = n_clusters[(args.map_idx-1)]
# print(f"Running analysis for maps: {n_maps}")
# print("Memory used by the micro data array (GB):",micro_data_all.nbytes*9.31e-10)
# Run Kmeans
for n_maps in n_clusters: # Don't use for loop on the HPC!
# Run the 100 runs in batches of 10 to save underway in case the job script terminates
best_cv_crit = 9999 # initialize unreasonably high value
for r in range(10):
microstate_results = list(kmeans_return_all(micro_data_all, n_maps,
n_runs=int(n_runs/10),maxiter=1000))
# Overwrite the maps if a lower CV criterion was found for the initiation
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
if microstate_results[4] < best_cv_crit:
microstate_results.append(subject_indices)
# Save results
with open(f"{microstate_save_path}Intrabrain_microstate_fit_all_{ff}{n_maps}.pkl", "wb") as filehandle:
pickle.dump(microstate_results, filehandle) # [maps, L, gfp_peaks, gev, cv_min, Subject_id]
print(f"Updated the microstates. Previous best CV: {best_cv_crit}",
f"new best CV criterion : {microstate_results[4]}")
# Update best cv criterion value
best_cv_crit = microstate_results[4]
print(f"Finished sub-run {r+1} out of 10")
print(f"Finished microstate analysis for n_maps = {n_maps}")
print("Started", c_time1, "\nCurrent",time_now())
# =========================================================================
# Evaluate microstates fitted to all data
# =========================================================================
# Get summary results
microstate_summary_results = []
for n_maps in n_clusters:
with open(f"{microstate_save_path}Intrabrain_microstate_fit_all_{ff}{n_maps}.pkl", "rb") as file:
microstate_results = pickle.load(file)
# Also save summary results across n_maps
microstate_summary_results.append([microstate_results[0],microstate_results[3],microstate_results[4]])
# Use CV criterion to estimate best number of microstates
cv_gev_arr = np.zeros((len(n_clusters),2))
for imap in range(len(n_clusters)):
gev = np.sum(microstate_summary_results[imap][1])
cv = microstate_summary_results[imap][2]
cv_gev_arr[imap,:] = [cv, gev]
# Convert to Pandas dataframe
col_names = ["n_Microstates", "Fit_Criteria", "Value"]
Fit_Criteria = ["CV Criterion", "Global Explained Variance"]
dtypes = [int,str,"float64"]
cv_gev_df = numpy_arr_to_pandas_df(cv_gev_arr, col_names = col_names,
col_values = [n_clusters,Fit_Criteria],
dtypes = dtypes)
# Evaluate optimal n_Microstates
h_order = Fit_Criteria
g = sns.FacetGrid(data=cv_gev_df,row=None,
margin_titles=True, height=8, aspect=1.2)
g = g.map(sns.pointplot,"n_Microstates", "Value", "Fit_Criteria",
dodge=0, capsize=0.18, errorbar=None, linestyles=["-", "-"],
markers=["o", "o"], hue_order=h_order, palette=sns.color_palette())
g.add_legend()
plt.subplots_adjust(top=0.9, right=0.85, left=0.1)
g.fig.suptitle("Mean CV Criterion and GEV", fontsize=18)
g.set_axis_labels(x_var="Number of Microstates",
y_var="GEV and CV",
fontsize=14)
# The lower CV the better. Measure of residual variance
# But the higher GEV the better.
# Save file
g.savefig(f"{fig_save_path}Microstates/Fit_all_{ff}/"+"Single_micro_fit_all_{ff}_CV_Criterion_GEV"+".png")
# Count which number of microstates have the lowest cv criterion for each subject
min_idx = np.argmin(cv_gev_df.loc[cv_gev_df["Fit_Criteria"]=="CV Criterion","Value"])
cv_gev_df.loc[cv_gev_df["Fit_Criteria"]=="CV Criterion"].iloc[min_idx]
# Visualize all microstates prior to re-ordering
for ii in range(len(n_clusters)):
plot_microstates(n_clusters[ii], microstate_summary_results[ii][0], microstate_summary_results[ii][1], epoch.info)
# =========================================================================
# # Re-order intrabrain microstates
# =========================================================================
# This is only run once, after microstates are created
# The optimal number of microstates were 5, with 56% GEV
n_maps = 5
ii = n_clusters.index(n_maps)
with open(f"{microstate_save_path}Intrabrain_microstate_fit_all_{ff}{n_maps}.pkl", "rb") as file:
microstate_results = pickle.load(file)
maps, m_labels, gfp_peaks, gev, cv_min, sub_idx = microstate_results
plot_microstates(n_maps, maps, gev)
# Make dictionary with n_maps and new order
manual_reordering_template = {"5_alpha":[4,1,3,2,0],
"5_beta":[3,2,1,4,0],
"5_broadband":[3,2,4,1,0]}
new_order = manual_reordering_template[f"{n_maps}_{ff}"]
# Re-order the microstates
maps, gev, m_labels = reorder_microstate_results(new_order, maps, gev, m_labels)
# Plot again to check it worked
plot_microstates(n_maps, maps, gev, epoch.info)
# Since neuronal activity is often oscillating, this causes polarity inversions
# Microstates ignores the sign, and hence the polarity in the map is arbitrary
# It is only the relative difference within the plot that is interesting
# depending on initiation. We can thus freely change the sign for visualization
# For two-person microstates, each person's map is sign-changed separately
manual_sign_correction = {"5_alpha":[1,-1,1,1,1],
"5_beta":[1,1,1,-1,-1],
"5_broadband":[-1,1,-1,1,1]}
sign_swap = manual_sign_correction[f"{n_maps}_{ff}"]
for m in range(n_maps):
maps[m] *= sign_swap[m]
# Plot a final time for last confirmation
plot_microstates(n_maps, maps, gev, epoch.info)
# Close all figures
plt.close("all")
### Save reordered results
n_maps = 5
ii = n_clusters.index(n_maps)
with open(f"{microstate_save_path}Intrabrain_microstate_fit_all_{ff}{n_maps}.pkl", "rb") as file:
microstate_results = pickle.load(file)
maps, m_labels, gfp_peaks, gev, cv, sub_indices = microstate_results
# Re-order
new_order = manual_reordering_template[str(n_maps)]
maps, gev, m_labels = reorder_microstate_results(new_order, maps, gev, m_labels)
# Sign swap
for m in range(n_maps):
maps[m] *= sign_swap[m]
# Overwrite variable
microstate_results = maps, m_labels, gfp_peaks, gev, cv, sub_indices
# Save to new file
with open(f"{microstate_save_path}Reordered/Intrabrain_microstate_fit_all_{ff}{n_maps}.pkl", "wb") as filehandle:
pickle.dump(microstate_results, filehandle) # [maps, L, gfp_peaks, gev, cv_min, sub_idx]
# Save topomaps for the microstates
save_path = f"{fig_save_path}Microstates/Fit_all_{ff}/"
with open(f"{microstate_save_path}Reordered/Intrabrain_microstate_fit_all_{ff}{n_maps}.pkl", "rb") as file:
microstate_results = pickle.load(file)
maps, m_labels, gfp_peaks, gev, cv_min, sub_idx = microstate_results
fig = plot_microstates(n_maps, maps, gev, epoch.info)
fig.savefig(save_path+f"Intrabrain_fit_all_{ff}_maps{n_maps}"+".png")
# Save svg for Paper
fig.savefig(save_path+f"Intrabrain_fit_all_{ff}_maps{n_maps}"+".svg")
# =========================================================================
# # Estimate one-person microstate metrics/features
# # There might be a small error introduced due to gaps in the time series from
# # dropped segments, e.g. when calculating the transition probability as
# # the time series is discontinuous due to the gaps. But with the high sampling rate
# # only a very small fraction of the samples have discontinuous neighbors
# =========================================================================
# The observer_actor and observer_observe conditions have been separated
# So there are observer and actor conditions.
# And the same for leader and follower.
"""
Overview of common (intrabrain) microstate features:
1. Average duration a given microstate remains stable (Dur)
2. Frequency occurrence, independent of individual duration (Occ)
Average number of times a microstate becomes dominant per second
3. Ratio of total Time Covered (TCo)
4. Transition probabilities (TMx)
5. Ratio of shannon entropy relative to theoretical max chaos (Ent)
"""
# Hard-coded the optimal number of microstates based on CV criterion and GEV for dualmicro
n_maps = 5
# Load all microstate results
with open(f"{microstate_save_path}Reordered/Intrabrain_microstate_fit_all_{ff}{n_maps}.pkl", "rb") as file:
microstate_results = pickle.load(file)
# Load all trialinfos
with open(f"{microstate_save_path}Intrabrain_microstate_fit_all_{ff}_trialinfos.pkl", "rb") as file:
trialinfo_list = pickle.load(file)
Microstate_names = [chr(ele) for ele in range(65,65+n_maps)]
m_labels = [0]*n_subjects
events = [0]*n_subjects
m_feats = [0]*n_subjects
for i in range(n_subjects):
m_labels[i], events[i], m_feats[i] = single_micro_fit_all_feature_computation(i,
n_maps, microstate_results, trialinfo_list, sfreq, event_id, single_brain_event_id)
print(f"Finished computing microstate features for Subject {Subject_id[i]}")
# Save the raw microstate features
with open(f"{microstate_save_path}/raw_features_single_micro_fit_all_{ff}_maps{n_maps}.pkl", "wb") as filehandle:
pickle.dump(m_feats, filehandle) # [Subject][Dur_arr,Occ_arr,TCo_arr,TMx_arr,Ent_arr] [Event, map*]
# * the feature is calculated for each map, where applicable.
# Transition matrix is calculated for each map -> map transition probability
# with open(f"{microstate_save_path}/raw_features_single_micro_fit_all_{ff}_maps{n_maps}.pkl", "rb") as file:
# m_feats = pickle.load(file) # [Subject][Dur_arr,Occ_arr,TCo_arr,TMx_arr,Ent_arr] [Event, map*]
### Convert all features to dataframes for further processing
col_names = ["Subject_ID", "Event_ID", "Microstate", "Value"]
col_values = [Subject_id,list(single_brain_event_id.keys()),Microstate_names]
dtypes = ["int64",str,str,"float64"]
# Mean duration
Dur_arr = np.stack([ele[0] for ele in m_feats]) # [Subject, event, n_map]
Dur_df = numpy_arr_to_pandas_df(Dur_arr, col_names, col_values, dtypes)
# Add dummy variable to enabling combining of dataframes
measurement_id = ["Duration"]*len(Dur_df)
Dur_df.insert(2, "Measurement", measurement_id)
# Save df
Dur_df.to_pickle(os.path.join(microstate_save_path,f"Single_micro_fit_all_{ff}_maps{n_maps}_duration_df.pkl"))
# Frequency of occurrence per sec
Occ_arr = np.stack([ele[1] for ele in m_feats]) # [Subject, event, n_map]
Occ_df = numpy_arr_to_pandas_df(Occ_arr, col_names, col_values, dtypes)
# Add dummy variable to enabling combining of dataframes
measurement_id = ["Occurrence"]*len(Occ_df)
Occ_df.insert(2, "Measurement", measurement_id)
# Save df
Occ_df.to_pickle(os.path.join(microstate_save_path,f"Single_micro_fit_all_{ff}_maps{n_maps}_occurrence_df.pkl"))
# Ratio total Time Covered
TCo_arr = np.stack([ele[2] for ele in m_feats]) # [Subject, event, n_map]
TCo_df = numpy_arr_to_pandas_df(TCo_arr, col_names, col_values, dtypes)
# Add dummy variable to enabling combining of dataframes
measurement_id = ["Time_covered"]*len(TCo_df)
TCo_df.insert(2, "Measurement", measurement_id)
# Save df
TCo_df.to_pickle(os.path.join(microstate_save_path,f"Single_micro_fit_all_{ff}_maps{n_maps}_ratio_time_covered_df.pkl"))
# Transition matrix should be read as probability of row to column
xi, xj = np.meshgrid(Microstate_names,Microstate_names)
_, arrow = np.meshgrid(Microstate_names,["->"]*n_maps)
transition_info = np.char.add(np.char.add(xj,arrow),xi)
TMx_arr = np.stack([ele[3] for ele in m_feats]) # [Subject, event, n_map, n_map]
TMx_arr = TMx_arr.reshape((n_subjects,len(single_brain_event_id),n_maps*n_maps)) # Flatten the maps to 1D
col_names = ["Subject_ID", "Event_ID", "Transition", "Value"]
col_values = [Subject_id,list(single_brain_event_id.keys()),transition_info.flatten()]
TMx_df = numpy_arr_to_pandas_df(TMx_arr, col_names, col_values, dtypes)
# Add dummy variable to enabling combining of dataframes
measurement_id = ["Probability"]*len(TMx_df)
TMx_df.insert(2, "Measurement", measurement_id)
# Save df
TMx_df.to_pickle(os.path.join(microstate_save_path,f"Single_micro_fit_all_{ff}_maps{n_maps}_transition_df.pkl"))
# Entropy
Ent_arr = np.stack([ele[4] for ele in m_feats]) # [Subject, event]
col_names = ["Subject_ID", "Event_ID", "Value"]
col_values = [Subject_id,list(single_brain_event_id.keys())]
dtypes = ["int64",str,"float64"]
Ent_df = numpy_arr_to_pandas_df(Ent_arr, col_names, col_values, dtypes)
# Add dummy variable to enabling combining of dataframes
measurement_id = ["Entropy"]*len(Ent_df)
Ent_df.insert(2, "Measurement", measurement_id)
# Save df
Ent_df.to_pickle(os.path.join(microstate_save_path,f"Single_micro_fit_all_{ff}_maps{n_maps}_ratio_entropy_df.pkl"))
# =========================================================================
# We also did it for 8 alpha microstates to use the same number as
# the two-brain microstates
# =========================================================================
# This is only run once, after microstates are created
ff = "alpha"
n_maps = 8
ii = n_clusters.index(n_maps)
with open(f"{microstate_save_path}Intrabrain_microstate_fit_all_{ff}{n_maps}.pkl", "rb") as file:
microstate_results = pickle.load(file)
maps, m_labels, gfp_peaks, gev, cv_min, sub_idx = microstate_results
plot_microstates(n_maps, maps, gev)
# Make dictionary with n_maps and new order
manual_reordering_template = {"8":[6,0,5,1,7,2,3,4]}
new_order = manual_reordering_template[str(n_maps)]
# Re-order the microstates
maps, gev, m_labels = reorder_microstate_results(new_order, maps, gev, m_labels)
# Plot again to check it worked
plot_microstates(n_maps, maps, gev, epoch.info)
# Since neuronal activity is often oscillating, this causes polarity inversions
# Microstates ignores the sign, and hence the polarity in the map is arbitrary
# It is only the relative difference within the plot that is interesting
# depending on initiation. We can thus freely change the sign for visualization
# For two-person microstates, each person's map is sign-changed separately
manual_sign_correction = {"8":[-1,1,-1,1,1,1,-1,-1]}
sign_swap = manual_sign_correction[str(n_maps)]
for m in range(n_maps):
maps[m] *= sign_swap[m]
# Plot a final time for last confirmation
plot_microstates(n_maps, maps, gev, epoch.info)
# Close all figures
plt.close("all")
### Save reordered results
n_maps = 8
ii = n_clusters.index(n_maps)
with open(f"{microstate_save_path}Intrabrain_microstate_fit_all_{ff}{n_maps}.pkl", "rb") as file:
microstate_results = pickle.load(file)
maps, m_labels, gfp_peaks, gev, cv, sub_indices = microstate_results
# Re-order
new_order = manual_reordering_template[str(n_maps)]
maps, gev, m_labels = reorder_microstate_results(new_order, maps, gev, m_labels)
# Sign swap
for m in range(n_maps):
maps[m] *= sign_swap[m]
# Overwrite variable
microstate_results = maps, m_labels, gfp_peaks, gev, cv, sub_indices
# Save to new file
with open(f"{microstate_save_path}Reordered/Intrabrain_microstate_fit_all_{ff}{n_maps}.pkl", "wb") as filehandle:
pickle.dump(microstate_results, filehandle) # [maps, L, gfp_peaks, gev, cv_min, sub_idx]
# Save topomaps for the microstates
save_path = f"{fig_save_path}Microstates/Fit_all_{ff}/"
with open(f"{microstate_save_path}Reordered/Intrabrain_microstate_fit_all_{ff}{n_maps}.pkl", "rb") as file:
microstate_results = pickle.load(file)
maps, m_labels, gfp_peaks, gev, cv_min, sub_idx = microstate_results
fig = plot_microstates(n_maps, maps, gev, epoch.info)
fig.savefig(save_path+f"Intrabrain_fit_all_{ff}_maps{n_maps}"+".png")
# Save svg for Paper
fig.savefig(save_path+f"Intrabrain_fit_all_{ff}_maps{n_maps}"+".svg")
# =========================================================================
# # Estimate one-person microstate metrics/features
# # There might be a small error introduced due to gaps in the time series from
# # dropped segments, e.g. when calculating the transition probability as
# # the time series is discontinuous due to the gaps. But with the high sampling rate
# # only a very small fraction of the samples have discontinuous neighbors
# =========================================================================
# The observer_actor and observer_observe conditions have been separated
# So there are observer and actor conditions.
# And the same for leader and follower.
"""
Overview of common (intrabrain) microstate features:
1. Average duration a given microstate remains stable (Dur)
2. Frequency occurrence, independent of individual duration (Occ)
Average number of times a microstate becomes dominant per second
3. Ratio of total Time Covered (TCo)
4. Transition probabilities (TMx)
5. Ratio of shannon entropy relative to theoretical max chaos (Ent)
"""
# Hard-coded the optimal number of microstates based on CV criterion and GEV for dualmicro
n_maps = 8
# Load all microstate results
with open(f"{microstate_save_path}Reordered/Intrabrain_microstate_fit_all_{ff}{n_maps}.pkl", "rb") as file:
microstate_results = pickle.load(file)
# Load all trialinfos
with open(f"{microstate_save_path}Intrabrain_microstate_fit_all_{ff}_trialinfos.pkl", "rb") as file:
trialinfo_list = pickle.load(file)
Microstate_names = [chr(ele) for ele in range(65,65+n_maps)]
m_labels = [0]*n_subjects
events = [0]*n_subjects
m_feats = [0]*n_subjects
for i in range(n_subjects):
m_labels[i], events[i], m_feats[i] = single_micro_fit_all_feature_computation(i,
n_maps, microstate_results, trialinfo_list, sfreq, event_id, single_brain_event_id)
print(f"Finished computing microstate features for Subject {Subject_id[i]}")
# Save the raw microstate features
with open(f"{microstate_save_path}/raw_features_single_micro_fit_all_{ff}_maps{n_maps}.pkl", "wb") as filehandle:
pickle.dump(m_feats, filehandle) # [Subject][Dur_arr,Occ_arr,TCo_arr,TMx_arr,Ent_arr] [Event, map*]
# * the feature is calculated for each map, where applicable.
# Transition matrix is calculated for each map -> map transition probability
# with open(f"{microstate_save_path}/raw_features_single_micro_fit_all_{ff}_maps{n_maps}.pkl", "rb") as file:
# m_feats = pickle.load(file) # [Subject][Dur_arr,Occ_arr,TCo_arr,TMx_arr,Ent_arr] [Event, map*]
### Convert all features to dataframes for further processing
col_names = ["Subject_ID", "Event_ID", "Microstate", "Value"]
col_values = [Subject_id,list(single_brain_event_id.keys()),Microstate_names]
dtypes = ["int64",str,str,"float64"]
# Mean duration
Dur_arr = np.stack([ele[0] for ele in m_feats]) # [Subject, event, n_map]
Dur_df = numpy_arr_to_pandas_df(Dur_arr, col_names, col_values, dtypes)
# Add dummy variable to enabling combining of dataframes
measurement_id = ["Duration"]*len(Dur_df)
Dur_df.insert(2, "Measurement", measurement_id)
# Save df
Dur_df.to_pickle(os.path.join(microstate_save_path,f"Single_micro_fit_all_{ff}_maps{n_maps}_duration_df.pkl"))
# Frequency of occurrence per sec
Occ_arr = np.stack([ele[1] for ele in m_feats]) # [Subject, event, n_map]
Occ_df = numpy_arr_to_pandas_df(Occ_arr, col_names, col_values, dtypes)
# Add dummy variable to enabling combining of dataframes
measurement_id = ["Occurrence"]*len(Occ_df)
Occ_df.insert(2, "Measurement", measurement_id)
# Save df
Occ_df.to_pickle(os.path.join(microstate_save_path,f"Single_micro_fit_all_{ff}_maps{n_maps}_occurrence_df.pkl"))
# Ratio total Time Covered
TCo_arr = np.stack([ele[2] for ele in m_feats]) # [Subject, event, n_map]
TCo_df = numpy_arr_to_pandas_df(TCo_arr, col_names, col_values, dtypes)
# Add dummy variable to enabling combining of dataframes
measurement_id = ["Time_covered"]*len(TCo_df)
TCo_df.insert(2, "Measurement", measurement_id)
# Save df
TCo_df.to_pickle(os.path.join(microstate_save_path,f"Single_micro_fit_all_{ff}_maps{n_maps}_ratio_time_covered_df.pkl"))
# Transition matrix should be read as probability of row to column
xi, xj = np.meshgrid(Microstate_names,Microstate_names)
_, arrow = np.meshgrid(Microstate_names,["->"]*n_maps)
transition_info = np.char.add(np.char.add(xj,arrow),xi)
TMx_arr = np.stack([ele[3] for ele in m_feats]) # [Subject, event, n_map, n_map]
TMx_arr = TMx_arr.reshape((n_subjects,len(single_brain_event_id),n_maps*n_maps)) # Flatten the maps to 1D
col_names = ["Subject_ID", "Event_ID", "Transition", "Value"]
col_values = [Subject_id,list(single_brain_event_id.keys()),transition_info.flatten()]
TMx_df = numpy_arr_to_pandas_df(TMx_arr, col_names, col_values, dtypes)
# Add dummy variable to enabling combining of dataframes
measurement_id = ["Probability"]*len(TMx_df)
TMx_df.insert(2, "Measurement", measurement_id)
# Save df
TMx_df.to_pickle(os.path.join(microstate_save_path,f"Single_micro_fit_all_{ff}_maps{n_maps}_transition_df.pkl"))
# Entropy
Ent_arr = np.stack([ele[4] for ele in m_feats]) # [Subject, event]
col_names = ["Subject_ID", "Event_ID", "Value"]
col_values = [Subject_id,list(single_brain_event_id.keys())]
dtypes = ["int64",str,"float64"]
Ent_df = numpy_arr_to_pandas_df(Ent_arr, col_names, col_values, dtypes)
# Add dummy variable to enabling combining of dataframes
measurement_id = ["Entropy"]*len(Ent_df)
Ent_df.insert(2, "Measurement", measurement_id)
# Save df
Ent_df.to_pickle(os.path.join(microstate_save_path,f"Single_micro_fit_all_{ff}_maps{n_maps}_ratio_entropy_df.pkl"))
# %% Inter-brain microstates fit all data
# Based on the microstate topographies estimated on single-brian data
"""
Interbrain features:
1. Average duration of common interbrain microstates (IBDur)
2. Frequency occurrence of common interbrain microstates in the pair (IBOcc)
3. Ratio of total time covered by interbrain common microstates in the pair (IBCov)
4. Transition probability towards common interbrain microstates in the pair (IBTMx)
5. Ratio of joint shannon entropy relative to theoretical max chaos (IBEnt)
"""
for f in len(all_freq_ranges):
ff = freq_names[f]
# Hard-coded the optimal number of microstates based on CV criterion and GEV
n_maps = 5
# Load all microstate results
with open(f"{microstate_save_path}Reordered/Intrabrain_microstate_fit_all_{ff}{n_maps}.pkl", "rb") as file:
microstate_results = pickle.load(file)
# Load all trialinfos
with open(f"{microstate_save_path}Intrabrain_microstate_fit_all_{ff}_trialinfos.pkl", "rb") as file:
trialinfo_list = pickle.load(file)
Microstate_names = [chr(ele) for ele in range(65,65+n_maps)]
# Insert Z as the symbol for non common microstate
Microstate_names.insert(0,"Z")
m_labels = [0]*(n_subjects//2)
events = [0]*(n_subjects//2)
m_feats = [0]*(n_subjects//2)
Pair_id = [0]*(n_subjects//2)
for i in range(n_subjects//2):
m_labels[i], events[i], m_feats[i] = interbrain_microstate_feature_computation(i,
n_maps, microstate_results, trialinfo_list, sfreq, event_id, collapsed_event_id)
Pair_id[i] = int(str(Subject_id[2*i])[1:-1])
print(f"Finished computing interbrain microstate features for pair {Pair_id[i]}")
Pair_id = [ele+100 for ele in Pair_id]
# Save the raw microstate features
with open(f"{microstate_save_path}/raw_interbrain_single_micro_fit_all_{ff}_maps{n_maps}.pkl", "wb") as filehandle:
pickle.dump([Pair_id, m_feats], filehandle) # [Subject][Dur_arr,Occ_arr,TCo_arr,TMx_arr,Ent_arr] [Event, map*]
# * the feature is calculated for each map, where applicable.
# Transition matrix is calculated for each map -> map transition probability
# The first row and column correspond to the non common microstate, i.e.
# there is a different microstate in the pair
# with open(f"{microstate_save_path}/raw_interbrain_single_micro_fit_all_{ff}_maps.pkl", "rb") as file:
# Pair_id, m_feats = pickle.load(file) # [Subject][Dur_arr,Occ_arr,TCo_arr,TMx_arr,Ent_arr] [Event, map*]
n_pairs = len(Pair_id)
### Convert all features to dataframes for further processing
col_names = ["Pair_ID", "Event_ID", "Microstate", "Value"]
col_values = [Pair_id,list(collapsed_event_id.keys()),Microstate_names]
dtypes = [int,str,str,"float64"]
# Mean duration
Dur_arr = np.stack([ele[0] for ele in m_feats]) # [Subject, event, n_map]
Dur_df = numpy_arr_to_pandas_df(Dur_arr, col_names, col_values, dtypes)
# Add dummy variable to enabling combining of dataframes
measurement_id = ["Duration"]*len(Dur_df)
Dur_df.insert(2, "Measurement", measurement_id)
# Save df
Dur_df.to_pickle(os.path.join(microstate_save_path,f"IB_Single_micro_fit_all_{ff}_maps{n_maps}_duration_df.pkl"))
# Frequency of occurrence per sec
Occ_arr = np.stack([ele[1] for ele in m_feats]) # [Subject, event, n_map]
Occ_df = numpy_arr_to_pandas_df(Occ_arr, col_names, col_values, dtypes)
# Add dummy variable to enabling combining of dataframes
measurement_id = ["Occurrence"]*len(Occ_df)
Occ_df.insert(2, "Measurement", measurement_id)
# Save df
Occ_df.to_pickle(os.path.join(microstate_save_path,f"IB_Single_micro_fit_all_{ff}_maps{n_maps}_occurrence_df.pkl"))
# Ratio total Time Covered
TCo_arr = np.stack([ele[2] for ele in m_feats]) # [Subject, event, n_map]
TCo_df = numpy_arr_to_pandas_df(TCo_arr, col_names, col_values, dtypes)
# Add dummy variable to enabling combining of dataframes
measurement_id = ["Time_covered"]*len(TCo_df)
TCo_df.insert(2, "Measurement", measurement_id)
# Save df
TCo_df.to_pickle(os.path.join(microstate_save_path,f"IB_Single_micro_fit_all_{ff}_maps{n_maps}_ratio_time_covered_df.pkl"))
# Transition matrix should be read as probability of row to column
xi, xj = np.meshgrid(Microstate_names,Microstate_names)
_, arrow = np.meshgrid(Microstate_names,["->"]*(n_maps+1))
transition_info = np.char.add(np.char.add(xj,arrow),xi)
TMx_arr = np.stack([ele[3] for ele in m_feats]) # [Subject, event, n_map, n_map]
TMx_arr = TMx_arr.reshape((n_pairs,len(collapsed_event_id),(n_maps+1)*(n_maps+1))) # Flatten the maps to 1D
col_names = ["Pair_ID", "Event_ID", "Transition", "Value"]
col_values = [Pair_id,list(collapsed_event_id.keys()),transition_info.flatten()]
TMx_df = numpy_arr_to_pandas_df(TMx_arr, col_names, col_values, dtypes)
# Add dummy variable to enabling combining of dataframes
measurement_id = ["Probability"]*len(TMx_df)
TMx_df.insert(2, "Measurement", measurement_id)
# Save df
TMx_df.to_pickle(os.path.join(microstate_save_path,f"IB_Single_micro_fit_all_{ff}_maps{n_maps}_transition_df.pkl"))
# Entropy
Ent_arr = np.stack([ele[4] for ele in m_feats]) # [Subject, event]
col_names = ["Pair_ID", "Event_ID", "Value"]
col_values = [Pair_id,list(collapsed_event_id.keys())]
dtypes = [int, str, "float64"]
Ent_df = numpy_arr_to_pandas_df(Ent_arr, col_names, col_values, dtypes)
# Add dummy variable to enabling combining of dataframes
measurement_id = ["Entropy"]*len(Ent_df)
Ent_df.insert(2, "Measurement", measurement_id)
# Save df
Ent_df.to_pickle(os.path.join(microstate_save_path,f"IB_Single_micro_fit_all_{ff}_maps{n_maps}_ratio_joint_entropy_df.pkl"))
# =========================================================================
# Repeat for 8 alpha microstates
# =========================================================================
ff = "alpha"
n_maps = 8
# Load all microstate results
with open(f"{microstate_save_path}Reordered/Intrabrain_microstate_fit_all_{ff}{n_maps}.pkl", "rb") as file:
microstate_results = pickle.load(file)
# Load all trialinfos
with open(f"{microstate_save_path}Intrabrain_microstate_fit_all_{ff}_trialinfos.pkl", "rb") as file:
trialinfo_list = pickle.load(file)
Microstate_names = [chr(ele) for ele in range(65,65+n_maps)]
# Insert Z as the symbol for non common microstate
Microstate_names.insert(0,"Z")
m_labels = [0]*(n_subjects//2)
events = [0]*(n_subjects//2)
m_feats = [0]*(n_subjects//2)
Pair_id = [0]*(n_subjects//2)
for i in range(n_subjects//2):
m_labels[i], events[i], m_feats[i] = interbrain_microstate_feature_computation(i,
n_maps, microstate_results, trialinfo_list, sfreq, event_id, collapsed_event_id)
Pair_id[i] = int(str(Subject_id[2*i])[1:-1])
print(f"Finished computing interbrain microstate features for pair {Pair_id[i]}")
Pair_id = [ele+100 for ele in Pair_id]
# Save the raw microstate features
with open(f"{microstate_save_path}/raw_interbrain_single_micro_fit_all_{ff}_maps{n_maps}.pkl", "wb") as filehandle:
pickle.dump([Pair_id, m_feats], filehandle) # [Subject][Dur_arr,Occ_arr,TCo_arr,TMx_arr,Ent_arr] [Event, map*]
# * the feature is calculated for each map, where applicable.
# Transition matrix is calculated for each map -> map transition probability
# The first row and column correspond to the non common microstate, i.e.
# there is a different microstate in the pair
# with open(f"{microstate_save_path}/raw_interbrain_single_micro_fit_all_{ff}_maps.pkl", "rb") as file:
# Pair_id, m_feats = pickle.load(file) # [Subject][Dur_arr,Occ_arr,TCo_arr,TMx_arr,Ent_arr] [Event, map*]
n_pairs = len(Pair_id)
### Convert all features to dataframes for further processing
col_names = ["Pair_ID", "Event_ID", "Microstate", "Value"]
col_values = [Pair_id,list(collapsed_event_id.keys()),Microstate_names]
dtypes = [int,str,str,"float64"]
# Mean duration
Dur_arr = np.stack([ele[0] for ele in m_feats]) # [Subject, event, n_map]
Dur_df = numpy_arr_to_pandas_df(Dur_arr, col_names, col_values, dtypes)
# Add dummy variable to enabling combining of dataframes
measurement_id = ["Duration"]*len(Dur_df)
Dur_df.insert(2, "Measurement", measurement_id)
# Save df
Dur_df.to_pickle(os.path.join(microstate_save_path,f"IB_Single_micro_fit_all_{ff}_maps{n_maps}_duration_df.pkl"))
# Frequency of occurrence per sec
Occ_arr = np.stack([ele[1] for ele in m_feats]) # [Subject, event, n_map]
Occ_df = numpy_arr_to_pandas_df(Occ_arr, col_names, col_values, dtypes)
# Add dummy variable to enabling combining of dataframes
measurement_id = ["Occurrence"]*len(Occ_df)
Occ_df.insert(2, "Measurement", measurement_id)
# Save df
Occ_df.to_pickle(os.path.join(microstate_save_path,f"IB_Single_micro_fit_all_{ff}_maps{n_maps}_occurrence_df.pkl"))
# Ratio total Time Covered
TCo_arr = np.stack([ele[2] for ele in m_feats]) # [Subject, event, n_map]
TCo_df = numpy_arr_to_pandas_df(TCo_arr, col_names, col_values, dtypes)
# Add dummy variable to enabling combining of dataframes
measurement_id = ["Time_covered"]*len(TCo_df)
TCo_df.insert(2, "Measurement", measurement_id)
# Save df
TCo_df.to_pickle(os.path.join(microstate_save_path,f"IB_Single_micro_fit_all_{ff}_maps{n_maps}_ratio_time_covered_df.pkl"))
# Transition matrix should be read as probability of row to column
xi, xj = np.meshgrid(Microstate_names,Microstate_names)
_, arrow = np.meshgrid(Microstate_names,["->"]*(n_maps+1))
transition_info = np.char.add(np.char.add(xj,arrow),xi)
TMx_arr = np.stack([ele[3] for ele in m_feats]) # [Subject, event, n_map, n_map]
TMx_arr = TMx_arr.reshape((n_pairs,len(collapsed_event_id),(n_maps+1)*(n_maps+1))) # Flatten the maps to 1D
col_names = ["Pair_ID", "Event_ID", "Transition", "Value"]
col_values = [Pair_id,list(collapsed_event_id.keys()),transition_info.flatten()]
TMx_df = numpy_arr_to_pandas_df(TMx_arr, col_names, col_values, dtypes)
# Add dummy variable to enabling combining of dataframes
measurement_id = ["Probability"]*len(TMx_df)
TMx_df.insert(2, "Measurement", measurement_id)
# Save df
TMx_df.to_pickle(os.path.join(microstate_save_path,f"IB_Single_micro_fit_all_{ff}_maps{n_maps}_transition_df.pkl"))
# Entropy
Ent_arr = np.stack([ele[4] for ele in m_feats]) # [Subject, event]
col_names = ["Pair_ID", "Event_ID", "Value"]
col_values = [Pair_id,list(collapsed_event_id.keys())]
dtypes = [int, str, "float64"]
Ent_df = numpy_arr_to_pandas_df(Ent_arr, col_names, col_values, dtypes)
# Add dummy variable to enabling combining of dataframes
measurement_id = ["Entropy"]*len(Ent_df)
Ent_df.insert(2, "Measurement", measurement_id)
# Save df
Ent_df.to_pickle(os.path.join(microstate_save_path,f"IB_Single_micro_fit_all_{ff}_maps{n_maps}_ratio_joint_entropy_df.pkl"))
# %% Two-brain microstates fit all data
"""
The two observe and imitate conditions are collapesed
Instead of having ppn1 being observer/follower in 8 trials and actor/leader
in 8 trials, we will fix the topomap from "ppn1, top row" to always be
observer and follower. This means for condition 6 and 7, ppn2 will be treated
as ppn1 so the first topomap is still being fitted to the observer/follower!
So the first microstate (top row) will always correspond to the Observer and Follower
And the 2nd paired microstate (bot row) will always correspond to Actor and Leader
Additionally we compute features for 8 trials and then take the average instead
of all 16. This is done in order to compute it for the asymmetrical trials
without flipping, as the flip itself can create artefacts.
And the same process is repeated for the symmetrical conditions to be consistent,,
although it shouldn't have a big impact for those trials
"""
# Compute two-person microstates for each pair, fitted for all data
# We will concatenate the pairs along the channel axis
# Loop over frequencies
for f in len(all_freq_ranges):
ff = freq_names[f]
freq_range0 = all_freq_ranges[f]
# =========================================================================
# First the microstate topographies are determined
# It might be an advantage to run the estimation of microstates on a HPC
# =========================================================================
# Get data from all pairs before performing kmeans
np.random.seed(1234)
n_clusters=[3, 4, 5, 6, 7, 8, 9, 10]
n_runs = 100 # increased to 100 runs!
# Get current time
c_time1 = time_now(); print(c_time1)
# Save RAM by appending directly to array instead of making list and then array
pair_arr_indices = [0]
trialinfo_list = []
events_list = []
for i in range(n_pairs):
tmp_data, tmp_trialinfo, tmp_events = prepare_2P_micro_arr_collapsed_events(i, sfreq, event_id, freq_range=freq_range0, standardize=True)
pair_arr_indices.append(len(tmp_data))
trialinfo_list.append(tmp_trialinfo)
events_list.append(tmp_events)
if i == 0: # first run initiation
micro_data_all = tmp_data
else:
micro_data_all = np.append(micro_data_all,tmp_data, axis=0)
del tmp_data # clear up space
print(f"Finished preparing microstate data for pair {Pair_id[i]}")
# Use cumulative sum to determine indices for each pair's data
pair_indices = np.cumsum(pair_arr_indices)
# Save the trialinfos and events from all pairs, for easier access in later steps
with open(f"{microstate_save_path}Dualmicro_fit_all_{ff}_trial_events_infos.pkl", "wb") as filehandle:
pickle.dump([Pair_id,trialinfo_list,events_list], filehandle) # [maps, L, gfp_peaks, gev, cv_min, pair_idx]
# # with args parser in hpc
# n_maps = n_clusters[(args.map_idx-1)]
# print(f"Running analysis for maps: {n_maps}")
# print("Memory used by the micro data array (GB):",micro_data_all.nbytes*9.31e-10)
for n_maps in n_clusters: # Don't use for loop on the HPC!
# Run the 100 runs in batches of 10 to save underway in case the job script terminates
best_cv_crit = 9999 # initialize unreasonably high value
for r in range(10):
microstate_results = list(kmeans_dualmicro(micro_data_all, n_maps,
n_runs=int(n_runs/10),maxiter=1000))
# Overwrite the maps if a lower CV criterion was found for the initiation
if microstate_results[4] < best_cv_crit:
microstate_results.append(pair_indices)
# Save results
with open(f"{microstate_save_path}Dualmicro_fit_all_{ff}_data_maps{n_maps}.pkl", "wb") as filehandle:
pickle.dump(microstate_results, filehandle) # [maps, L, gfp_peaks, gev, cv_min, pair_idx]
print(f"Updated the microstates. Previous best CV: {best_cv_crit}",
f"new best CV criterion : {microstate_results[4]}")
# Update best cv criterion value
best_cv_crit = microstate_results[4]
print(f"Finished sub-run {r+1} out of 10")
print(f"Finished microstate analysis for n_maps = {n_maps}")
print("Started", c_time1, "\nCurrent",time_now())
# =========================================================================
# # Evaluate microstates fitted to all data
# =========================================================================
# Get summary results
microstate_summary_results = []
for n_maps in n_clusters:
with open(f"{microstate_save_path}Dualmicro_fit_all_{ff}_data_maps{n_maps}.pkl", "rb") as file:
microstate_results = pickle.load(file)
# Also save summary results across n_maps
microstate_summary_results.append([microstate_results[0],microstate_results[3],microstate_results[4]])
# Use CV criterion to estimate best number of microstates
cv_gev_arr = np.zeros((len(n_clusters),2))
for imap in range(len(n_clusters)):
gev = np.sum(microstate_summary_results[imap][1])
cv = microstate_summary_results[imap][2]
cv_gev_arr[imap,:] = [cv, gev]
# Convert to Pandas dataframe
col_names = ["n_Microstates", "Fit_Criteria", "Value"]
Fit_Criteria = ["CV Criterion", "Global Explained Variance"]
dtypes = [int,str,"float64"]
cv_gev_df = numpy_arr_to_pandas_df(cv_gev_arr, col_names = col_names, col_values = [n_clusters,Fit_Criteria],
dtypes = dtypes)
# Evaluate optimal n_Microstates
h_order = Fit_Criteria
g = sns.FacetGrid(data=cv_gev_df,row=None,
margin_titles=True, height=8, aspect=1.5)
g = g.map(sns.pointplot,"n_Microstates", "Value", "Fit_Criteria",
dodge=0, capsize=0.18, errorbar=None, linestyles=["-", "-"],
markers=["o", "o"], hue_order=h_order, palette=sns.color_palette())
g.add_legend()
plt.subplots_adjust(top=0.9, right=0.85, left=0.1)
g.fig.suptitle("Mean CV Criterion and GEV", fontsize=18)
g.set_axis_labels(x_var="Number of Microstates",
y_var="GEV and CV",
fontsize=14)
# The lower CV the better. Measure of residual variance
# But the higher GEV the better.
# Save file
g.savefig(f"{fig_save_path}Microstates/Fit_all_{ff}/"+"Dualmicro_fit_all_{ff}_CV_Criterion_GEV"+".png")
# Count which number of microstates have the lowest cv criterion for each subject
min_idx = np.argmin(cv_gev_df.loc[cv_gev_df["Fit_Criteria"]=="CV Criterion","Value"])
cv_gev_df.loc[cv_gev_df["Fit_Criteria"]=="CV Criterion"].iloc[min_idx]
# Visualize the microstates
# Prior to re-ordering
for ii in range(len(n_clusters)):
plot_dualmicro(n_clusters[ii], microstate_summary_results[ii][0], microstate_summary_results[ii][1], epoch.info)
# =========================================================================
# # Re-order two-person microstates
# # This is only run once, after microstates are created
# # We only do it for 8 microstates, which was the optimal number
# =========================================================================
n_maps = 8
ii = n_clusters.index(n_maps)
with open(f"{microstate_save_path}Dualmicro_fit_all_{ff}_data_maps{n_maps}.pkl", "rb") as file:
microstate_results = pickle.load(file)
maps, m_labels, gfp_peaks, gev, cv_min, pair_idx = microstate_results
plot_dualmicro(n_maps, maps, gev, epoch.info)
# Make dictionary with n_maps and new order
# All 4 top row consecutively, followed by 4 bot row
manual_reordering_template = {"8_alpha":[5,2,7,0,1,4,6,3],
"8_beta":[4,1,3,6,7,5,0,2],
"8_broadband":[6,3,4,0,2,1,5,7]}
new_order = manual_reordering_template[f"{n_maps}_{ff}"]
maps, gev, m_labels = reorder_microstate_results(new_order, maps, gev, m_labels)
# Plot again to check it worked
plot_dualmicro(n_maps, maps, gev, epoch.info)
# Since neuronal activity is often oscillating, this causes polarity inversions
# Microstates ignores the sign, and hence the polarity in the map is arbitrary
# It is only the relative difference within the plot that is interesting
# depending on initiation. We can thus freely change the sign for visualization
# For two-person microstates, each person's map is sign-changed separately
manual_sign_correction = {"8_alpha":[[-1,-1,-1,1,-1,1,1,1],[1,1,1,-1,-1,1,1,1]],
"8_beta":[[-1,-1,-1,-1,-1,1,1,1],[-1,-1,1,-1,-1,1,1,-1]],
"8_broadband":[[1,1,-1,-1,1,-1,-1,-1],[-1,1,-1,-1,1,-1,-1,-1]]}
sign_swap = manual_sign_correction[f"{n_maps}_{ff}"]
maps = sign_swap_microstates(sign_swap, maps, n_maps, n_channels)
# Plot a final time for last confirmation
plot_dualmicro(n_maps, maps, gev, epoch.info)
# Close all figures and repeat by changing n_maps
plt.close("all")
### Save reordered results
n_maps = 8
ii = n_clusters.index(n_maps)
with open(f"{microstate_save_path}Dualmicro_fit_all_{ff}_data_maps{n_maps}.pkl", "rb") as file:
microstate_results = pickle.load(file)
maps, m_labels, gfp_peaks, gev, cv_min, pair_idx = microstate_results
# Re-order
new_order = manual_reordering_template[str(n_maps)]
maps, gev, m_labels = reorder_microstate_results(new_order, maps, gev, m_labels)
# Sign alignment
maps = sign_swap_microstates(sign_swap, maps, n_maps, n_channels)
# Overwrite variable
microstate_results = maps, m_labels, gfp_peaks, gev, cv_min, pair_idx
# Save to new file
with open(f"{microstate_save_path}Reordered/Dualmicro_fit_all_{ff}_data_maps{n_maps}.pkl", "wb") as filehandle:
pickle.dump(microstate_results, filehandle) # [maps, L, gfp_peaks, gev, cv_min, pair_idx]
# Save topomaps for the microstates
save_path = f"{fig_save_path}Microstates/Fit_all_{ff}/"
with open(f"{microstate_save_path}Reordered/Dualmicro_fit_all_{ff}_data_maps{n_maps}.pkl", "rb") as file:
microstate_results = pickle.load(file)
maps, m_labels, gfp_peaks, gev, cv_min, pair_idx = microstate_results
fig = plot_dualmicro(n_maps, maps, gev, epoch.info)
fig.savefig(save_path+f"Dualmicro_fit_all_{ff}_maps{n_maps}"+".png")
# Save svg for Paper
fig.savefig(save_path+f"Dualmicro_fit_all_{ff}_maps{n_maps}"+".svg")
### Save svg with fixed color scales across all microstates
vlims = (np.min(maps), np.max(maps))
fig = plot_dualmicro(n_maps, maps, gev, vlims, epoch.info, vlims)
fig.savefig(save_path+f"Dualmicro_fit_all_{ff}_fixed_colorscale_maps{n_maps}"+".png")
fig.savefig(save_path+f"Dualmicro_fit_all_{ff}_fixed_colorscale_maps{n_maps}"+".svg")
# =========================================================================
# # Estimate two-person microstate metrics/features
# # There might be a small error introduced due to gaps in the time series from
# # dropped segments, e.g. when calculating the transition probability as
# # the time series is discontinuous due to the gaps. But with the high sampling rate
# # only a very small fraction of the samples have discontinuous neighbors
# =========================================================================
"""
Overview of common microstate features:
1. Average duration a given microstate remains stable (Dur)
2. Frequency occurrence, independent of individual duration (Occ)
Average number of times a microstate becomes dominant per second
3. Ratio of total Time Covered (TCo)
4. Transition probabilities (TMx)
5. Ratio of shannon entropy relative to theoretical max chaos (Ent)
"""
# Hard-coded the optimal number of microstates based on CV criterion and GEV
n_maps = 8
# Load all microstate results
with open(f"{microstate_save_path}Reordered/Dualmicro_fit_all_{ff}_data_maps{n_maps}.pkl", "rb") as file:
microstate_results = pickle.load(file)
# Load all trialinfos
with open(f"{microstate_save_path}Dualmicro_fit_all_{ff}_trial_events_infos.pkl", "rb") as file:
trialinfo_list = pickle.load(file)
Microstate_names = [chr(ele) for ele in range(65,65+n_maps)]
m_labels = [0]*n_pairs
events = [0]*n_pairs
m_feats = [0]*n_pairs
for i in range(n_pairs):
m_labels[i], events[i], m_feats[i] = dualmicro_fit_all_feature_computation(i)
print(f"Finished computing microstate features for pair {Pair_id[i]}")
# Save the raw microstate features
with open(f"{microstate_save_path}/raw_dualmicro_fit_all_{ff}_features_maps{n_maps}.pkl", "wb") as filehandle:
pickle.dump(m_feats, filehandle) # [Subject][Dur_arr,Occ_arr,TCo_arr,TMx_arr,Ent_arr] [Event, map*]
# * the feature is calculated for each map, where applicable.
# Transition matrix is calculated for each map -> map transition probability
# with open(f"{microstate_save_path}/raw_computed_dualmicro_fit_all_{ff}_features.pkl", "rb") as file:
# m_feats = pickle.load(file) # [Subject][Dur_arr,Occ_arr,TCo_arr,TMx_arr,Ent_arr] [Event, map*]
### Convert all features to dataframes for further processing
col_names = ["Pair_ID", "Event_ID", "Microstate", "Value"]
col_values = [Pair_id,list(collapsed_event_id.keys()),Microstate_names]
dtypes = [int,str,str,"float64"]
# Mean duration
Dur_arr = np.stack([ele[0] for ele in m_feats]) # [Subject, event, n_map]
Dur_df = numpy_arr_to_pandas_df(Dur_arr, col_names, col_values, dtypes)
# Add dummy variable to enabling combining of dataframes
measurement_id = ["Duration"]*len(Dur_df)
Dur_df.insert(2, "Measurement", measurement_id)
# Save df
Dur_df.to_pickle(os.path.join(microstate_save_path,"Dualmicro_fit_all_{ff}_duration_df.pkl"))
# Frequency of occurrence per sec
Occ_arr = np.stack([ele[1] for ele in m_feats]) # [Subject, event, n_map]
Occ_df = numpy_arr_to_pandas_df(Occ_arr, col_names, col_values, dtypes)
# Add dummy variable to enabling combining of dataframes
measurement_id = ["Occurrence"]*len(Occ_df)
Occ_df.insert(2, "Measurement", measurement_id)
# Save df
Occ_df.to_pickle(os.path.join(microstate_save_path,"Dualmicro_fit_all_{ff}_occurrence_df.pkl"))
# Ratio total Time Covered
TCo_arr = np.stack([ele[2] for ele in m_feats]) # [Subject, event, n_map]
TCo_df = numpy_arr_to_pandas_df(TCo_arr, col_names, col_values, dtypes)
# Add dummy variable to enabling combining of dataframes
measurement_id = ["Time_covered"]*len(TCo_df)
TCo_df.insert(2, "Measurement", measurement_id)
# Save df
TCo_df.to_pickle(os.path.join(microstate_save_path,"Dualmicro_fit_all_{ff}_ratio_time_covered_df.pkl"))
# Transition matrix should be read as probability of row to column
xi, xj = np.meshgrid(Microstate_names,Microstate_names)
_, arrow = np.meshgrid(Microstate_names,["->"]*n_maps)
transition_info = np.char.add(np.char.add(xj,arrow),xi)
TMx_arr = np.stack([ele[3] for ele in m_feats]) # [Subject, event, n_map, n_map]
TMx_arr = TMx_arr.reshape((n_pairs,len(collapsed_event_id),n_maps*n_maps)) # Flatten the maps to 1D
col_names = ["Pair_ID", "Event_ID", "Transition", "Value"]
col_values = [Pair_id,list(collapsed_event_id.keys()),transition_info.flatten()]
TMx_df = numpy_arr_to_pandas_df(TMx_arr, col_names, col_values, dtypes)
# Add dummy variable to enabling combining of dataframes
measurement_id = ["Probability"]*len(TMx_df)
TMx_df.insert(2, "Measurement", measurement_id)
# Save df
TMx_df.to_pickle(os.path.join(microstate_save_path,"Dualmicro_fit_all_{ff}_transition_df.pkl"))
# Entropy
Ent_arr = np.stack([ele[4] for ele in m_feats]) # [Subject, event]
col_names = ["Pair_ID", "Event_ID", "Value"]
col_values = [Pair_id,list(collapsed_event_id.keys())]
dtypes = [int, str, "float64"]
Ent_df = numpy_arr_to_pandas_df(Ent_arr, col_names, col_values, dtypes)
# Add dummy variable to enabling combining of dataframes
measurement_id = ["Entropy"]*len(Ent_df)
Ent_df.insert(2, "Measurement", measurement_id)
# Save df
Ent_df.to_pickle(os.path.join(microstate_save_path,"Dualmicro_fit_all_{ff}_ratio_entropy_df.pkl"))
# %% Backfit two-person microstates to pseudo-pairs
# The pseudo-pairs are created for all participants except the real pair.
# This is fine for symmetrical tasks, e.g. rest and coupled.
# But not for assymmetrical tasks like observation and leader.
# We might have a leader - leader pseudo-pair.
# Hence we only look at ppn1 with ppn2 from different pairs and exclude
# ppn1 with ppn1 or ppn2 with ppn2
for f in len(all_freq_ranges):
ff = freq_names[f]
freq_range0 = all_freq_ranges[f]
# =========================================================================
# It might be an advantage to run the backfitting of microstates on a HPC
# =========================================================================
# To save time and prevent reloading the same EEG over and over, I divided
# the prepare array function into a load and combine function
# By loading all into memory, I can skip loading for every combination
# but this requires a very high memory, which is fortunately not a problem on the hpc
# I am limiting the pseudo-pairs to be where ppn1 ends with 1 and ppn2 with 2
# Which means we have 21 * 20 options
n_pseudo_pairs = n_pairs*(n_pairs-1)
# To not load data 420 times for two participants, we preload all EEG data to ram
c_time1 = time_now(); print("Starting load",c_time1)
all_micro_data = [0]*n_subjects
all_trial_data = [0]*n_subjects
for i in range(n_subjects):
all_micro_data[i], all_trial_data[i] = load_microstate_arrays(i)
print("Load finished", time_now())
# Get the prototypical alpha maps
n_maps = 8
with open(f"{microstate_save_path}Reordered/Dualmicro_fit_all_{ff}_data_maps{n_maps}.pkl", "rb") as file:
microstate_results = pickle.load(file)
prototype_map = microstate_results[0]
# Start the backfitting
m_labels = [0]*n_pseudo_pairs
events = [0]*n_pseudo_pairs
GEVs = [0]*n_pseudo_pairs
counter = 0
pseudo_pair_id = []
for i in range(n_subjects):
for j in range(n_subjects):
# Skip if the subject is the same
if np.abs(Subject_id[i]-Subject_id[j]) == 0:
continue
# Skip if the subject are from the same pair
if np.abs(Subject_id[i]-Subject_id[j]) == 1:
continue
# Skip if ppn1 is not ending on 1, and ppn2 not ending on 2
if not (str(Subject_id[i])[-1] == "1") & (str(Subject_id[j])[-1] == "2"):
continue
# A valid pseudo pair
else:
# Get the synchronized events
event0 = get_synch_events_from_pseudo_pairs(all_trial_data[i],all_trial_data[j])
# Get the preloaded micro data
micro_data1 = all_micro_data[i]
micro_data2 = all_micro_data[j]
# Get the synchronized and concatenated micro data in alpha
micro_data0 = combine_two_person_microstate_arrays(micro_data1, micro_data2, event0, sfreq, freq_range=freq_range0)
# Backfit and get the labels
L, GEV = pseudo_pair_dualmicro_backfitting(micro_data0, prototype_map, event0, n_maps, sfreq)
# Save the results
m_labels[counter], GEVs[counter], events[counter] = L, GEV, event0
pseudo_pair_id.append(f"{Subject_id[i]}-{Subject_id[j]}")
# Move counter
counter += 1
print(f"Finished backfitting for pseudo pair {pseudo_pair_id[-1]}")
print("Started", c_time1, "\nCurrent",time_now())
backfit_results = [pseudo_pair_id, m_labels, GEVs, events]
# Save the results from all pseudo pairs
with open(f"{microstate_save_path}Reordered/Backfitting/Dualmicro_fit_all_{ff}_data_maps{n_maps}.pkl", "wb") as filehandle:
pickle.dump(backfit_results, filehandle) # [pseudo_pair_id, L, GEV, events]
# =========================================================================
# Estimate two-person microstate metrics/features
# There might be a small error introduced due to gaps in the time series from
# dropped segments, e.g. when calculating the transition probability as
# the time series is discontinuous due to the gaps. But with the high sampling rate
# only a very small fraction of the samples have discontinuous neighbors
# =========================================================================
"""
Overview of common microstate features:
1. Average duration a given microstate remains stable (Dur)
2. Frequency occurrence, independent of individual duration (Occ)
Average number of times a microstate becomes dominant per second
3. Ratio of total Time Covered (TCo)
4. Transition probabilities (TMx)
5. Ratio of shannon entropy relative to theoretical max chaos (Ent)
"""
n_maps = 8
# Load all the backfit pseudo-pair results
with open(f"{microstate_save_path}Reordered/Backfitting/Dualmicro_fit_all_{ff}_data_maps{n_maps}.pkl", "rb") as file:
backfit_results = pickle.load(file) # [pseudo_pair_id, L, GEV, events]
# Hard-coded the optimal number of microstates based on CV criterion and GEV
n_maps = 8
Microstate_names = [chr(ele) for ele in range(65,65+n_maps)]
pseudo_pair_id = backfit_results[0]
n_pseudo_pairs = len(pseudo_pair_id)
m_labels = [0]*n_pseudo_pairs
events = [0]*n_pseudo_pairs
m_feats = [0]*n_pseudo_pairs
for i in range(n_pseudo_pairs):
m_labels[i], events[i], m_feats[i] = dualmicro_fit_all_pseudo_pair_feature_computation(i,\
n_maps, backfit_results, sfreq, event_id, collapsed_event_id)
print(f"Finished computing microstate features for psuedo pair {pseudo_pair_id[i]}")
# Save the raw microstate features
with open(f"{microstate_save_path}/raw_dualmicro_fit_all_{ff}_pseudo_pairs_features_maps{n_maps}.pkl", "wb") as filehandle:
pickle.dump(m_feats, filehandle) # [Subject][Dur_arr,Occ_arr,TCo_arr,TMx_arr,Ent_arr] [Event, map*]
# * the feature is calculated for each map, where applicable.
# Transition matrix is calculated for each map -> map transition probability
# with open(f"{microstate_save_path}/raw_computed_dualmicro_fit_all_{ff}_features.pkl", "rb") as file:
# m_feats = pickle.load(file) # [Subject][Dur_arr,Occ_arr,TCo_arr,TMx_arr,Ent_arr] [Event, map*]
### Convert all features to dataframes for further processing
col_names = ["Pseudo_Pair_ID", "Event_ID", "Microstate", "Value"]
col_values = [pseudo_pair_id,list(collapsed_event_id.keys()),Microstate_names]
dtypes = [str,str,str,"float64"]
# Mean duration
Dur_arr = np.stack([ele[0] for ele in m_feats]) # [Subject, event, n_map]
Dur_df = numpy_arr_to_pandas_df(Dur_arr, col_names, col_values, dtypes)
# Add dummy variable to enabling combining of dataframes
measurement_id = ["Duration"]*len(Dur_df)
Dur_df.insert(2, "Measurement", measurement_id)
# Save df
Dur_df.to_pickle(os.path.join(microstate_save_path,"Dualmicro_fit_all_{ff}_pseudo_pairs_duration_df.pkl"))
# Frequency of occurrence per sec
Occ_arr = np.stack([ele[1] for ele in m_feats]) # [Subject, event, n_map]
Occ_df = numpy_arr_to_pandas_df(Occ_arr, col_names, col_values, dtypes)
# Add dummy variable to enabling combining of dataframes
measurement_id = ["Occurrence"]*len(Occ_df)
Occ_df.insert(2, "Measurement", measurement_id)
# Save df
Occ_df.to_pickle(os.path.join(microstate_save_path,"Dualmicro_fit_all_{ff}_pseudo_pairs_occurrence_df.pkl"))
# Ratio total Time Covered
TCo_arr = np.stack([ele[2] for ele in m_feats]) # [Subject, event, n_map]
TCo_df = numpy_arr_to_pandas_df(TCo_arr, col_names, col_values, dtypes)
# Add dummy variable to enabling combining of dataframes
measurement_id = ["Time_covered"]*len(TCo_df)
TCo_df.insert(2, "Measurement", measurement_id)
# Save df
TCo_df.to_pickle(os.path.join(microstate_save_path,"Dualmicro_fit_all_{ff}_pseudo_pairs_ratio_time_covered_df.pkl"))
# Transition matrix should be read as probability of row to column
xi, xj = np.meshgrid(Microstate_names,Microstate_names)
_, arrow = np.meshgrid(Microstate_names,["->"]*n_maps)
transition_info = np.char.add(np.char.add(xj,arrow),xi)
TMx_arr = np.stack([ele[3] for ele in m_feats]) # [Subject, event, n_map, n_map]
TMx_arr = TMx_arr.reshape((n_pseudo_pairs,len(collapsed_event_id),n_maps*n_maps)) # Flatten the maps to 1D
col_names = ["Pseudo_Pair_ID", "Event_ID", "Transition", "Value"]
col_values = [pseudo_pair_id,list(collapsed_event_id.keys()),transition_info.flatten()]
TMx_df = numpy_arr_to_pandas_df(TMx_arr, col_names, col_values, dtypes)
# Add dummy variable to enabling combining of dataframes
measurement_id = ["Probability"]*len(TMx_df)
TMx_df.insert(2, "Measurement", measurement_id)
# Save df
TMx_df.to_pickle(os.path.join(microstate_save_path,"Dualmicro_fit_all_{ff}_pseudo_pairs_transition_df.pkl"))
# Entropy
Ent_arr = np.stack([ele[4] for ele in m_feats]) # [Subject, event]
col_names = ["Pseudo_Pair_ID", "Event_ID", "Value"]
col_values = [pseudo_pair_id,list(collapsed_event_id.keys())]
dtypes = [str,str,"float64"]
Ent_df = numpy_arr_to_pandas_df(Ent_arr, col_names, col_values, dtypes)
# Add dummy variable to enabling combining of dataframes
measurement_id = ["Entropy"]*len(Ent_df)
Ent_df.insert(2, "Measurement", measurement_id)
# Save df
Ent_df.to_pickle(os.path.join(microstate_save_path,"Dualmicro_fit_all_{ff}_pseudo_pairs_ratio_entropy_df.pkl"))
# %% eLORETA on Intrabrain microstates
### Make forward solutions
# Computed using the fsaverage template MRI
# # First time setup will need to download fsaverage templates
# mne.datasets.fetch_fsaverage()
fs_dir = "C:/Users/glia/mne_data/MNE-fsaverage-data/fsaverage"
subjects_dir = os.path.dirname(fs_dir)
trans = "fsaverage"
src = os.path.join(fs_dir, "bem", "fsaverage-ico-5-src.fif")
bem = os.path.join(fs_dir, "bem", "fsaverage-5120-5120-5120-bem-sol.fif")
# Read the template sourcespace
sourcespace = mne.read_source_spaces(src)
# Since I use a template, I only need to make the forward operator once
# As we assume the channel positions are fixed approximately the same
# for all subjects using the same caps
subject_eeg = epoch.copy()
subject_eeg.set_eeg_reference(projection=True) # needed for inverse modelling
# Make forward solution
fwd = mne.make_forward_solution(subject_eeg.info, trans=trans, src=src,
bem=bem, eeg=True, mindist=5.0, n_jobs=1)
# # Save forward operator
# fname_fwd = "./Source_fwd/fsaverage_{}-fwd.fif".format(study_order[i])
# mne.write_forward_solution(fname_fwd, fwd, overwrite=True)
# # Check the alignment looks correct between EEG sensors and the template
# mne.viz.plot_alignment(
# subject_eeg.info, trans, src=src, fwd=fwd, dig=True,
# meg=["helmet", "sensors"], subjects_dir=subjects_dir, surfaces="auto")
### Load Parcellation
# Desikan-Killiany atlas (34 ROI from both hemispheres = 68 ROIs)
# Named aparc.annot in MNE python fsaverage folder
labels = mne.read_labels_from_annot("fsaverage", parc="aparc",
subjects_dir=subjects_dir)
labels = labels[:-1] # remove unknowns
label_names = [label.name for label in labels]
n_roi = len(labels)
# Prepare brain lobe information
Frontal_rois = ['superiorfrontal-lh','superiorfrontal-rh',
'rostralmiddlefrontal-lh','rostralmiddlefrontal-rh',
'caudalmiddlefrontal-lh','caudalmiddlefrontal-rh',
'parsopercularis-lh','parsopercularis-rh',
'parstriangularis-lh','parstriangularis-rh',
'parsorbitalis-lh','parsorbitalis-rh',
'lateralorbitofrontal-lh','lateralorbitofrontal-rh',
'medialorbitofrontal-lh','medialorbitofrontal-rh',
'precentral-lh','precentral-rh',
'paracentral-lh','paracentral-rh',
'frontalpole-lh','frontalpole-rh']
Parietal_rois = ['superiorparietal-lh','superiorparietal-rh',
'inferiorparietal-lh','inferiorparietal-rh',
'supramarginal-lh','supramarginal-rh',
'postcentral-lh','postcentral-rh',
'precuneus-lh','precuneus-rh']
Temporal_rois = ['superiortemporal-lh','superiortemporal-rh',
'middletemporal-lh','middletemporal-rh',
'inferiortemporal-lh','inferiortemporal-rh',
'bankssts-lh','bankssts-rh',
'fusiform-lh','fusiform-rh',
'transversetemporal-lh','transversetemporal-rh',
'entorhinal-lh','entorhinal-rh',
'temporalpole-lh','temporalpole-rh',
'parahippocampal-lh','parahippocampal-rh']
Occipital_rois = ['lateraloccipital-lh','lateraloccipital-rh',
'lingual-lh','lingual-rh',
'cuneus-lh','cuneus-rh',
'pericalcarine-lh','pericalcarine-rh']
Cingulate_rois = ['rostralanteriorcingulate-lh','rostralanteriorcingulate-rh',
'caudalanteriorcingulate-lh','caudalanteriorcingulate-rh',
'posteriorcingulate-lh','posteriorcingulate-rh',
'isthmuscingulate-lh','isthmuscingulate-rh']
Insular_rois = ['insula-lh','insula-rh']
Lobes = [Frontal_rois,Parietal_rois,Temporal_rois,Occipital_rois,Cingulate_rois,Insular_rois]
Brain_region_labels = ["Frontal","Parietal","Temporal","Occipital","Cingulate","Insular"]
Brain_region_hemi_labels = np.repeat(Brain_region_labels,2).astype("<U12")
Brain_region_hemi_labels[::2] = [ele+"-lh" for ele in Brain_region_labels]
Brain_region_hemi_labels[1::2] = [ele+"-rh" for ele in Brain_region_labels]
Brain_region = np.array(label_names, dtype = "<U32")
for l in range(len(Lobes)):
Brain_region[np.array([i in Lobes[l] for i in Brain_region])] = Brain_region_labels[l]
### Concatenate the microstates into one Raw Object to apply inverse on it
n_maps = 8
Microstate_names = [chr(ele) for ele in range(65,65+n_maps)]
for f in len(all_freq_ranges):
ff = freq_names[f]
with open(f"{microstate_save_path}Reordered/Intrabrain_microstate_fit_all_{ff}{n_maps}.pkl", "rb") as file:
microstate_results = pickle.load(file)
# Get the microstates and reshape to have channels in the first dim
maps = microstate_results[0]
maps = maps.transpose()
raw_maps = mne.io.RawArray(maps,subject_eeg.info)
raw_maps._filenames = [""] # Fix error with NoneType for "filename" for raw created with RawArray
raw_maps.set_eeg_reference(projection=True) # needed for inverse modelling
# Using assumption about equal variance and no correlations I make a diagonal matrix as cov
noise_cov = mne.make_ad_hoc_cov(subject_eeg.info, None)
# Make inverse operator
# Using default depth parameter = 0.8 and free orientation (loose = 1)
inverse_operator = mne.minimum_norm.make_inverse_operator(subject_eeg.info,
fwd, noise_cov,
loose = 1, depth = 0.8,
verbose = 0)
src_inv = inverse_operator["src"]
# Compute inverse solution and retrieve the source localized microstate activities for each label
# Define regularization
snr = 3 # Default setting
# Use eLORETA and only keep the activity normal to the cortical surface
stc = mne.minimum_norm.apply_inverse_raw(raw_maps,inverse_operator,
lambda2 = 1/(snr**2),
pick_ori = "normal",
method = "eLORETA", verbose = 2)
# Get the source activity in the ROIs
label_activity = mne.extract_label_time_course(stc, labels, src_inv, mode="mean_flip",
return_generator=False, verbose=0)
# Visualize the microstates in source space
# This way of plotting makes the color scale fixed across microstates
brain = stc.plot(
hemi="lh",
subjects_dir=subjects_dir,
smoothing_steps=1,
)
### Convert Label Activity to Pandas DataFrame
# With ROI names and then add Brain Region label
col_names = ["ROI", "Microstate", "Value"]
col_names = ["Microstate", "ROI", "Value"]
col_val = [Microstate_names, label_names]
# Create the source microstate activity dataframe
sMicro_df = numpy_arr_to_pandas_df(label_activity.T, col_names = col_names, col_values = col_val)
assert sMicro_df.loc[(sMicro_df["ROI"]==label_names[4])&
(sMicro_df["Microstate"]==Microstate_names[3]),
"Value"].iloc[0] == label_activity[4,3]
# Add brain region information
sMicro_df.insert(2, "Brain_region", np.tile(Brain_region,int(sMicro_df.shape[0]/n_roi)))
sMicro_df["Brain_region"] = sMicro_df["Brain_region"].astype("category").\
cat.reorder_categories(Brain_region_labels, ordered=True)
# Add hemisphere information
sMicro_df.insert(3, "Hemisphere", [ele[-2:] for ele in sMicro_df["ROI"]])
# Add a colum that combines brain region and hemisphere for plotting
sMicro_df.insert(4, "Brain_region_hemi", [b+"-"+h for b, h in zip(sMicro_df["Brain_region"],sMicro_df["Hemisphere"])])
sMicro_df["Brain_region_hemi"] = sMicro_df["Brain_region_hemi"].astype("category").\
cat.reorder_categories(Brain_region_hemi_labels, ordered=True)
# Save the dataframe
sMicro_df.to_pickle(os.path.join(microstate_save_path,f"Single_micro_{ff}_source_activity_df.pkl"))
# %% eLORETA on two-brain microstates
# Continued based on fwd operator and template loaded for intrabrain
n_maps = 8
Microstate_names = [chr(ele) for ele in range(65,65+n_maps)]
for f in len(all_freq_ranges):
ff = freq_names[f]
with open(f"{microstate_save_path}Reordered/Dualmicro_fit_all_{ff}_data_maps{n_maps}.pkl", "rb") as file:
microstate_results = pickle.load(file)
# Get the microstates
maps = microstate_results[0]
maps = maps.reshape(2*n_maps,n_channels)
# # Check the maps were split properly
# plot_microstates(n_maps, maps[:8], microstate_results[3])
# plot_microstates(n_maps, maps[8:], microstate_results[3])
# Maps are ordered as: ppn1 A, ppn2 A, ppn1 B, ppn2 B etc
# Transpose to have channels in the first dim
maps = maps.transpose()
raw_maps = mne.io.RawArray(maps,subject_eeg.info)
raw_maps._filenames = [""] # Fix error with NoneType for "filename" for raw created with RawArray
raw_maps.set_eeg_reference(projection=True) # needed for inverse modelling
# Using assumption about equal variance and no correlations I make a diagonal matrix as cov
noise_cov = mne.make_ad_hoc_cov(subject_eeg.info, None)
# Make inverse operator
# Using default depth parameter = 0.8 and free orientation (loose = 1)
inverse_operator = mne.minimum_norm.make_inverse_operator(subject_eeg.info,
fwd, noise_cov,
loose = 1, depth = 0.8,
verbose = 0)
src_inv = inverse_operator["src"]
# Compute inverse solution and retrieve the source localized microstate activities for each label
# Define regularization
snr = 3 # Default setting
# Use eLORETA and only keep the activity normal to the cortical surface
stc = mne.minimum_norm.apply_inverse_raw(raw_maps,inverse_operator,
lambda2 = 1/(snr**2),
pick_ori = "normal",
method = "eLORETA", verbose = 2)
# Get the source activity in the ROIs
label_activity = mne.extract_label_time_course(stc, labels, src_inv, mode="mean_flip",
return_generator=False, verbose=0)
# Visualize the microstates in source space
# This way of plotting makes the color scale fixed across microstates
brain = stc.plot(
hemi="lh",
subjects_dir=subjects_dir,
smoothing_steps=1,
)
# Visualize with different color scales for each microstate
Microstate_names2 = np.repeat(Microstate_names,2).astype("<U2")
Microstate_names2[::2] = [ele+"1" for ele in Microstate_names]
Microstate_names2[1::2] = [ele+"2" for ele in Microstate_names]
# Save source activations for each microstate
# Lateral and medial for each hemisphere + dorsal + flatmaps
save_path = f"{fig_save_path}Microstates/SourceDualmicroPrototypes/"
hemis = ["lh","rh"]
views = ["lateral","medial"]
for i in range(len(Microstate_names2)):
times0 = np.linspace(0,1,sfreq+1)[:2*n_maps+1]
stc0 = stc.copy().crop(times0[i],times0[i+1],include_tmax=False)
# Color bar limits defined as max saturation of top 1% (yellow or teal)
# middle at 5%, which means they will have alpha = 1 and progressively be
# closer to yellow or teal
# Lower boundary at 10%, which means they will be red/blue but with decreased
# transparency
clim_max = -(np.sort(-np.abs(stc0.data),axis=0)[stc0.shape[0]//100])[0]
clim_mid = -(np.sort(-np.abs(stc0.data),axis=0)[stc0.shape[0]//20])[0]
clim_min = -(np.sort(-np.abs(stc0.data),axis=0)[stc0.shape[0]//10])[0]
clim0 = {"kind":"value","pos_lims":[clim_min,clim_mid,clim_max]}
# Lateral and medial
for h in range(len(hemis)):
hh = hemis[h]
brain = stc0.plot(
hemi=hh,
subjects_dir=subjects_dir,
smoothing_steps=10, # spatial smoothing
colorbar=False,
background="white",
cortex="classic",
size=800,
transparent=True,
views=views[0],
clim=clim0,
)
brain.save_image(os.path.join(save_path, f"Dualmicro_source_{Microstate_names2[i]}_{hh}_{views[0]}"+".png"))
brain.show_view(views[1])
brain.save_image(os.path.join(save_path, f"Dualmicro_source_{Microstate_names2[i]}_{hh}_{views[1]}"+".png"))
# Dorsal map
brain = stc0.plot(
hemi="both",
subjects_dir=subjects_dir,
smoothing_steps=10, # spatial smoothing
colorbar=True,
background="white",
cortex="classic",
size=1500,
transparent=True,
views="dorsal",
clim=clim0,
)
brain.save_image(os.path.join(save_path, f"Dualmicro_source_{Microstate_names2[i]}_dorsal"+".png"))
# Flat map
brain = stc0.plot(
hemi="both",
surface="flat",
subjects_dir=subjects_dir,
smoothing_steps=10, # spatial smoothing
colorbar=False,
background="white",
cortex="classic",
size=1500,
transparent=True,
views="flat",
clim=clim0,
)
brain.save_image(os.path.join(save_path, f"Dualmicro_source_{Microstate_names2[i]}_flat"+".png"))
# Close all figures
mne.viz.close_all_3d_figures()
# Mean
brain = stc.mean().plot(
hemi="lh",
subjects_dir=subjects_dir,
smoothing_steps=10,
)
### Convert Label Activity to Pandas DataFrame
# With ROI names and then add Brain Region label
col_names = ["ROI", "Microstate", "Value"]
col_names = ["Microstate", "ROI", "Value"]
col_val = [Microstate_names2, label_names]
dtypes = [str, str, "float64"]
# Create the source microstate activity dataframe
sMicro_df = numpy_arr_to_pandas_df(label_activity.T, col_names, col_val, dtypes)
assert sMicro_df.loc[(sMicro_df["ROI"]==label_names[4])&
(sMicro_df["Microstate"]==Microstate_names2[3]),
"Value"].iloc[0] == label_activity[4,3]
# Add brain region information
sMicro_df.insert(2, "Brain_region", np.tile(Brain_region,int(sMicro_df.shape[0]/n_roi)))
sMicro_df["Brain_region"] = sMicro_df["Brain_region"].astype("category").\
cat.reorder_categories(Brain_region_labels, ordered=True)
# Add hemisphere information
sMicro_df.insert(3, "Hemisphere", [ele[-2:] for ele in sMicro_df["ROI"]])
# Add a colum that combines brain region and hemisphere for plotting
sMicro_df.insert(4, "Brain_region_hemi", [b+"-"+h for b, h in zip(sMicro_df["Brain_region"],sMicro_df["Hemisphere"])])
sMicro_df["Brain_region_hemi"] = sMicro_df["Brain_region_hemi"].astype("category").\
cat.reorder_categories(Brain_region_hemi_labels, ordered=True)
# Save the dataframe
sMicro_df.to_pickle(os.path.join(microstate_save_path,"Dualmicro_{ff}_source_activity_df.pkl"))
# %% LRTC with DFA on Two-person microstate label time series
# Using Detrended Fluctuation Analysis (DFA)
# Adapted from Python Implementation by Arthur-Ervin Avramiea <a.e.avramiea@vu.nl>
# From NBT2 toolbox
"""
See Hardstone et al, 2012 for more info
Perform DFA
1 Compute cumulative sum of time series to create signal profile
2 Define set of window sizes (see below)
3 Remove the linear trend using least-squares for each window
4 Calculate standard deviation for each window and take the mean
5 Plot fluctuation function (Standard deviation) as function
for all window sizes, on double logarithmic scale
6 The DFA exponent alpha correspond to Hurst exponent
f(L) = sd = L^alpha (with alpha as linear coefficient in log plot)
If 0 < alpha < 0.5: The process exhibits anti-correlations
If 0.5 < alpha < 1: The process exhibits positive correlations
If alpha = 0.5: The process is indistinguishable from a random process
If 1.0 < alpha < 2.0: The process is non-stationary. H = alpha - 1
Window sizes should be equally spaced on a logarithmic scale
Sizes should be at least 4 samples and up to 10% of total signal length
### Specific for our microstate DFA analysis
We have 8 microstates, but to compute the random walk we will partition
the microstate sequence into two classes (see reference on microstate Hurst
https://pubmed.ncbi.nlm.nih.gov/20921381/)
A/B/C/D will be assigned the positive direction, while E/F/G/H will be
assigned the negative direction, corresponding to whether ppn1 or ppn2
are in one of the canonical microstates, while the other have a non-specific
(average) topography.
Each 25s trial is too short to estimate LRTC on, so I will concatenate all
the trials corresponding to each condition.
This should yield up to 25s * 16 trials = 400s of data for each condition,
except rest which is up to 120s * 2 trials = 240s
DFA is computed from 8 trials and then averaged, to avoid the
problem of flipping in the asymmetric trials. We change windows size to 5-20s
To ensure consistency the same procedure is applied to the symmetric trials
"""
# Window sizes
compute_interval = [5,20] # the window sizes should be between 5s and 30s
# Compute DFA window sizes for the given Interval
window_sizes = np.floor(np.logspace(-1,3,40) * sfreq).astype(int) # %logspace from 0.1 seccond (10^-1) to 1000 (10^3) seconds
window_sizes = window_sizes[(window_sizes >= compute_interval[0]*sfreq) & \
(window_sizes <= compute_interval[1]*sfreq)]
for f in len(all_freq_ranges):
ff = freq_names[f]
# Nolds are already using all cores so multiprocessing with concurrent makes it slower
n_maps = 8
with open(f"{microstate_save_path}Reordered/Dualmicro_fit_all_{ff}_data_maps{n_maps}.pkl", "rb") as file:
microstate_results = pickle.load(file)
# Load all trialinfos
with open(f"{microstate_save_path}Dualmicro_fit_all_{ff}_trial_events_infos.pkl", "rb") as file:
trialinfo_list = pickle.load(file)
# Pre-allocate memory
DFA_arr = np.zeros((n_pairs,len(collapsed_event_id)))
Fluctuation_arr = np.zeros((n_pairs,len(collapsed_event_id),len(window_sizes)))
# Get start time
c_time1 = time.localtime()
c_time1 = time.strftime("%a %d %b %Y %H:%M:%S", c_time1)
print("Started {}".format(c_time1))
# Nolds are already using all cores so concurrent futures with make it slower
for i in range(n_pairs):
# Compute DFA
dfa_temp, fluc_temp = compute_dualmicro_DFA(i, microstate_results,
trialinfo_list, sfreq, window_sizes, event_id, collapsed_event_id, True)
# Save to array
DFA_arr[i] = dfa_temp
Fluctuation_arr[i] = fluc_temp
print("Finished {} out of {} pairs".format(i+1,n_pairs))
# Get ending time
c_time2 = time.localtime()
c_time2 = time.strftime("%a %d %b %Y %H:%M:%S", c_time2)
print(("Started {} \nEnded Time {}".format(c_time1,c_time2)))
# Save the raw DFA analysis data
np.save(microstate_save_path+"DFA_arr.npy", DFA_arr)
np.save(microstate_save_path+"Fluctuation_arr.npy", Fluctuation_arr)
# Convert to Pandas dataframe (DFA exponent)
col_names = ["Pair_ID", "Event_ID", "Value"]
col_values = [Pair_id,list(collapsed_event_id.keys())]
dtypes = ["int64",str,"float64"]
DFA_df = numpy_arr_to_pandas_df(DFA_arr, col_names, col_values, dtypes)
# Add dummy variable to enabling combining of dataframes
measurement_id = ["DFA"]*len(DFA_df)
DFA_df.insert(2, "Measurement", measurement_id)
# Save df
DFA_df.to_pickle(os.path.join(microstate_save_path,f"Dualmicro_{ff}_DFA_exponent_df.pkl"))
# %% DFA in pseudo-pairs
for f in len(all_freq_ranges):
ff = freq_names[f]
# Nolds are already using all cores so multiprocessing with concurrent makes it slower
n_maps = 8
# Load all the backfit pseudo-pair results
with open(f"{microstate_save_path}Reordered/Backfitting/Dualmicro_fit_all_{ff}_data_maps{n_maps}.pkl", "rb") as file:
backfit_results = pickle.load(file) # [pseudo_pair_id, L, GEV, events]
# Pre-allocate memory
DFA_arr = np.zeros((n_pairs,len(collapsed_event_id)))
Fluctuation_arr = np.zeros((n_pairs,len(collapsed_event_id),len(window_sizes)))
# Get start time
c_time1 = time.localtime()
c_time1 = time.strftime("%a %d %b %Y %H:%M:%S", c_time1)
print("Started {}".format(c_time1))
# Nolds are already using all cores so concurrent futures with make it slower
for i in range(n_pairs):
# Compute DFA
dfa_temp, fluc_temp = compute_dualmicro_DFA_pseudo(i, backfit_results,
sfreq, window_sizes, event_id, collapsed_event_id, True)
# Save to array
DFA_arr[i] = dfa_temp
Fluctuation_arr[i] = fluc_temp
print("Finished {} out of {} pairs".format(i+1,n_pairs))
# Get ending time
c_time2 = time.localtime()
c_time2 = time.strftime("%a %d %b %Y %H:%M:%S", c_time2)
print(("Started {} \nEnded Time {}".format(c_time1,c_time2)))
# Save the raw DFA analysis data
np.save(microstate_save_path+"DFA_arr.npy", DFA_arr)
np.save(microstate_save_path+"Fluctuation_arr.npy", Fluctuation_arr)
# Convert to Pandas dataframe (DFA exponent)
col_names = ["Pair_ID", "Event_ID", "Value"]
col_values = [Pair_id,list(collapsed_event_id.keys())]
dtypes = ["int64",str,"float64"]
DFA_df = numpy_arr_to_pandas_df(DFA_arr, col_names, col_values, dtypes)
# Add dummy variable to enabling combining of dataframes
measurement_id = ["DFA"]*len(DFA_df)
DFA_df.insert(2, "Measurement", measurement_id)
# Save df
DFA_df.to_pickle(os.path.join(microstate_save_path,f"Dualmicro_{ff}_DFA_exponent_df.pkl"))
# %% Time-lagged inter-brain microstate synchrony
# Hard-coded the optimal number of microstates based on CV criterion and GEV
n_maps = 5
# The lag (number of samples) we will iterate over to find greatest time-lagged interbrain microstate synchrony
lag_search_range = sfreq # 1 second in both directions
lag_interval = np.linspace(-lag_search_range,lag_search_range,lag_search_range*2+1).astype(int)
Microstate_names = [chr(ele) for ele in range(65,65+n_maps)]
# Insert Z as the symbol for non common microstate
Microstate_names.insert(0,"Z")
# Loop over frequencies
for f in len(all_freq_ranges):
ff = freq_names[f]
# Load all microstate results
with open(f"{microstate_save_path}Reordered/Intrabrain_microstate_fit_all_{ff}{n_maps}.pkl", "rb") as file:
microstate_results = pickle.load(file)
# Load all trialinfos
with open(f"{microstate_save_path}Intrabrain_microstate_fit_all_{ff}_trialinfos.pkl", "rb") as file:
trialinfo_list = pickle.load(file)
m_labels = [0]*(n_subjects//2)
events = [0]*(n_subjects//2)
m_feats = [0]*(n_subjects//2)
shift_info = [0]*(n_subjects//2)
Pair_id = [0]*(n_subjects//2)
for i in tqdm(range(n_subjects//2)):
m_labels[i], events[i], m_feats[i], shift_info[i] = shifted_interbrain_microstate_feature_computation(i,
n_maps, microstate_results, trialinfo_list, sfreq,
event_id, collapsed_event_id, lag_search_range, lag_interval)
Pair_id[i] = int(str(Subject_id[2*i])[1:-1])
print(f"Finished computing interbrain microstate features for pair {Pair_id[i]}")
Pair_id = [ele+100 for ele in Pair_id]
# Save the raw microstate features
with open(f"{microstate_save_path}/raw_shifted_interbrain_single_micro_fit_all_{ff}_maps{n_maps}.pkl", "wb") as filehandle:
pickle.dump([Pair_id, m_feats, shift_info], filehandle) # [Subject][Dur_arr,Occ_arr,TCo_arr,TMx_arr,Ent_arr][Event, map*]
# * the feature is calculated for each map, where applicable.
# Transition matrix is calculated for each map -> map transition probability
# The first row and column correspond to the non common microstate, i.e.
# there is a different microstate in the pair
# with open(f"{microstate_save_path}/raw_shifted_interbrain_single_micro_fit_all_{ff}_maps{n_maps}.pkl", "rb") as file:
# Pair_id, m_feats, shift_info = pickle.load(file) # [Subject][Dur_arr,Occ_arr,TCo_arr,TMx_arr,Ent_arr] [Event, map*]
n_pairs = len(Pair_id)
### Convert all features to dataframes for further processing
col_names = ["Pair_ID", "Event_ID", "Microstate", "Value"]
col_values = [Pair_id,list(collapsed_event_id.keys()),Microstate_names]
dtypes = [int,str,str,"float64"]
# Ratio total Time Covered
TCo_arr = np.stack([ele[2] for ele in m_feats]) # [Subject, event, n_map]
TCo_df = numpy_arr_to_pandas_df(TCo_arr, col_names, col_values, dtypes)
# Add dummy variable to enabling combining of dataframes
measurement_id = ["Time_covered"]*len(TCo_df)
TCo_df.insert(2, "Measurement", measurement_id)
# Save df
TCo_df.to_pickle(os.path.join(microstate_save_path,f"Shifted_IB_Single_micro_fit_all_{ff}_maps{n_maps}_ratio_time_covered_df.pkl"))