Newer
Older
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import random
from networkx import binomial_tree, MultiDiGraph
# local
from src.topupopt.problems.esipp.network import Arcs, Network
from src.topupopt.problems.esipp.network import ArcsWithoutLosses
from src.topupopt.problems.esipp.network import ArcsWithoutProportionalLosses
from src.topupopt.problems.esipp.network import ArcsWithoutStaticLosses
from src.topupopt.problems.esipp.resource import ResourcePrice
from src.topupopt.data.misc.utils import generate_pseudo_unique_key
# *****************************************************************************
# *****************************************************************************
class TestNetwork:
# *************************************************************************
# *************************************************************************
def test_arc_technologies_static_losses(self):
number_time_intervals = 3
number_scenarios = 2
number_options = 4
efficiency_dict = {
(q, k): 0.95
for q in range(number_scenarios)
for k in range(number_time_intervals)
}
static_loss_dict = {
(h, q, k): 1
for h in range(number_options)
for q in range(number_scenarios)
for k in range(number_time_intervals)
}
for capacity_is_instantaneous in (True, False):
arc_tech = Arcs(
name="any",
efficiency=efficiency_dict,
efficiency_reverse=None,
capacity=tuple(1 + o for o in range(number_options)),
minimum_cost=tuple(1 + o for o in range(number_options)),
specific_capacity_cost=1,
capacity_is_instantaneous=capacity_is_instantaneous,
static_loss=static_loss_dict,
validate=True,
)
assert arc_tech.has_proportional_losses()
assert arc_tech.has_static_losses()
assert not arc_tech.is_infinite_capacity()
assert not arc_tech.has_been_selected()
assert arc_tech.is_isotropic(reverse_none_means_isotropic=True)
assert not arc_tech.is_isotropic(reverse_none_means_isotropic=False)
# isotropic
arc_tech = Arcs(
name="any",
efficiency=None,
efficiency_reverse=None,
capacity=tuple(1 + o for o in range(number_options)),
minimum_cost=tuple(1 + o for o in range(number_options)),
specific_capacity_cost=1,
capacity_is_instantaneous=capacity_is_instantaneous,
static_loss=static_loss_dict,
validate=True,
)
assert not arc_tech.has_proportional_losses()
assert arc_tech.has_static_losses()
assert not arc_tech.is_infinite_capacity()
assert not arc_tech.has_been_selected()
assert arc_tech.is_isotropic(reverse_none_means_isotropic=True)
assert arc_tech.is_isotropic(reverse_none_means_isotropic=False)
# create arc technology with only one option
arc_tech = Arcs(
name="any",
efficiency=efficiency_dict,
efficiency_reverse=None,
capacity=(1,),
minimum_cost=(1,),
specific_capacity_cost=1,
capacity_is_instantaneous=capacity_is_instantaneous,
static_loss={
(0, q, k): 1
# for h in range(number_options)
for q in range(number_scenarios)
for k in range(number_time_intervals)
},
validate=True,
)
assert arc_tech.has_proportional_losses()
assert arc_tech.has_static_losses()
assert not arc_tech.is_infinite_capacity()
assert not arc_tech.has_been_selected()
assert arc_tech.is_isotropic(reverse_none_means_isotropic=True)
assert not arc_tech.is_isotropic(reverse_none_means_isotropic=False)
# create arc technology for one time interval
arc_tech = Arcs(
name="any",
efficiency={
(q, 0): 0.5
for q in range(number_scenarios)
# for k in range(number_time_intervals)
},
efficiency_reverse=None,
capacity=tuple(1 + o for o in range(number_options)),
minimum_cost=tuple(1 + o for o in range(number_options)),
specific_capacity_cost=1,
capacity_is_instantaneous=capacity_is_instantaneous,
static_loss={
(h, q, 0): 1
for h in range(number_options)
for q in range(number_scenarios)
# for k in range(number_time_intervals)
},
validate=True,
)
assert arc_tech.has_proportional_losses()
assert arc_tech.has_static_losses()
assert not arc_tech.is_infinite_capacity()
assert not arc_tech.has_been_selected()
assert arc_tech.is_isotropic(reverse_none_means_isotropic=True)
assert not arc_tech.is_isotropic(reverse_none_means_isotropic=False)
# *********************************************************************
# TypeError: The static losses should be given as a dict or None.
Pedro L. Magalhães
committed
error_raised = False
try:
_ = Arcs(
name="any",
efficiency=None,
efficiency_reverse=None,
capacity=tuple(1 + o for o in range(number_options)),
minimum_cost=tuple(1 + o for o in range(number_options)),
specific_capacity_cost=1,
capacity_is_instantaneous=capacity_is_instantaneous,
static_loss=tuple(
[k for k in range(number_time_intervals)]
for o in range(number_options)
),
validate=True,
)
except TypeError:
Pedro L. Magalhães
committed
error_raised = True
assert error_raised
# ValueError('The static losses should be specified for each arc
# option.')
Pedro L. Magalhães
committed
error_raised = False
try:
_ = Arcs(
name="any",
efficiency=None,
efficiency_reverse=None,
capacity=tuple(1 + o for o in range(number_options)),
minimum_cost=tuple(1 + o for o in range(number_options)),
specific_capacity_cost=1,
capacity_is_instantaneous=capacity_is_instantaneous,
static_loss={
(
h,
q,
): 1
for h in range(number_options)
for q in range(number_scenarios)
},
validate=True,
)
except ValueError:
Pedro L. Magalhães
committed
error_raised = True
assert error_raised
# TypeError('The static losses must be specified via a list of lists.')
Pedro L. Magalhães
committed
error_raised = False
try:
_ = Arcs(
name="any",
efficiency=None,
efficiency_reverse=None,
capacity=tuple(1 + o for o in range(number_options)),
minimum_cost=tuple(1 + o for o in range(number_options)),
specific_capacity_cost=1,
capacity_is_instantaneous=capacity_is_instantaneous,
static_loss=[
tuple(k for k in range(number_time_intervals))
for o in range(number_options)
],
validate=True,
)
except TypeError:
Pedro L. Magalhães
committed
error_raised = True
assert error_raised
# ValueError('The static loss values are inconsistent with the number '
# 'of options, scenarios and intervals.')
Pedro L. Magalhães
committed
error_raised = False
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
try:
arc_tech = Arcs(
name="any",
efficiency=None,
efficiency_reverse=None,
capacity=tuple(1 + o for o in range(number_options)),
minimum_cost=tuple(1 + o for o in range(number_options)),
specific_capacity_cost=1,
capacity_is_instantaneous=capacity_is_instantaneous,
static_loss={
(h, q, k): 1
for h in range(number_options)
for q in range(number_scenarios)
for k in range(number_time_intervals - 1)
},
validate=True,
)
arc_tech.validate_sizes(
number_options=number_options,
number_scenarios=number_scenarios,
number_intervals=[
number_time_intervals for _ in range(number_scenarios)
],
)
except ValueError:
Pedro L. Magalhães
committed
error_raised = True
assert error_raised
# TypeError('The static losses were not provided as numbers.')
Pedro L. Magalhães
committed
error_raised = False
try:
_ = Arcs(
name="any",
efficiency=None,
efficiency_reverse=None,
capacity=tuple(1 + o for o in range(number_options)),
minimum_cost=tuple(1 + o for o in range(number_options)),
specific_capacity_cost=1,
capacity_is_instantaneous=capacity_is_instantaneous,
static_loss={
(h, q, k): str(3.54)
for h in range(number_options)
for q in range(number_scenarios)
for k in range(number_time_intervals)
},
validate=True,
)
except TypeError:
Pedro L. Magalhães
committed
error_raised = True
assert error_raised
# ValueError('The static losses must be positive or zero.')
Pedro L. Magalhães
committed
error_raised = False
try:
_ = Arcs(
name="any",
efficiency=None,
efficiency_reverse=None,
capacity=tuple(1 + o for o in range(number_options)),
minimum_cost=tuple(1 + o for o in range(number_options)),
specific_capacity_cost=1,
capacity_is_instantaneous=capacity_is_instantaneous,
static_loss={
(h, q, k): -random.randint(0, 1) * random.random()
for h in range(number_options)
for q in range(number_scenarios)
for k in range(number_time_intervals)
},
validate=True,
)
except ValueError:
Pedro L. Magalhães
committed
error_raised = True
assert error_raised
# TypeError: The static loss dict keys must be tuples
Pedro L. Magalhães
committed
error_raised = False
try:
_ = Arcs(
name="hey",
efficiency=None,
efficiency_reverse=None,
static_loss={k: 1 for k in range(number_time_intervals)},
capacity=tuple(1 + o for o in range(number_options)),
minimum_cost=tuple(1 + o for o in range(number_options)),
specific_capacity_cost=1,
capacity_is_instantaneous=capacity_is_instantaneous,
validate=True,
)
except TypeError:
Pedro L. Magalhães
committed
error_raised = True
assert error_raised
# ValueError( 'The static loss dict keys must be tuples of size 3.')
Pedro L. Magalhães
committed
error_raised = False
try:
_ = Arcs(
name="hey",
efficiency=None,
efficiency_reverse=None,
static_loss={(k, 3): 1 for k in range(number_time_intervals)},
capacity=tuple(1 + o for o in range(number_options)),
minimum_cost=tuple(1 + o for o in range(number_options)),
specific_capacity_cost=1,
capacity_is_instantaneous=capacity_is_instantaneous,
validate=True,
)
except ValueError:
Pedro L. Magalhães
committed
error_raised = True
assert error_raised
# TypeError(The staticl osses should be given as a dict or None.')
Pedro L. Magalhães
committed
error_raised = False
try:
_ = Arcs(
name="hey",
efficiency=None,
efficiency_reverse=None,
static_loss=[1 for k in range(number_time_intervals)],
capacity=tuple(1 + o for o in range(number_options)),
minimum_cost=tuple(1 + o for o in range(number_options)),
specific_capacity_cost=1,
capacity_is_instantaneous=capacity_is_instantaneous,
validate=True,
)
except TypeError:
Pedro L. Magalhães
committed
error_raised = True
assert error_raised
# ValueError(
# 'No static loss values were provided. There should be one'+
# ' value per option, scenario and time interval.')
Pedro L. Magalhães
committed
error_raised = False
try:
_ = Arcs(
name="hey",
efficiency=None,
efficiency_reverse=None,
static_loss={},
capacity=tuple(1 + o for o in range(number_options)),
minimum_cost=tuple(1 + o for o in range(number_options)),
specific_capacity_cost=1,
capacity_is_instantaneous=capacity_is_instantaneous,
validate=True,
)
except ValueError:
Pedro L. Magalhães
committed
error_raised = True
assert error_raised
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
# *************************************************************************
# *************************************************************************
def test_arc_technologies(self):
# *********************************************************************
# create arc technology using instantaneous capacities
number_scenarios = 2
number_options = 4
number_time_intervals = 3
efficiency_dict = {
(q, k): 0.85
for q in range(number_scenarios)
for k in range(number_time_intervals)
}
for capacity_is_instantaneous in (True, False):
arc_tech = Arcs(
name="any",
efficiency=efficiency_dict,
efficiency_reverse=None,
static_loss=None,
capacity=tuple(1 + o for o in range(number_options)),
minimum_cost=tuple(1 + o for o in range(number_options)),
specific_capacity_cost=1,
capacity_is_instantaneous=capacity_is_instantaneous,
validate=True,
)
assert arc_tech.has_proportional_losses()
assert not arc_tech.has_static_losses()
assert not arc_tech.is_infinite_capacity()
assert not arc_tech.has_been_selected()
assert arc_tech.is_isotropic(reverse_none_means_isotropic=True)
assert not arc_tech.is_isotropic(reverse_none_means_isotropic=False)
assert arc_tech.has_constant_efficiency()
# create arc technology with only one option
arc_tech = Arcs(
name="any",
efficiency=efficiency_dict,
efficiency_reverse=None,
static_loss=None,
capacity=(1,),
minimum_cost=(1,),
specific_capacity_cost=1,
capacity_is_instantaneous=capacity_is_instantaneous,
validate=True,
)
assert arc_tech.has_proportional_losses()
assert not arc_tech.has_static_losses()
assert not arc_tech.is_infinite_capacity()
assert not arc_tech.has_been_selected()
assert arc_tech.is_isotropic(reverse_none_means_isotropic=True)
assert not arc_tech.is_isotropic(reverse_none_means_isotropic=False)
assert arc_tech.has_constant_efficiency()
# create arc technology for one time interval
arc_tech = Arcs(
name="any",
efficiency={(0, 0): 0.95},
efficiency_reverse=None,
static_loss=None,
capacity=tuple(1 + o for o in range(number_options)),
minimum_cost=tuple(1 + o for o in range(number_options)),
specific_capacity_cost=1,
capacity_is_instantaneous=capacity_is_instantaneous,
validate=True,
)
assert arc_tech.has_proportional_losses()
assert not arc_tech.has_static_losses()
assert not arc_tech.is_infinite_capacity()
assert not arc_tech.has_been_selected()
assert arc_tech.is_isotropic(reverse_none_means_isotropic=True)
assert not arc_tech.is_isotropic(reverse_none_means_isotropic=False)
assert arc_tech.has_constant_efficiency()
# create arc technology for one time interval and isotropic
arc_tech = Arcs(
name="any",
efficiency={(0, 0): 0.95},
efficiency_reverse={(0, 0): 0.95},
static_loss=None,
capacity=tuple(1 + o for o in range(number_options)),
minimum_cost=tuple(1 + o for o in range(number_options)),
specific_capacity_cost=1,
capacity_is_instantaneous=capacity_is_instantaneous,
validate=True,
)
assert arc_tech.has_proportional_losses()
assert not arc_tech.has_static_losses()
assert not arc_tech.is_infinite_capacity()
assert not arc_tech.has_been_selected()
assert arc_tech.is_isotropic(reverse_none_means_isotropic=True)
assert arc_tech.is_isotropic(reverse_none_means_isotropic=False)
assert arc_tech.has_constant_efficiency()
# create arc technology for one time interval and anisotropic
arc_tech = Arcs(
name="any",
efficiency={(0, 0): 0.95},
efficiency_reverse={(0, 0): 1},
static_loss=None,
capacity=tuple(1 + o for o in range(number_options)),
minimum_cost=tuple(1 + o for o in range(number_options)),
specific_capacity_cost=1,
capacity_is_instantaneous=capacity_is_instantaneous,
validate=True,
)
assert arc_tech.has_proportional_losses()
assert not arc_tech.has_static_losses()
assert not arc_tech.is_infinite_capacity()
assert not arc_tech.has_been_selected()
assert not arc_tech.is_isotropic(reverse_none_means_isotropic=True)
assert not arc_tech.is_isotropic(reverse_none_means_isotropic=False)
assert not arc_tech.has_constant_efficiency()
# create arc technology for one time interval and anisotropic
arc_tech = Arcs(
name="any",
efficiency={(0, 0): 1},
efficiency_reverse={(0, 0): 0.95},
static_loss=None,
capacity=tuple(1 + o for o in range(number_options)),
minimum_cost=tuple(1 + o for o in range(number_options)),
specific_capacity_cost=1,
capacity_is_instantaneous=capacity_is_instantaneous,
validate=True,
)
assert arc_tech.has_proportional_losses()
assert not arc_tech.has_static_losses()
assert not arc_tech.is_infinite_capacity()
assert not arc_tech.has_been_selected()
assert not arc_tech.is_isotropic(reverse_none_means_isotropic=True)
assert not arc_tech.is_isotropic(reverse_none_means_isotropic=False)
assert not arc_tech.has_constant_efficiency()
# create arc technology for one time interval and anisotropic
arc_tech = Arcs(
name="any",
efficiency={(0, 0): 0.95},
efficiency_reverse={(0, 0): 0.95},
static_loss=None,
capacity=tuple(1 + o for o in range(number_options)),
minimum_cost=tuple(1 + o for o in range(number_options)),
specific_capacity_cost=1,
capacity_is_instantaneous=capacity_is_instantaneous,
validate=True,
)
assert arc_tech.has_proportional_losses()
assert not arc_tech.has_static_losses()
assert not arc_tech.is_infinite_capacity()
assert not arc_tech.has_been_selected()
assert arc_tech.is_isotropic(reverse_none_means_isotropic=True)
assert arc_tech.is_isotropic(reverse_none_means_isotropic=False)
assert arc_tech.has_constant_efficiency()
# *****************************************************************
# *****************************************************************
# trigger errors
# TypeError('The name attribute is not hashable.')
Pedro L. Magalhães
committed
error_raised = False
try:
_ = Arcs(
name=[1, 2, 3],
efficiency=efficiency_dict,
efficiency_reverse=None,
static_loss=None,
capacity=tuple(1 + o for o in range(number_options)),
minimum_cost=tuple(1 + o for o in range(number_options)),
specific_capacity_cost=1,
capacity_is_instantaneous=capacity_is_instantaneous,
validate=True,
)
except TypeError:
Pedro L. Magalhães
committed
error_raised = True
assert error_raised
# TypeError:The efficiency dict keys must be (scenario, interval) tuples
Pedro L. Magalhães
committed
error_raised = False
try:
_ = Arcs(
name="hey",
efficiency={k: 1 for k in range(number_time_intervals)},
efficiency_reverse=None,
static_loss=None,
capacity=tuple(1 + o for o in range(number_options)),
minimum_cost=tuple(1 + o for o in range(number_options)),
specific_capacity_cost=1,
capacity_is_instantaneous=capacity_is_instantaneous,
validate=True,
)
except TypeError:
Pedro L. Magalhães
committed
error_raised = True
assert error_raised
# ValueError( 'The efficiency dict keys must be tuples of size 2.')
Pedro L. Magalhães
committed
error_raised = False
try:
_ = Arcs(
name="hey",
efficiency={(k, 3, 4): 1 for k in range(number_time_intervals)},
efficiency_reverse=None,
static_loss=None,
capacity=tuple(1 + o for o in range(number_options)),
minimum_cost=tuple(1 + o for o in range(number_options)),
specific_capacity_cost=1,
capacity_is_instantaneous=capacity_is_instantaneous,
validate=True,
)
except ValueError:
Pedro L. Magalhães
committed
error_raised = True
assert error_raised
# TypeError(The efficiency should be given as a dict or None.')
Pedro L. Magalhães
committed
error_raised = False
try:
_ = Arcs(
name="hey",
efficiency=[1 for k in range(number_time_intervals)],
efficiency_reverse=None,
static_loss=None,
capacity=tuple(1 + o for o in range(number_options)),
minimum_cost=tuple(1 + o for o in range(number_options)),
specific_capacity_cost=1,
capacity_is_instantaneous=capacity_is_instantaneous,
validate=True,
)
except TypeError:
Pedro L. Magalhães
committed
error_raised = True
assert error_raised
# TypeError('The reverse efficiency has to match the nominal'+
# ' one when there are no proportional losses.')
Pedro L. Magalhães
committed
error_raised = False
try:
_ = Arcs(
name="hey",
efficiency=None,
efficiency_reverse={},
static_loss=None,
capacity=tuple(1 + o for o in range(number_options)),
minimum_cost=tuple(1 + o for o in range(number_options)),
specific_capacity_cost=1,
capacity_is_instantaneous=capacity_is_instantaneous,
validate=True,
)
except TypeError:
Pedro L. Magalhães
committed
error_raised = True
assert error_raised
# TypeError:'The reverse efficiency should be given as a dict or None.'
Pedro L. Magalhães
committed
error_raised = False
try:
_ = Arcs(
name="hey",
efficiency=efficiency_dict,
efficiency_reverse=[1 for k in range(number_time_intervals)],
static_loss=None,
capacity=tuple(1 + o for o in range(number_options)),
minimum_cost=tuple(1 + o for o in range(number_options)),
specific_capacity_cost=1,
capacity_is_instantaneous=capacity_is_instantaneous,
validate=True,
)
except TypeError:
Pedro L. Magalhães
committed
error_raised = True
assert error_raised
# ValueError(
# 'No efficiency values were provided. There should be '+
# 'one value per scenario and time interval.')
Pedro L. Magalhães
committed
error_raised = False
try:
_ = Arcs(
name="hey",
efficiency=efficiency_dict,
efficiency_reverse={},
static_loss=None,
capacity=tuple(1 + o for o in range(number_options)),
minimum_cost=tuple(1 + o for o in range(number_options)),
specific_capacity_cost=1,
capacity_is_instantaneous=capacity_is_instantaneous,
validate=True,
)
except ValueError:
Pedro L. Magalhães
committed
error_raised = True
assert error_raised
# ValueError: The keys for the efficiency dicts do not match.
Pedro L. Magalhães
committed
error_raised = False
try:
_ = Arcs(
name="hey",
efficiency=efficiency_dict,
efficiency_reverse={
(key[1], key[0]): value
for key, value in efficiency_dict.items()
},
static_loss=None,
capacity=tuple(1 + o for o in range(number_options)),
minimum_cost=tuple(1 + o for o in range(number_options)),
specific_capacity_cost=1,
capacity_is_instantaneous=capacity_is_instantaneous,
validate=True,
)
except ValueError:
Pedro L. Magalhães
committed
error_raised = True
assert error_raised
# TypeError: Efficiency values must be provided as numeric types.
Pedro L. Magalhães
committed
error_raised = False
try:
_ = Arcs(
name="hey",
efficiency=efficiency_dict,
efficiency_reverse={
(key[0], key[1]): str(value)
for key, value in efficiency_dict.items()
},
static_loss=None,
capacity=tuple(1 + o for o in range(number_options)),
minimum_cost=tuple(1 + o for o in range(number_options)),
specific_capacity_cost=1,
capacity_is_instantaneous=capacity_is_instantaneous,
validate=True,
)
except TypeError:
Pedro L. Magalhães
committed
error_raised = True
assert error_raised
# ValueError('Efficiency values must be positive.')
Pedro L. Magalhães
committed
error_raised = False
try:
_ = Arcs(
name="hey",
efficiency=efficiency_dict,
efficiency_reverse={
(key[0], key[1]): -1 for key, value in efficiency_dict.items()
},
static_loss=None,
capacity=tuple(1 + o for o in range(number_options)),
minimum_cost=tuple(1 + o for o in range(number_options)),
specific_capacity_cost=1,
capacity_is_instantaneous=capacity_is_instantaneous,
validate=True,
)
except ValueError:
Pedro L. Magalhães
committed
error_raised = True
assert error_raised
# TypeError('The capacity should be given as a list or tuple.')
Pedro L. Magalhães
committed
error_raised = False
try:
_ = Arcs(
name="hey",
efficiency=efficiency_dict,
efficiency_reverse=None,
static_loss=None,
capacity={o: 1 + o for o in range(number_options)},
minimum_cost=tuple(1 + o for o in range(number_options)),
specific_capacity_cost=1,
capacity_is_instantaneous=capacity_is_instantaneous,
validate=True,
)
except TypeError:
Pedro L. Magalhães
committed
error_raised = True
assert error_raised
# TypeError: The minimum cost values should be given as a list or tuple
Pedro L. Magalhães
committed
error_raised = False
try:
_ = Arcs(
name="hey",
efficiency=efficiency_dict,
efficiency_reverse=None,
static_loss=None,
capacity=tuple(1 + o for o in range(number_options)),
minimum_cost={o: 1 + o for o in range(number_options)},
specific_capacity_cost=1,
capacity_is_instantaneous=capacity_is_instantaneous,
validate=True,
)
except TypeError:
Pedro L. Magalhães
committed
error_raised = True
assert error_raised
# TypeError: The specific capacity cost was not given as a numeric type
Pedro L. Magalhães
committed
error_raised = False
try:
_ = Arcs(
name="hey",
efficiency=efficiency_dict,
efficiency_reverse=None,
static_loss=None,
capacity=tuple(1 + o for o in range(number_options)),
minimum_cost=tuple(1 + o for o in range(number_options)),
specific_capacity_cost=[1],
capacity_is_instantaneous=capacity_is_instantaneous,
validate=True,
)
except TypeError:
Pedro L. Magalhães
committed
error_raised = True
assert error_raised
# ValueError:The number of capacity and minimum cost entries must match
Pedro L. Magalhães
committed
error_raised = False
try:
_ = Arcs(
name="hey",
efficiency=efficiency_dict,
efficiency_reverse=None,
static_loss=None,
capacity=tuple(1 + o for o in range(number_options + 1)),
minimum_cost=tuple(1 + o for o in range(number_options)),
specific_capacity_cost=1,
capacity_is_instantaneous=capacity_is_instantaneous,
validate=True,
)
except ValueError:
Pedro L. Magalhães
committed
error_raised = True
assert error_raised
# ValueError: No entries for capacity and minimum cost were provided.
# At least one option should be provided.
Pedro L. Magalhães
committed
error_raised = False
try:
_ = Arcs(
name="hey",
efficiency=efficiency_dict,
efficiency_reverse=None,
static_loss=None,
capacity=tuple(),
minimum_cost=tuple(),
specific_capacity_cost=1,
capacity_is_instantaneous=capacity_is_instantaneous,
validate=True,
)
except ValueError:
Pedro L. Magalhães
committed
error_raised = True
assert error_raised
# ValueError: No entries for efficiency were provided. There should be
# one entry per time interval.
Pedro L. Magalhães
committed
error_raised = False
try:
_ = Arcs(
name="hey",
efficiency={},
efficiency_reverse=None,
static_loss=None,
capacity=tuple(1 + o for o in range(number_options)),
minimum_cost=tuple(1 + o for o in range(number_options)),
specific_capacity_cost=1,
capacity_is_instantaneous=capacity_is_instantaneous,
validate=True,
)
except ValueError:
Pedro L. Magalhães
committed
error_raised = True
assert error_raised
# ValueError('The number of efficiency values must match the number of
# time intervals.')
arc_tech = Arcs(
name="hey",
efficiency={
(q, k): 0.85
for q in range(number_scenarios)
for k in range(number_time_intervals + 1)
},
efficiency_reverse=None,
static_loss=None,
capacity=tuple(1 + o for o in range(number_options)),
minimum_cost=tuple(1 + o for o in range(number_options)),
specific_capacity_cost=1,
capacity_is_instantaneous=capacity_is_instantaneous,
validate=True,
)
Pedro L. Magalhães
committed
error_raised = False
try:
arc_tech.validate_sizes(
number_options=number_options,
number_scenarios=number_scenarios,
number_intervals=[
number_time_intervals for _ in range(number_scenarios)
],
)
except ValueError:
Pedro L. Magalhães
committed
error_raised = True
assert error_raised
# ValueError('The number of efficiency values must match the number of
# time intervals.')
Pedro L. Magalhães
committed
error_raised = False
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
try:
arc_tech = Arcs(
name="hey",
efficiency={
(q, k): 0.85
for q in range(number_scenarios)
for k in range(number_time_intervals)
},
efficiency_reverse={
(q, k): 0.85
for q in range(number_scenarios)
for k in range(number_time_intervals - 1)
},
static_loss=None,
capacity=tuple(1 + o for o in range(number_options)),
minimum_cost=tuple(1 + o for o in range(number_options)),
specific_capacity_cost=1,
capacity_is_instantaneous=capacity_is_instantaneous,
validate=True,
)
arc_tech.validate_sizes(
number_options=number_options,
number_scenarios=number_scenarios,
number_intervals=[
number_time_intervals for _ in range(number_scenarios)
],
)
except ValueError:
Pedro L. Magalhães
committed
error_raised = True
assert error_raised
# ValueError('The number of capacity values must match the number of
# options.')
arc_tech = Arcs(
name="hey",
efficiency=efficiency_dict,
efficiency_reverse=None,