Newer
Older
import time
import cv2
import numpy as np
import matplotlib.pyplot as plt
from skimage import exposure
from skimage.filters import gaussian
from skimage.feature import canny
from skimage.graph import route_through_array
from scipy.signal import convolve2d
'''
### Canny Edge cost image
def compute_cost_image(path, sigma=3):
### Load image
image = cv2.imread(path, cv2.IMREAD_GRAYSCALE)
# Apply histogram equalization
image_contrasted = exposure.equalize_adapthist(image, clip_limit=0.01)
# Apply smoothing
smoothed_img = gaussian(image_contrasted, sigma=sigma)
# Apply Canny edge detection
canny_img = canny(smoothed_img)
# Create cost image
cost_img = 1.0 / (canny_img + 1e-5) # Invert edges: higher cost where edges are stronger
return cost_img
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
def find_path(cost_image, points):
if len(points) != 2:
raise ValueError("Points should be a list of 2 points: seed and target.")
seed_rc, target_rc = points
path_rc, cost = route_through_array(
cost_image,
start=seed_rc,
end=target_rc,
fully_connected=True
)
return path_rc
'''
### Disk live wire cost image
def compute_cost_image(path, sigma=3, disk_size=15):
### Load image
image = cv2.imread(path, cv2.IMREAD_GRAYSCALE)
# Apply histogram equalization
image_contrasted = exposure.equalize_adapthist(image, clip_limit=0.01)
# Apply smoothing
smoothed_img = gaussian(image_contrasted, sigma=sigma)
# Apply Canny edge detection
canny_img = canny(smoothed_img)
# Do disk thing
binary_img = canny_img
k_size = 17
kernel = circle_edge_kernel(k_size=disk_size)
convolved = convolve2d(binary_img, kernel, mode='same', boundary='fill')
# Create cost image
cost_img = (convolved.max() - convolved)**4 # Invert edges: higher cost where edges are stronger
return cost_img
def find_path(cost_image, points):
if len(points) != 2:
raise ValueError("Points should be a list of 2 points: seed and target.")
seed_rc, target_rc = points
path_rc, cost = route_through_array(
cost_image,
start=seed_rc,
end=target_rc,
fully_connected=True
)
return path_rc
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
def circle_edge_kernel(k_size=5, radius=None):
"""
Create a k_size x k_size array whose values increase linearly
from 0 at the center to 1 at the circle boundary (radius).
Parameters
----------
k_size : int
The size (width and height) of the kernel array.
radius : float, optional
The circle's radius. By default, set to (k_size-1)/2.
Returns
-------
kernel : 2D numpy array of shape (k_size, k_size)
The circle-edge-weighted kernel.
"""
if radius is None:
# By default, let the radius be half the kernel size
radius = (k_size - 1) / 2
# Create an empty kernel
kernel = np.zeros((k_size, k_size), dtype=float)
# Coordinates of the center
center = radius # same as (k_size-1)/2 if radius is default
# Fill the kernel
for y in range(k_size):
for x in range(k_size):
dist = np.sqrt((x - center)**2 + (y - center)**2)
if dist <= radius:
# Weight = distance / radius => 0 at center, 1 at boundary
kernel[y, x] = dist / radius
return kernel
# Other functions
"""
Downsample `img` to `scale_percent` size and scale the given points accordingly.
Returns (downsampled_img, (scaled_seed, scaled_target)).
"""
if scale_percent == 100:
return img, (tuple(points[0]), tuple(points[1]))
else:
width = int(img.shape[1] * scale_percent / 100)
height = int(img.shape[0] * scale_percent / 100)
new_dimensions = (width, height)
downsampled_img = cv2.resize(img, new_dimensions, interpolation=cv2.INTER_AREA)
# Scaling factors
scale_x = width / img.shape[1]
scale_y = height / img.shape[0]
seed_xy = tuple(points[0])
target_xy = tuple(points[1])
scaled_seed_xy = (int(seed_xy[0] * scale_x), int(seed_xy[1] * scale_y))
scaled_target_xy = (int(target_xy[0] * scale_x), int(target_xy[1] * scale_y))
return downsampled_img, (scaled_seed_xy, scaled_target_xy)
def compute_cost(image, sigma=3.0, epsilon=1e-5):
"""
Smooth the image, run Canny edge detection, then invert the edge map into a cost image.
"""
# Apply histogram equalization
image_contrasted = exposure.equalize_adapthist(image, clip_limit=0.01)
# Apply smoothing
smoothed_img = gaussian(image_contrasted, sigma=sigma)
# Apply Canny edge detection
# Create cost image
cost_img = 1.0 / (canny_img + epsilon) # Invert edges: higher cost where edges are stronger
def backtrack_pixels_on_image(img_color, path_coords, bgr_color=(0, 0, 255)):
"""
Color the path on the (already converted BGR) image in the specified color.
`path_coords` should be a list of (row, col) or (y, x).
"""
for (row, col) in path_coords:
img_color[row, col] = bgr_color
return img_color