Newer
Older
import cv2
import numpy as np
import matplotlib.pyplot as plt
from skimage import exposure
from skimage.filters import gaussian
from skimage.feature import canny
from skimage.graph import route_through_array
from scipy.signal import convolve2d
def compute_disk_size(user_radius, upscale_factor=1.2):
return int(np.ceil(upscale_factor * 2 * user_radius + 1) // 2 * 2 + 1)
def load_image(path):
return cv2.imread(path, cv2.IMREAD_GRAYSCALE)
def preprocess_image(image, sigma=3, clip_limit=0.01):
# Apply histogram equalization
image_contrasted = exposure.equalize_adapthist(image, clip_limit=clip_limit)
# Apply smoothing
smoothed_img = gaussian(image_contrasted, sigma=sigma)
def compute_cost_image(path, user_radius, sigma=3, clip_limit=0.01):
### Load image
# Apply smoothing
smoothed_img = preprocess_image(image, sigma=sigma, clip_limit=clip_limit)
# Apply Canny edge detection
canny_img = canny(smoothed_img)
# Do disk thing
binary_img = canny_img
kernel = circle_edge_kernel(k_size=disk_size)
convolved = convolve2d(binary_img, kernel, mode='same', boundary='fill')
# Create cost image
cost_img = (convolved.max() - convolved)**4 # Invert edges: higher cost where edges are stronger
return cost_img
def find_path(cost_image, points):
if len(points) != 2:
raise ValueError("Points should be a list of 2 points: seed and target.")
seed_rc, target_rc = points
path_rc, cost = route_through_array(
cost_image,
start=seed_rc,
end=target_rc,
fully_connected=True
)
return path_rc
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
def circle_edge_kernel(k_size=5, radius=None):
"""
Create a k_size x k_size array whose values increase linearly
from 0 at the center to 1 at the circle boundary (radius).
Parameters
----------
k_size : int
The size (width and height) of the kernel array.
radius : float, optional
The circle's radius. By default, set to (k_size-1)/2.
Returns
-------
kernel : 2D numpy array of shape (k_size, k_size)
The circle-edge-weighted kernel.
"""
if radius is None:
# By default, let the radius be half the kernel size
radius = (k_size - 1) / 2
# Create an empty kernel
kernel = np.zeros((k_size, k_size), dtype=float)
# Coordinates of the center
center = radius # same as (k_size-1)/2 if radius is default
# Fill the kernel
for y in range(k_size):
for x in range(k_size):
dist = np.sqrt((x - center)**2 + (y - center)**2)
if dist <= radius:
# Weight = distance / radius => 0 at center, 1 at boundary
kernel[y, x] = dist / radius
return kernel
"""
Downsample `img` to `scale_percent` size and scale the given points accordingly.
Returns (downsampled_img, (scaled_seed, scaled_target)).
"""
if scale_percent == 100:
return img, (tuple(points[0]), tuple(points[1]))
else:
width = int(img.shape[1] * scale_percent / 100)
height = int(img.shape[0] * scale_percent / 100)
new_dimensions = (width, height)
downsampled_img = cv2.resize(img, new_dimensions, interpolation=cv2.INTER_AREA)
# Scaling factors
scale_x = width / img.shape[1]
scale_y = height / img.shape[0]
seed_xy = tuple(points[0])
target_xy = tuple(points[1])
scaled_seed_xy = (int(seed_xy[0] * scale_x), int(seed_xy[1] * scale_y))
scaled_target_xy = (int(target_xy[0] * scale_x), int(target_xy[1] * scale_y))
return downsampled_img, (scaled_seed_xy, scaled_target_xy)