Newer
Older
-- * Context
Context (..),
defaultContext,
-- * Helpers
prettyIdent,
) where
import qualified Data.Set as Set
import Data.Vector.Internal.Check (HasCallStack)
= ITKeep
| ITInline ![C.CDeclarationSpecifier C.NodeInfo]
deriving (Show, Eq)
data InlineStruct
= ISDelete
| ISKeep
deriving (Show, Eq)
defaultReduceCWithKeywords :: (MonadReduce (String, C.Position) m) => [Keyword] -> C.CTranslUnit -> m C.CTranslUnit
defaultReduceCWithKeywords keywords a = reduceCTranslUnit a (defaultContext{keywords = Set.fromList keywords})
{-# SPECIALIZE defaultReduceCWithKeywords :: [Keyword] -> C.CTranslUnit -> IRTree.IRTree (String, C.Position) C.CTranslUnit #-}
defaultReduceC :: (MonadReduce (String, C.Position) m) => C.CTranslUnit -> m C.CTranslUnit
defaultReduceC a = reduceCTranslUnit a defaultContext
{-# SPECIALIZE defaultReduceC :: C.CTranslUnit -> IRTree.IRTree (String, C.Position) C.CTranslUnit #-}
addTypeDefs :: [C.Ident] -> (CType, InlineType) -> Context -> Context
addTypeDefs ids cs Context{..} =
Context
{ typeDefs =
foldl' (\a i -> Map.insert i cs a) typeDefs ids
, ..
}
addInlineExpr :: C.Ident -> InlineExpr -> Context -> Context
addInlineExpr i e Context{..} =
Context
{ inlineExprs = Map.insert i e inlineExprs
, ..
}
addKeyword :: Keyword -> Context -> Context
addKeyword k Context{..} =
Context
{ keywords = Set.insert k keywords
, ..
}
addInlineStruct :: C.Ident -> InlineStruct -> Context -> Context
addInlineStruct k is Context{..} =
defaultContext :: Context
defaultContext =
Context
[ (C.builtinIdent "fabsf", IEKeep (CTFun [Just CTInt, Just CTInt]))
, (C.builtinIdent "fabs", IEKeep (CTFun [Just CTInt, Just CTInt]))
, (C.builtinIdent "__PRETTY_FUNCTION__", IEKeep CTInt)
, (C.builtinIdent "__FUNCTION__", IEKeep CTInt)
isIn :: Keyword -> Context -> Bool
isIn k = Set.member k . keywords
prettyIdent :: C.Identifier C.NodeInfo -> [Char]
prettyIdent (C.Ident s _ a) = s ++ " at " ++ show (C.posOfNode a)
reduceCTranslUnit
:: (MonadReduce Lab m)
=> C.CTranslationUnit C.NodeInfo
-> Context
-> m (C.CTranslationUnit C.NodeInfo)
reduceCTranslUnit (C.CTranslUnit es ni) ctx = do
res' <- evalStateT (mapM (StateT . reduceCExternalDeclaration) es) ctx
es' <- sequence . catMaybes $ res'
pure $ C.CTranslUnit es' ni
reduceCExternalDeclaration
:: (MonadReduce Lab m)
=> C.CExternalDeclaration C.NodeInfo
-> Context
-> m (Maybe (m (C.CExternalDeclaration C.NodeInfo)), Context)
reduceCExternalDeclaration r ctx = case r of
C.CFDefExt fun
| not (LoseMain `isIn` ctx)
&& maybe False (("main" ==) . C.identToString) (functionName fun) -> do
pure (Just $ C.CFDefExt <$> reduceCFunDef fun ctx, ctx)
| otherwise ->
case functionName fun of
Just fid
| shouldDeleteFunction ctx fun -> do
pure (Nothing, addInlineExpr fid IEDelete ctx)
| otherwise -> do
let nctx =
ctx & foldr \case
(Just t, Just i) -> addInlineExpr i (IEKeep t)
(Nothing, Just i) -> addInlineExpr i IEDelete
(_, Nothing) -> id
let red fun' ps = reduceCFunDef fun' (nctx ps)
case Map.lookup fid . inlineExprs $ ctx of
Just (IEKeep (CTFun args)) -> do
(fun', ps) <- reduceParamsTo args fun
pure
( Just (C.CFDefExt <$> red fun' ps)
, addInlineExpr fid (IEKeep (CTFun (map fst ps))) ctx
)
_ow -> do
split
("remove function " <> C.identToString fid, C.posOf r)
(pure (Nothing, addInlineExpr fid IEDelete ctx))
do
(fun', ps) <- reduceParams ctx fun
pure
( Just (C.CFDefExt <$> red fun' ps)
, addInlineExpr fid (IEKeep (CTFun (map fst ps))) ctx
)
Nothing
| shouldDeleteFunction ctx fun -> do
pure (Nothing, ctx)
| otherwise -> do
split
("remove function", C.posOf r)
(pure (Nothing, ctx))
(pure (Just (C.CFDefExt <$> reduceCFunDef fun ctx), ctx))
C.CDeclExt decl -> do
(decl', ctx') <- handleDecl decl ctx
case decl' of
Just d -> pure (Just (C.CDeclExt <$> d), ctx')
Nothing -> pure (Nothing, ctx')
_r -> don'tHandle r
data StructDef = StructDef
{ structId :: !C.Ident
, fieldIds :: ![C.Ident]
, structDef :: !C.CStructUnion
}
deriving (Show, Eq)
structIds
:: (Foldable f)
=> f (C.CDeclarationSpecifier C.NodeInfo)
-> [StructDef]
structIds = concatMap \case
C.CTypeSpec (C.CSUType (C.CStruct a (Just n) (Just ma) b c) _) ->
[ StructDef
n
[ x
| C.CDecl _ itms _ <- ma
, C.CDeclarationItem (C.CDeclr (Just x) _ _ _ _) _ _ <- itms
]
(C.CStruct a (Just n) (Just ma) b c)
]
_ow -> []
trySplit :: (MonadReduce l m, Eq a) => l -> a -> (a -> a) -> m a
trySplit l a action = do
let a' = action a
if a /= a'
then split l (pure a') (pure a)
else pure a
=> C.CFunctionDef C.NodeInfo
-> Context
-> m (C.CFunctionDef C.NodeInfo)
reduceCFunDef (C.CFunDef spc dec cdecls smt ni) ctx = do
spc1 <- trySplit ("remove static", C.posOf ni) spc $ filter \case
C.CStorageSpec (C.CStatic _) -> False
_ow -> True
spc2 <- trySplit ("remove inline", C.posOf ni) spc1 $ filter \case
C.CFunSpec (C.CInlineQual _) -> False
_ow -> True
let labs = labelsOf smt
labs' <-
foldr
(\l r -> split ("remove label" <> show l, C.posOf l) r $ (l :) <$> r)
(pure [])
labs
smt' <- reduceCStatementOrEmptyBlock smt labs' ctx
(inlineTypeDefsCDeclarator dec ctx)
(map (`inlineTypeDefsCDeclaration` ctx) cdecls)
labelsOf :: C.CStatement C.NodeInfo -> [C.Ident]
labelsOf = \case
C.CLabel i s [] _ -> i : labelsOf s
C.CWhile _ s _ _ -> labelsOf s
C.CCase _ s _ -> labelsOf s
C.CDefault s _ -> labelsOf s
C.CCompound _ ss _ ->
ss & concatMap \case
C.CBlockStmt s -> labelsOf s
_ow -> []
C.CCases _ _ s _ -> labelsOf s
C.CIf _ l r _ -> labelsOf l <> maybe [] labelsOf r
C.CSwitch _ s _ -> labelsOf s
C.CFor _ _ _ s _ -> labelsOf s
_ow -> []
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
reduceParamsTo
:: (MonadReduce Lab m)
=> [Maybe CType]
-> C.CFunctionDef C.NodeInfo
-> m (C.CFunctionDef C.NodeInfo, [(Maybe CType, Maybe (C.Identifier C.NodeInfo))])
reduceParamsTo types (C.CFunDef a (C.CDeclr b declrs c d e) f g h) =
types & evalStateT do
(unzip -> (declrs', defs)) <-
declrs & mapM \case
C.CFunDeclr (C.CFunParamsNew decls i) j k -> do
(unzip -> (decls', defs)) <-
decls & mapM \case
C.CDecl def items l -> do
(unzip -> (items', defs)) <-
items & mapM \case
a'@(C.CDeclarationItem (C.CDeclr idx _ _ _ _) _ _) -> do
t' <- state (\(t : tps) -> (t, tps))
case t' of
Just t -> pure ([a'], [(Just t, idx)])
Nothing -> pure ([], [(Nothing, idx)])
a' -> notSupportedYet a' k
case concat items' of
[] -> pure ([], concat defs)
items'' -> pure ([C.CDecl def items'' l], concat defs)
a' -> don'tHandleWithPos a'
pure (C.CFunDeclr (C.CFunParamsNew (concat decls') i) j k, concat defs)
ow -> pure (ow, [])
pure (C.CFunDef a (C.CDeclr b declrs' c d e) f g h, concat defs)
reduceParams'
:: (MonadReduce Lab m)
=> Context
-> [C.CDerivedDeclarator C.NodeInfo]
-> m ([C.CDerivedDeclarator C.NodeInfo], [[(Maybe CType, Maybe (C.Identifier C.NodeInfo))]])
reduceParams' ctx declrs = do
(unzip -> (declrs', defs)) <-
declrs & mapM \case
C.CFunDeclr (C.CFunParamsNew decls i) j k -> do
(unzip -> (decls', defs)) <-
decls & mapM \case
(unzip -> (items', defs)) <-
items & mapM \case
a'@(C.CDeclarationItem (C.CDeclr idx _ _ _ _) _ _) ->
if shouldDeleteDeclaration ctx a
then pure ([], [(Nothing, idx)])
else
split
("remove parameter", C.posOf k)
(pure ([], [(Nothing, idx)]))
(pure ([a'], [(Just (ctype ctx def), idx)]))
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
a' -> notSupportedYet a' k
case concat items' of
[] -> pure ([], concat defs)
items'' -> pure ([C.CDecl def items'' l], concat defs)
a' -> don'tHandleWithPos a'
pure (C.CFunDeclr (C.CFunParamsNew (concat decls') i) j k, [concat defs])
ow -> pure (ow, [])
pure (declrs', concat defs)
reduceParams
:: (MonadReduce Lab m)
=> Context
-> C.CFunctionDef C.NodeInfo
-> m (C.CFunctionDef C.NodeInfo, [(Maybe CType, Maybe C.Ident)])
reduceParams ctx (C.CFunDef a (C.CDeclr b declrs c d e) f g h) = do
(declrs', defs) <- reduceParams' ctx declrs
pure (C.CFunDef a (C.CDeclr b declrs' c d e) f g h, concat defs)
ctype :: Context -> [C.CDeclarationSpecifier C.NodeInfo] -> CType
ctype ctx xs =
let ts = mapMaybe f xs
in fromJust $
foldr
( \t t' -> case t' of
Nothing -> Just t
Just t''
| t == t'' -> Just t''
| otherwise -> error ("something is broken in the c-file" <> show ts)
)
Nothing
ts
f = \case
(C.CTypeSpec tp) -> Just $ case tp of
C.CVoidType _ -> CTAny
C.CCharType _ -> CTInt
C.CShortType _ -> CTInt
C.CIntType _ -> CTInt
C.CFloatType _ -> CTInt
C.CDoubleType _ -> CTInt
C.CSignedType _ -> CTInt
C.CUnsigType _ -> CTInt
C.CBoolType _ -> CTInt
C.CLongType _ -> CTInt
C.CInt128Type _ -> CTInt
C.CFloatNType{} -> CTInt
C.CSUType _ _ -> CTStruct
C.CEnumType _ _ -> CTInt
C.CTypeDef idx _ ->
case Map.lookup idx . typeDefs $ ctx of
Just (t, ITKeep) -> t
Just (t, ITInline _) -> t
Nothing -> error ("could not find typedef:" <> show idx)
a -> notSupportedYet a C.undefNode
_ow -> Nothing
=> [C.Ident]
-> C.CCompoundBlockItem C.NodeInfo
-> StateT Context m [C.CCompoundBlockItem C.NodeInfo]
reduceCCompoundBlockItem lab r = do
ctx <- get
msmt <- runMaybeT $ reduceCStatement smt lab ctx
case msmt of
Just smt' -> do
C.CCompound [] ss _ ->
split
("expand compound statment", C.posOf r)
(pure ss)
(pure [C.CBlockStmt smt'])
_ow -> pure [C.CBlockStmt smt']
Nothing -> pure []
(declr', ctx') <- handleDecl declr ctx
handleDecl
:: (MonadReduce Lab m)
=> C.CDeclaration C.NodeInfo
-> Context
handleDecl d ctx = case inlineTypeDefsCDeclaration d ctx of
-- A typedef
C.CDecl (C.CStorageSpec (C.CTypedef _) : rst) decl _ -> do
let [ids] = identifiers decl
("inline typedef " <> C.identToString ids, C.posOf d)
(pure (Nothing, addTypeDefs [ids] (ctype ctx rst, ITInline rst) ctx))
(pure (Just (pure d), addTypeDefs [ids] (ctype ctx rst, ITKeep) ctx))
d'@(C.CDecl spc decl ni') -> do
(decl', ctx') <-
foldr
( reduceCDeclarationItem
(shouldDeleteDeclaration ctx d')
(ctype ctx spc)
)
(pure ([], ctx))
decl
let fn = do
spc1 <- trySplit ("remove static", C.posOf ni') spc $ filter \case
C.CStorageSpec (C.CStatic _) -> False
_ow -> True
([], [])
| AllowEmptyDeclarations `isIn` ctx' ->
split ("remove empty declaration", C.posOf d) (pure (Nothing, ctx')) do
| otherwise -> pure (Nothing, ctx')
([], stcts) ->
split
("remove declaration", C.posOf d)
(pure (Nothing, foldr (\(StructDef k _ _) -> addInlineStruct k ISDelete) ctx' stcts))
pure (Just fn, foldr (\(StructDef k _ _) -> addInlineStruct k ISKeep) ctx' stcts)
pure (Just fn, foldr (\(StructDef k _ _) -> addInlineStruct k ISKeep) ctx' stcts)
-> m ([C.CDeclarationItem C.NodeInfo], Context)
-> m ([C.CDeclarationItem C.NodeInfo], Context)
dr@(C.CDeclr (Just i) [] Nothing [] ni)
(Just (C.CInitExpr c ni'))
(ds, ctx) <- ma
c' <- fromMaybe (pure zeroExpr) (reduceCExpr c ctx)
if shouldDelete
then pure (ds, addInlineExpr i (IEInline c') ctx)
else
split
("inline variable " <> C.identToString i, C.posOf ni)
(pure (ds, addInlineExpr i (IEInline c') ctx))
( pure
( inlineTypeDefsCDI (C.CDeclarationItem dr (Just (C.CInitExpr c' ni')) Nothing) ctx
: ds
, addInlineExpr i (IEKeep t) ctx
)
C.CDeclarationItem (C.CDeclr (Just i) a Nothing b ni) ex Nothing -> do
if shouldDelete
then pure (ds, addInlineExpr i IEDelete ctx)
else do
ex' <- case ex of
Just ix -> maybeSplit ("remove initializer", C.posOf ni) (reduceCInitializer ix ctx)
Nothing -> pure Nothing
(a', t') <-
if C.identToString i == "printf"
then pure (a, CTAny)
else do
(a', defs) <- reduceParams' ctx a
let t' = case defs of
[args] -> CTFun (map fst args)
[] -> t
_x -> error ("Unexpected" <> unlines (map show _x) <> show (C.posOf ni))
pure (a', t')
let d' = C.CDeclarationItem (C.CDeclr (Just i) a' Nothing b ni) ex' Nothing
split
("remove variable " <> C.identToString i, C.posOf ni)
(pure (ds, addInlineExpr i IEDelete ctx))
(pure (inlineTypeDefsCDI d' ctx : ds, addInlineExpr i (IEKeep t') ctx))
a@(C.CDeclarationItem (C.CDeclr _ _ _ _ ni) _ _) -> do
don'tHandleWithNodeInfo a ni
reduceCInitializer
:: (MonadReduce Lab m)
=> C.CInitializer C.NodeInfo
-> Context
-> Maybe (m (C.CInitializer C.NodeInfo))
reduceCInitializer a ctx = case a of
C.CInitExpr e ni' -> do
rm <- reduceCExpr e ctx
Just $ (`C.CInitExpr` ni') <$> rm
C.CInitList (C.CInitializerList items) ni -> do
ritems <- forM items \case
([], it) -> fmap ([],) <$> reduceCInitializer it ctx
(as, _) -> notSupportedYet (fmap noinfo as) ni
Just $ (`C.CInitList` ni) . C.CInitializerList <$> sequence ritems
reduceCStatementOrEmptyBlock stmt ids ctx = do
fromMaybe emptyBlock <$> runMaybeT (reduceCStatement stmt ids ctx)
emptyBlock :: C.CStatement C.NodeInfo
emptyBlock = C.CCompound [] [] C.undefNode
-- | Reduce given a list of required labels reduce a c statement, possibly into nothingness.
-> MaybeT m (C.CStatement C.NodeInfo)
reduceCStatement smt labs ctx = case smt of
C.CCompound is cbi ni -> do
cbi' <- lift $ evalStateT (mapM (reduceCCompoundBlockItem labs) cbi) ctx
case concat cbi' of
[] -> do
exceptIf ("remove empty compound", C.posOf smt)
pure (C.CCompound is [] ni)
s' <- reduceCStatement s labs ctx
e' <- lift (reduceCExprOrZero e ctx)
pure $ C.CWhile e' s' dow ni
C.CExpr me ni -> do
case me of
Just e -> do
if DoNoops `isIn` ctx
e' <- maybeSplit ("change to noop", C.posOf smt) $ reduceCExpr e ctx
pure $ C.CExpr e' ni
else do
re' <- liftMaybe $ reduceCExpr e ctx
exceptIf ("remove expr statement", C.posOf smt)
e' <- re'
pure $ C.CExpr (Just e') ni
C.CReturn me ni -> do
-- TODO: If function returntype is not struct return 0
re' <- liftMaybe $ reduceCExpr e ctx
exceptIf ("remove return statement", C.posOf smt)
e' <- re'
pure $ C.CReturn (Just e') ni
Nothing -> do
exceptIf ("remove return statement", C.posOf smt)
pure $ C.CReturn Nothing ni
C.CIf e s els ni -> do
e' <- maybeSplit ("remove condition", C.posOf e) $ reduceCExpr e ctx
els' <- lift . runMaybeT $ do
els' <- liftMaybe els
reduceCStatement els' labs ctx
ms' <- lift . runMaybeT $ reduceCStatement s labs ctx
case (e', ms', els') of
(Nothing, Nothing, Nothing) -> pure emptyBlock
(Just e'', Just s', Nothing) -> pure $ C.CIf e'' s' Nothing ni
(Nothing, Just s', Just x) -> pure $ C.CIf zeroExpr s' (Just x) ni
(Just e'', Just s', Just x) -> pure $ C.CIf e'' s' (Just x) ni
(Just e'', Nothing, Nothing) -> pure $ C.CExpr (Just e'') C.undefNode
(Nothing, Nothing, Just x) -> pure x
(Just e'', Nothing, Just x) -> pure $ C.CIf e'' emptyBlock (Just x) ni
(Nothing, Just s', Nothing) -> pure s'
(decl', ctx') <-
foldr
(reduceCDeclarationItem (shouldDeleteDeclaration ctx d) (ctype ctx rec))
(pure ([], ctx))
decl
if AllowEmptyDeclarations `isIn` ctx'
then
split
("remove empty declaration", C.posOf ni')
(pure Nothing)
(pure $ Just $ C.CForDecl (C.CDecl rec decl' ni'))
else pure Nothing
else pure $ Just $ C.CForDecl (C.CDecl rec decl' ni')
pure (res, ctx')
C.CForInitializing e -> do
e' <- maybeSplit ("remove initializer", C.posOf ni) (e >>= \e' -> reduceCExpr e' ctx)
("remove empty declaration", C.posOf ni)
(pure (Nothing, ctx))
e2' <- runMaybeT do
e2' <- liftMaybe e2
re2' <- liftMaybe (reduceCExpr e2' ctx')
exceptIf ("remove check", C.posOf e2')
re2'
e3' <- runMaybeT do
e3' <- liftMaybe e3
re3' <- liftMaybe (reduceCExpr e3' ctx')
exceptIf ("remove iterator", C.posOf e3')
re3'
let e2'' =
if AllowInfiniteForLoops `isIn` ctx || isNothing e2
then e2'
else e2' <|> Just zeroExpr
pure $ C.CFor n e2'' e3' s' ni
case me1' of
Nothing -> do
split ("remove the for loop", C.posOf smt) (pure s') do
forloop (C.CForInitializing Nothing)
C.CLabel i s [] ni -> do
if i `List.elem` labs
then do
s' <- lift $ reduceCStatementOrEmptyBlock s labs ctx
pure $ C.CLabel i s' [] ni
else do
empty
C.CGoto i ni ->
if i `List.elem` labs
then pure $ C.CGoto i ni
else empty
C.CBreak _ -> defaultBehavior
C.CCont _ -> defaultBehavior
where
defaultBehavior =
split ("remove statement", C.posOf smt) empty (pure smt)
-- | If the condition is statisfied try to reduce to the a.
whenSplit :: (MonadReduce Lab m) => Bool -> Lab -> m a -> m a -> m a
whenSplit cn lab a b
| cn = split lab a b
| otherwise = b
maybeSplit :: (MonadReduce Lab m) => Lab -> Maybe (m a) -> m (Maybe a)
maybeSplit lab = \case
Just r -> do
split lab (pure Nothing) (Just <$> r)
Nothing -> do
pure Nothing
zeroExpr :: C.CExpression C.NodeInfo
zeroExpr = C.CConst (C.CIntConst (C.cInteger 0) C.undefNode)
reduceCExprOrZero :: (MonadReduce Lab m, HasCallStack) => C.CExpr -> Context -> m C.CExpr
reduceCExprOrZero expr ctx = do
case reduceCExpr expr ctx of
Just ex -> do
r <- ex
if r == zeroExpr
then pure r
else split ("replace by zero", C.posOf expr) (pure zeroExpr) (pure r)
data CType
= CTInt
| CTStruct
| CTPointer
| CTFun ![Maybe CType]
| CTAny
deriving (Show, Eq)
reduceCExpr :: forall m. (MonadReduce Lab m, HasCallStack) => C.CExpr -> Context -> Maybe (m C.CExpr)
reduceCExpr expr ctx = case expr of
C.CBinary o elhs erhs ni -> do
if o `elem` [C.CNeqOp, C.CEqOp, C.CGeqOp, C.CLeqOp, C.CGrOp, C.CLeOp]
then do
-- in this case we change type, so we need to keep the operation
rl <- reduceCExpr elhs ctx
rr <- reduceCExpr erhs ctx
Just $ do
l' <- rl
r' <- rr
pure $ C.CBinary o l' r' ni
else do
case reduceCExpr elhs ctx of
Just elhs' -> case reduceCExpr erhs ctx of
Just erhs' -> pure do
split ("reduce to left", C.posOf elhs) elhs' do
split ("reduce to right", C.posOf erhs) erhs' do
l' <- elhs'
r' <- erhs'
pure $ C.CBinary o l' r' ni
Nothing ->
pure elhs'
Nothing
| otherwise -> fail "could not reduce left hand side"
C.CAssign o elhs erhs ni ->
case reduceCExpr elhs (addKeyword DisallowVariableInlining ctx) of
Just elhs' -> case reduceCExpr erhs ctx of
Just erhs' -> pure do
split ("reduce to left", C.posOf elhs) elhs' do
split ("reduce to right", C.posOf erhs) erhs' do
l' <- elhs'
r' <- erhs'
pure $ C.CAssign o l' r' ni
Nothing ->
fail "could not reduce right hand side"
Nothing
| otherwise -> fail "could not reduce left hand side"
C.CVar i _ ->
case Map.lookup i . inlineExprs $ ctx of
Just mx -> case mx of
Nothing
Nothing -> error ("Could not find " <> show i <> " at " <> show (C.posOf expr) <> "\n" <> show (inlineExprs ctx))
C.CConst x -> Just do
pure $ C.CConst x
C.CUnary o elhs ni -> do
elhs' <- reduceCExpr elhs (addKeyword DisallowVariableInlining ctx)
Just $ split ("reduce to operant", C.posOf expr) elhs' do
e <- elhs'
pure $ C.CUnary o e ni
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
let inlineExprOf i = Map.lookup i . inlineExprs $ ctx
case e of
(C.CVar i _) -> case inlineExprOf i of
Just IEDelete -> Just $ do
es' <- traverse (maybeSplit ("do without param", C.posOf e) . (`reduceCExpr` ctx)) es
-- Not completely correct.
case catMaybes es' of
[] -> pure zeroExpr
[e''] -> pure e''
es'' -> pure $ C.CComma es'' C.undefNode
Just (IEKeep (CTFun args)) -> do
rargs' :: [m C.CExpr] <- sequence . catMaybes . (\f -> zipWith f args es) $ \a ae' ->
a <&> \tt ->
let r = case reduceCExpr ae' ctx of
Just re ->
Just $
whenSplit
(tt /= CTStruct)
("do without param", C.posOf ae')
(pure zeroExpr)
re
Nothing
| tt /= CTStruct -> Just (pure zeroExpr)
| otherwise -> Nothing
in r :: Maybe (m C.CExpr)
Just $ do
es' <- sequence rargs'
pure $ C.CCall e es' ni
Just (IEKeep CTAny) -> do
let re = reduceCExpr e (addKeyword DisallowVariableInlining ctx)
res = map (`reduceCExpr` ctx) es
case (re, catMaybes res) of
(Nothing, []) -> Nothing
(Nothing, [r]) -> Just r
(_, _) -> Just do
e' <- maybeSplit ("do without function", C.posOf e) re
es' <- res & traverse (maybeSplit ("do without pram", C.posOf e))
case (e', catMaybes es') of
(Nothing, []) -> pure zeroExpr
(Nothing, [e'']) -> pure e''
(Nothing, es'') -> pure $ C.CComma es'' C.undefNode
(Just f, _) -> pure $ C.CCall f (map (fromMaybe zeroExpr) es') ni
Just (IEKeep t) -> error ("unexpected type" <> show i <> show t)
Just (IEInline x) -> error ("unexpected inline" <> show x)
Nothing -> error ("could not find " <> show i)
_ow -> notSupportedYet e ni
-- do
-- let re = reduceCExpr e (addKeyword DisallowVariableInlining ctx)
-- res = map (`reduceCExpr` ctx) es
-- case (re, catMaybes res) of
-- (Nothing, []) -> Nothing
-- (Nothing, [r]) -> Just r
-- (_, _) -> Just do
-- e' <- maybeSplit ("do without function", C.posOf e) re
-- es' <- res & traverse (maybeSplit ("do without pram", C.posOf e))
-- case (e', catMaybes es') of
-- (Nothing, []) -> pure zeroExpr
-- (Nothing, [e'']) -> pure e''
-- (Nothing, es'') -> pure $ C.CComma es'' C.undefNode
-- (Just f, _) -> pure $ C.CCall f (map (fromMaybe zeroExpr) es') ni
C.CCond ec et ef ni -> do
-- TODO: More fine grained reduction is possible here.
Just $ do
ec' <- reduceCExprOrZero ec ctx
ef' <- reduceCExprOrZero ef ctx
et' <- case et of
Just et' -> Just <$> reduceCExprOrZero et' ctx
Nothing -> pure Nothing
pure $ C.CCond ec' et' ef' ni
C.CCast decl e ni -> do
re <- reduceCExpr e ctx
Just do
split ("don't cast", C.posOf ni) re do
e' <- re
pure (C.CCast (inlineTypeDefsCDeclaration decl ctx) e' ni)
C.CIndex e1 e2 ni -> do
-- TODO: Better reduction is posisble here.
re1 <- reduceCExpr e1 ctx
Just do
e1' <- re1
e2' <- reduceCExprOrZero e2 ctx
pure $ C.CIndex e1' e2' ni
rx <- reduceCExpr x ctx
Just do
rst' <-
foldr
( \e cc -> do
maybeSplit ("remove expression", C.posOf e) (reduceCExpr e ctx) >>= \case
Just e' -> (e' :) <$> cc
Nothing -> cc
)
(pure [])
rst
x' <- rx
if List.null rst'
then pure x'
else pure $ C.CComma (reverse (x' : rst')) ni
C.CMember e i l ni -> do
re <- reduceCExpr e ctx
Just do
e' <- re
pure (C.CMember e' i l ni)
inlineTypeDefsCDeclaration :: C.CDeclaration C.NodeInfo -> Context -> C.CDeclaration C.NodeInfo
inlineTypeDefsCDeclaration decl ctx =
case decl of
C.CDecl items decli ni ->
C.CDecl (inlineTypeDefsSpecs items ctx) (map (`inlineTypeDefsCDI` ctx) decli) ni
a -> don'tHandle a
shouldDeleteFunction :: Context -> C.CFunctionDef C.NodeInfo -> Bool
shouldDeleteFunction ctx (C.CFunDef spec _ _ _ _) =
any (shouldDeleteDeclSpec ctx) spec
shouldDeleteDeclaration :: Context -> C.CDeclaration C.NodeInfo -> Bool
shouldDeleteDeclaration ctx decl =
case decl of
C.CDecl items decli _ -> any (shouldDeleteDeclSpec ctx) items || any shouldDeleteDeclItem decli
a -> don'tHandle a
where
shouldDeleteDeclItem = \case
C.CDeclarationItem a _ _ -> shouldDeleteDeclartor a
a -> don'tHandle a
shouldDeleteDeclartor = \case
C.CDeclr _ def _ _ _ -> any shouldDeleteDerivedDeclartor def
shouldDeleteDerivedDeclartor = \case
C.CFunDeclr (C.CFunParamsNew x _) _ _ ->
any (shouldDeleteDeclaration ctx) x
C.CArrDeclr{} -> False
C.CPtrDeclr _ _ -> False
a -> don'tHandle a
shouldDeleteDeclSpec :: Context -> C.CDeclarationSpecifier C.NodeInfo -> Bool
shouldDeleteDeclSpec ctx = \case
C.CTypeSpec (C.CSUType (C.CStruct _ (Just idx) Nothing _ _) _) ->
case Map.lookup idx . structs $ ctx of
Just ISDelete -> True
Just ISKeep -> False
Nothing -> error ("could not find struct:" <> show idx)
C.CTypeSpec (C.CSUType (C.CStruct _ _ (Just c) _ _) _) ->
any (shouldDeleteDeclaration ctx) c
_ow -> False
inlineTypeDefsSpecs :: [C.CDeclarationSpecifier C.NodeInfo] -> Context -> [C.CDeclarationSpecifier C.NodeInfo]
inlineTypeDefsSpecs r ctx =
r & concatMap \case
a@(C.CTypeSpec (C.CTypeDef idx _)) -> do
case Map.lookup idx . typeDefs $ ctx of
Just (_, ITKeep) -> [a]
Just (_, ITInline res) -> res
Nothing -> error ("could not find typedef:" <> show idx)
-- a@(C.CTypeSpec (C.CSUType (C.CStruct _ (Just idx) Nothing _ _) _)) ->
-- case Map.lookup idx . structs $ ctx of
-- Just (Just def) -> [C.CTypeSpec (C.CSUType def C.undefNode)]
-- Just Nothing -> [a]
-- Nothing -> error ("could not find struct:" <> show idx)
C.CTypeSpec (C.CSUType (C.CStruct a b (Just c) d e) f) ->
[C.CTypeSpec (C.CSUType (C.CStruct a b (Just $ map (`inlineTypeDefsCDeclaration` ctx) c) d e) f)]
a -> [a]
{-# NOINLINE inlineTypeDefsSpecs #-}
inlineTypeDefsCDeclarator
:: C.CDeclarator C.NodeInfo
-> Context
-> C.CDeclarator C.NodeInfo
inlineTypeDefsCDeclarator (C.CDeclr idn derivedd st atr ni) ctx =
C.CDeclr idn (map (inlineTypeDefsX ctx) derivedd) st atr ni
inlineTypeDefsX :: Context -> C.CDerivedDeclarator C.NodeInfo -> C.CDerivedDeclarator C.NodeInfo
inlineTypeDefsX ctx = \case
C.CFunDeclr (C.CFunParamsNew x y) b c ->
C.CFunDeclr (C.CFunParamsNew (map (`inlineTypeDefsCDeclaration` ctx) x) y) b c
C.CArrDeclr a b c -> C.CArrDeclr a b c
C.CPtrDeclr a b -> C.CPtrDeclr a b
a -> don'tHandle a
inlineTypeDefsCDI :: C.CDeclarationItem C.NodeInfo -> Context -> C.CDeclarationItem C.NodeInfo
inlineTypeDefsCDI di ctx = case di of
C.CDeclarationItem a b ni -> C.CDeclarationItem (inlineTypeDefsCDeclarator a ctx) b ni
a -> don'tHandle a
identifiers :: forall a. (Data a) => a -> [C.Ident]
identifiers d = appEndo (go d) []
where
go :: forall a'. (Data a') => a' -> Endo [C.Ident]
go d' = case cast d' of
Just l -> Endo (l :)
Nothing -> gmapQl (<>) mempty go d'
functionName :: C.CFunctionDef C.NodeInfo -> Maybe C.Ident
functionName = \case
C.CFunDef _ (C.CDeclr ix _ _ _ _) _ _ _ -> ix
notSupportedYet :: (HasCallStack, Show a) => a -> C.NodeInfo -> b
notSupportedYet a ni = error (show a <> " at " <> show (C.posOf ni))
noinfo :: (Functor f) => f C.NodeInfo -> f ()
noinfo a = a $> ()
don'tHandle :: (HasCallStack, Functor f, Show (f ())) => f C.NodeInfo -> b
don'tHandle f = error (show (f $> ()))
don'tHandleWithPos :: (HasCallStack, Functor f, Show (f ()), C.Pos (f C.NodeInfo)) => f C.NodeInfo -> b
don'tHandleWithPos f = error (show (f $> ()) <> " at " <> show (C.posOf f))
don'tHandleWithNodeInfo :: (HasCallStack, Functor f, Show (f ())) => f C.NodeInfo -> C.NodeInfo -> b
don'tHandleWithNodeInfo f ni = error (show (f $> ()) <> " at " <> show (C.posOf ni))