Newer
Older
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
plot_dualmicro(n_maps, maps, gev, epoch.info)
# Make dictionary with n_maps and new order
# All 4 top row consecutively, followed by 4 bot row
manual_reordering_template = {"8_alpha":[5,2,7,0,1,4,6,3],
"8_beta":[4,1,3,6,7,5,0,2],
"8_broadband":[6,3,4,0,2,1,5,7]}
new_order = manual_reordering_template[f"{n_maps}_{ff}"]
maps, gev, m_labels = reorder_microstate_results(new_order, maps, gev, m_labels)
# Plot again to check it worked
plot_dualmicro(n_maps, maps, gev, epoch.info)
# Since neuronal activity is often oscillating, this causes polarity inversions
# Microstates ignores the sign, and hence the polarity in the map is arbitrary
# It is only the relative difference within the plot that is interesting
# depending on initiation. We can thus freely change the sign for visualization
# For two-person microstates, each person's map is sign-changed separately
manual_sign_correction = {"8_alpha":[[-1,-1,-1,1,-1,1,1,1],[1,1,1,-1,-1,1,1,1]],
"8_beta":[[-1,-1,-1,-1,-1,1,1,1],[-1,-1,1,-1,-1,1,1,-1]],
"8_broadband":[[1,1,-1,-1,1,-1,-1,-1],[-1,1,-1,-1,1,-1,-1,-1]]}
sign_swap = manual_sign_correction[f"{n_maps}_{ff}"]
maps = sign_swap_microstates(sign_swap, maps, n_maps, n_channels)
# Plot a final time for last confirmation
plot_dualmicro(n_maps, maps, gev, epoch.info)
# Close all figures and repeat by changing n_maps
plt.close("all")
### Save reordered results
n_maps = 8
ii = n_clusters.index(n_maps)
with open(f"{microstate_save_path}Dualmicro_fit_all_{ff}_data_maps{n_maps}.pkl", "rb") as file:
microstate_results = pickle.load(file)
maps, m_labels, gfp_peaks, gev, cv_min, pair_idx = microstate_results
# Re-order
new_order = manual_reordering_template[str(n_maps)]
maps, gev, m_labels = reorder_microstate_results(new_order, maps, gev, m_labels)
# Sign alignment
maps = sign_swap_microstates(sign_swap, maps, n_maps, n_channels)
# Overwrite variable
microstate_results = maps, m_labels, gfp_peaks, gev, cv_min, pair_idx
# Save to new file
with open(f"{microstate_save_path}Reordered/Dualmicro_fit_all_{ff}_data_maps{n_maps}.pkl", "wb") as filehandle:
pickle.dump(microstate_results, filehandle) # [maps, L, gfp_peaks, gev, cv_min, pair_idx]
# Save topomaps for the microstates
save_path = f"{fig_save_path}Microstates/Fit_all_{ff}/"
with open(f"{microstate_save_path}Reordered/Dualmicro_fit_all_{ff}_data_maps{n_maps}.pkl", "rb") as file:
microstate_results = pickle.load(file)
maps, m_labels, gfp_peaks, gev, cv_min, pair_idx = microstate_results
fig = plot_dualmicro(n_maps, maps, gev, epoch.info)
fig.savefig(save_path+f"Dualmicro_fit_all_{ff}_maps{n_maps}"+".png")
# Save svg for Paper
fig.savefig(save_path+f"Dualmicro_fit_all_{ff}_maps{n_maps}"+".svg")
### Save svg with fixed color scales across all microstates
vlims = (np.min(maps), np.max(maps))
fig = plot_dualmicro(n_maps, maps, gev, vlims, epoch.info, vlims)
fig.savefig(save_path+f"Dualmicro_fit_all_{ff}_fixed_colorscale_maps{n_maps}"+".png")
fig.savefig(save_path+f"Dualmicro_fit_all_{ff}_fixed_colorscale_maps{n_maps}"+".svg")
# =========================================================================
# # Estimate two-person microstate metrics/features
# # There might be a small error introduced due to gaps in the time series from
# # dropped segments, e.g. when calculating the transition probability as
# # the time series is discontinuous due to the gaps. But with the high sampling rate
# # only a very small fraction of the samples have discontinuous neighbors
# =========================================================================
"""
Overview of common microstate features:
1. Average duration a given microstate remains stable (Dur)
2. Frequency occurrence, independent of individual duration (Occ)
Average number of times a microstate becomes dominant per second
3. Ratio of total Time Covered (TCo)
4. Transition probabilities (TMx)
5. Ratio of shannon entropy relative to theoretical max chaos (Ent)
"""
# Hard-coded the optimal number of microstates based on CV criterion and GEV
n_maps = 8
# Load all microstate results
with open(f"{microstate_save_path}Reordered/Dualmicro_fit_all_{ff}_data_maps{n_maps}.pkl", "rb") as file:
microstate_results = pickle.load(file)
# Load all trialinfos
with open(f"{microstate_save_path}Dualmicro_fit_all_{ff}_trial_events_infos.pkl", "rb") as file:
trialinfo_list = pickle.load(file)
Microstate_names = [chr(ele) for ele in range(65,65+n_maps)]
m_labels = [0]*n_pairs
events = [0]*n_pairs
m_feats = [0]*n_pairs
for i in range(n_pairs):
m_labels[i], events[i], m_feats[i] = dualmicro_fit_all_feature_computation(i)
print(f"Finished computing microstate features for pair {Pair_id[i]}")
# Save the raw microstate features
with open(f"{microstate_save_path}/raw_dualmicro_fit_all_{ff}_features_maps{n_maps}.pkl", "wb") as filehandle:
pickle.dump(m_feats, filehandle) # [Subject][Dur_arr,Occ_arr,TCo_arr,TMx_arr,Ent_arr] [Event, map*]
# * the feature is calculated for each map, where applicable.
# Transition matrix is calculated for each map -> map transition probability
# with open(f"{microstate_save_path}/raw_computed_dualmicro_fit_all_{ff}_features.pkl", "rb") as file:
# m_feats = pickle.load(file) # [Subject][Dur_arr,Occ_arr,TCo_arr,TMx_arr,Ent_arr] [Event, map*]
### Convert all features to dataframes for further processing
col_names = ["Pair_ID", "Event_ID", "Microstate", "Value"]
col_values = [Pair_id,list(collapsed_event_id.keys()),Microstate_names]
dtypes = [int,str,str,"float64"]
# Mean duration
Dur_arr = np.stack([ele[0] for ele in m_feats]) # [Subject, event, n_map]
Dur_df = numpy_arr_to_pandas_df(Dur_arr, col_names, col_values, dtypes)
# Add dummy variable to enabling combining of dataframes
measurement_id = ["Duration"]*len(Dur_df)
Dur_df.insert(2, "Measurement", measurement_id)
# Save df
Dur_df.to_pickle(os.path.join(microstate_save_path,"Dualmicro_fit_all_{ff}_duration_df.pkl"))
# Frequency of occurrence per sec
Occ_arr = np.stack([ele[1] for ele in m_feats]) # [Subject, event, n_map]
Occ_df = numpy_arr_to_pandas_df(Occ_arr, col_names, col_values, dtypes)
# Add dummy variable to enabling combining of dataframes
measurement_id = ["Occurrence"]*len(Occ_df)
Occ_df.insert(2, "Measurement", measurement_id)
# Save df
Occ_df.to_pickle(os.path.join(microstate_save_path,"Dualmicro_fit_all_{ff}_occurrence_df.pkl"))
# Ratio total Time Covered
TCo_arr = np.stack([ele[2] for ele in m_feats]) # [Subject, event, n_map]
TCo_df = numpy_arr_to_pandas_df(TCo_arr, col_names, col_values, dtypes)
# Add dummy variable to enabling combining of dataframes
measurement_id = ["Time_covered"]*len(TCo_df)
TCo_df.insert(2, "Measurement", measurement_id)
# Save df
TCo_df.to_pickle(os.path.join(microstate_save_path,"Dualmicro_fit_all_{ff}_ratio_time_covered_df.pkl"))
# Transition matrix should be read as probability of row to column
xi, xj = np.meshgrid(Microstate_names,Microstate_names)
_, arrow = np.meshgrid(Microstate_names,["->"]*n_maps)
transition_info = np.char.add(np.char.add(xj,arrow),xi)
TMx_arr = np.stack([ele[3] for ele in m_feats]) # [Subject, event, n_map, n_map]
TMx_arr = TMx_arr.reshape((n_pairs,len(collapsed_event_id),n_maps*n_maps)) # Flatten the maps to 1D
col_names = ["Pair_ID", "Event_ID", "Transition", "Value"]
col_values = [Pair_id,list(collapsed_event_id.keys()),transition_info.flatten()]
TMx_df = numpy_arr_to_pandas_df(TMx_arr, col_names, col_values, dtypes)
# Add dummy variable to enabling combining of dataframes
measurement_id = ["Probability"]*len(TMx_df)
TMx_df.insert(2, "Measurement", measurement_id)
# Save df
TMx_df.to_pickle(os.path.join(microstate_save_path,"Dualmicro_fit_all_{ff}_transition_df.pkl"))
# Entropy
Ent_arr = np.stack([ele[4] for ele in m_feats]) # [Subject, event]
col_names = ["Pair_ID", "Event_ID", "Value"]
col_values = [Pair_id,list(collapsed_event_id.keys())]
dtypes = [int, str, "float64"]
Ent_df = numpy_arr_to_pandas_df(Ent_arr, col_names, col_values, dtypes)
# Add dummy variable to enabling combining of dataframes
measurement_id = ["Entropy"]*len(Ent_df)
Ent_df.insert(2, "Measurement", measurement_id)
# Save df
Ent_df.to_pickle(os.path.join(microstate_save_path,"Dualmicro_fit_all_{ff}_ratio_entropy_df.pkl"))
# %% Backfit two-person microstates to pseudo-pairs
# The pseudo-pairs are created for all participants except the real pair.
# This is fine for symmetrical tasks, e.g. rest and coupled.
# But not for assymmetrical tasks like observation and leader.
# We might have a leader - leader pseudo-pair.
# Hence we only look at ppn1 with ppn2 from different pairs and exclude
# ppn1 with ppn1 or ppn2 with ppn2
for f in len(all_freq_ranges):
ff = freq_names[f]
freq_range0 = all_freq_ranges[f]
# =========================================================================
# It might be an advantage to run the backfitting of microstates on a HPC
# =========================================================================
# To save time and prevent reloading the same EEG over and over, I divided
# the prepare array function into a load and combine function
# By loading all into memory, I can skip loading for every combination
# but this requires a very high memory, which is fortunately not a problem on the hpc
# I am limiting the pseudo-pairs to be where ppn1 ends with 1 and ppn2 with 2
# Which means we have 21 * 20 options
n_pseudo_pairs = n_pairs*(n_pairs-1)
# To not load data 420 times for two participants, we preload all EEG data to ram
c_time1 = time_now(); print("Starting load",c_time1)
all_micro_data = [0]*n_subjects
all_trial_data = [0]*n_subjects
for i in range(n_subjects):
all_micro_data[i], all_trial_data[i] = load_microstate_arrays(i)
print("Load finished", time_now())
# Get the prototypical alpha maps
n_maps = 8
with open(f"{microstate_save_path}Reordered/Dualmicro_fit_all_{ff}_data_maps{n_maps}.pkl", "rb") as file:
microstate_results = pickle.load(file)
prototype_map = microstate_results[0]
# Start the backfitting
m_labels = [0]*n_pseudo_pairs
events = [0]*n_pseudo_pairs
GEVs = [0]*n_pseudo_pairs
counter = 0
pseudo_pair_id = []
for i in range(n_subjects):
for j in range(n_subjects):
# Skip if the subject is the same
if np.abs(Subject_id[i]-Subject_id[j]) == 0:
continue
# Skip if the subject are from the same pair
if np.abs(Subject_id[i]-Subject_id[j]) == 1:
continue
# Skip if ppn1 is not ending on 1, and ppn2 not ending on 2
if not (str(Subject_id[i])[-1] == "1") & (str(Subject_id[j])[-1] == "2"):
continue
# A valid pseudo pair
else:
# Get the synchronized events
event0 = get_synch_events_from_pseudo_pairs(all_trial_data[i],all_trial_data[j])
# Get the preloaded micro data
micro_data1 = all_micro_data[i]
micro_data2 = all_micro_data[j]
# Get the synchronized and concatenated micro data in alpha
micro_data0 = combine_two_person_microstate_arrays(micro_data1, micro_data2, event0, sfreq, freq_range=freq_range0)
# Backfit and get the labels
L, GEV = pseudo_pair_dualmicro_backfitting(micro_data0, prototype_map, event0, n_maps, sfreq)
# Save the results
m_labels[counter], GEVs[counter], events[counter] = L, GEV, event0
pseudo_pair_id.append(f"{Subject_id[i]}-{Subject_id[j]}")
# Move counter
counter += 1
print(f"Finished backfitting for pseudo pair {pseudo_pair_id[-1]}")
print("Started", c_time1, "\nCurrent",time_now())
backfit_results = [pseudo_pair_id, m_labels, GEVs, events]
# Save the results from all pseudo pairs
with open(f"{microstate_save_path}Reordered/Backfitting/Dualmicro_fit_all_{ff}_data_maps{n_maps}.pkl", "wb") as filehandle:
pickle.dump(backfit_results, filehandle) # [pseudo_pair_id, L, GEV, events]
# =========================================================================
# Estimate two-person microstate metrics/features
# There might be a small error introduced due to gaps in the time series from
# dropped segments, e.g. when calculating the transition probability as
# the time series is discontinuous due to the gaps. But with the high sampling rate
# only a very small fraction of the samples have discontinuous neighbors
# =========================================================================
"""
Overview of common microstate features:
1. Average duration a given microstate remains stable (Dur)
2. Frequency occurrence, independent of individual duration (Occ)
Average number of times a microstate becomes dominant per second
3. Ratio of total Time Covered (TCo)
4. Transition probabilities (TMx)
5. Ratio of shannon entropy relative to theoretical max chaos (Ent)
"""
n_maps = 8
# Load all the backfit pseudo-pair results
with open(f"{microstate_save_path}Reordered/Backfitting/Dualmicro_fit_all_{ff}_data_maps{n_maps}.pkl", "rb") as file:
backfit_results = pickle.load(file) # [pseudo_pair_id, L, GEV, events]
# Hard-coded the optimal number of microstates based on CV criterion and GEV
n_maps = 8
Microstate_names = [chr(ele) for ele in range(65,65+n_maps)]
pseudo_pair_id = backfit_results[0]
n_pseudo_pairs = len(pseudo_pair_id)
m_labels = [0]*n_pseudo_pairs
events = [0]*n_pseudo_pairs
m_feats = [0]*n_pseudo_pairs
for i in range(n_pseudo_pairs):
m_labels[i], events[i], m_feats[i] = dualmicro_fit_all_pseudo_pair_feature_computation(i,\
n_maps, backfit_results, sfreq, event_id, collapsed_event_id)
print(f"Finished computing microstate features for psuedo pair {pseudo_pair_id[i]}")
# Save the raw microstate features
with open(f"{microstate_save_path}/raw_dualmicro_fit_all_{ff}_pseudo_pairs_features_maps{n_maps}.pkl", "wb") as filehandle:
pickle.dump(m_feats, filehandle) # [Subject][Dur_arr,Occ_arr,TCo_arr,TMx_arr,Ent_arr] [Event, map*]
# * the feature is calculated for each map, where applicable.
# Transition matrix is calculated for each map -> map transition probability
# with open(f"{microstate_save_path}/raw_computed_dualmicro_fit_all_{ff}_features.pkl", "rb") as file:
# m_feats = pickle.load(file) # [Subject][Dur_arr,Occ_arr,TCo_arr,TMx_arr,Ent_arr] [Event, map*]
### Convert all features to dataframes for further processing
col_names = ["Pseudo_Pair_ID", "Event_ID", "Microstate", "Value"]
col_values = [pseudo_pair_id,list(collapsed_event_id.keys()),Microstate_names]
dtypes = [str,str,str,"float64"]
# Mean duration
Dur_arr = np.stack([ele[0] for ele in m_feats]) # [Subject, event, n_map]
Dur_df = numpy_arr_to_pandas_df(Dur_arr, col_names, col_values, dtypes)
# Add dummy variable to enabling combining of dataframes
measurement_id = ["Duration"]*len(Dur_df)
Dur_df.insert(2, "Measurement", measurement_id)
# Save df
Dur_df.to_pickle(os.path.join(microstate_save_path,"Dualmicro_fit_all_{ff}_pseudo_pairs_duration_df.pkl"))
# Frequency of occurrence per sec
Occ_arr = np.stack([ele[1] for ele in m_feats]) # [Subject, event, n_map]
Occ_df = numpy_arr_to_pandas_df(Occ_arr, col_names, col_values, dtypes)
# Add dummy variable to enabling combining of dataframes
measurement_id = ["Occurrence"]*len(Occ_df)
Occ_df.insert(2, "Measurement", measurement_id)
# Save df
Occ_df.to_pickle(os.path.join(microstate_save_path,"Dualmicro_fit_all_{ff}_pseudo_pairs_occurrence_df.pkl"))
# Ratio total Time Covered
TCo_arr = np.stack([ele[2] for ele in m_feats]) # [Subject, event, n_map]
TCo_df = numpy_arr_to_pandas_df(TCo_arr, col_names, col_values, dtypes)
# Add dummy variable to enabling combining of dataframes
measurement_id = ["Time_covered"]*len(TCo_df)
TCo_df.insert(2, "Measurement", measurement_id)
# Save df
TCo_df.to_pickle(os.path.join(microstate_save_path,"Dualmicro_fit_all_{ff}_pseudo_pairs_ratio_time_covered_df.pkl"))
# Transition matrix should be read as probability of row to column
xi, xj = np.meshgrid(Microstate_names,Microstate_names)
_, arrow = np.meshgrid(Microstate_names,["->"]*n_maps)
transition_info = np.char.add(np.char.add(xj,arrow),xi)
TMx_arr = np.stack([ele[3] for ele in m_feats]) # [Subject, event, n_map, n_map]
TMx_arr = TMx_arr.reshape((n_pseudo_pairs,len(collapsed_event_id),n_maps*n_maps)) # Flatten the maps to 1D
col_names = ["Pseudo_Pair_ID", "Event_ID", "Transition", "Value"]
col_values = [pseudo_pair_id,list(collapsed_event_id.keys()),transition_info.flatten()]
TMx_df = numpy_arr_to_pandas_df(TMx_arr, col_names, col_values, dtypes)
# Add dummy variable to enabling combining of dataframes
measurement_id = ["Probability"]*len(TMx_df)
TMx_df.insert(2, "Measurement", measurement_id)
# Save df
TMx_df.to_pickle(os.path.join(microstate_save_path,"Dualmicro_fit_all_{ff}_pseudo_pairs_transition_df.pkl"))
# Entropy
Ent_arr = np.stack([ele[4] for ele in m_feats]) # [Subject, event]
col_names = ["Pseudo_Pair_ID", "Event_ID", "Value"]
col_values = [pseudo_pair_id,list(collapsed_event_id.keys())]
dtypes = [str,str,"float64"]
Ent_df = numpy_arr_to_pandas_df(Ent_arr, col_names, col_values, dtypes)
# Add dummy variable to enabling combining of dataframes
measurement_id = ["Entropy"]*len(Ent_df)
Ent_df.insert(2, "Measurement", measurement_id)
# Save df
Ent_df.to_pickle(os.path.join(microstate_save_path,"Dualmicro_fit_all_{ff}_pseudo_pairs_ratio_entropy_df.pkl"))
# %% eLORETA on Intrabrain microstates
### Make forward solutions
# Computed using the fsaverage template MRI
# # First time setup will need to download fsaverage templates
# mne.datasets.fetch_fsaverage()
fs_dir = "C:/Users/glia/mne_data/MNE-fsaverage-data/fsaverage"
subjects_dir = os.path.dirname(fs_dir)
trans = "fsaverage"
src = os.path.join(fs_dir, "bem", "fsaverage-ico-5-src.fif")
bem = os.path.join(fs_dir, "bem", "fsaverage-5120-5120-5120-bem-sol.fif")
# Read the template sourcespace
sourcespace = mne.read_source_spaces(src)
# Since I use a template, I only need to make the forward operator once
# As we assume the channel positions are fixed approximately the same
# for all subjects using the same caps
subject_eeg = epoch.copy()
subject_eeg.set_eeg_reference(projection=True) # needed for inverse modelling
# Make forward solution
fwd = mne.make_forward_solution(subject_eeg.info, trans=trans, src=src,
bem=bem, eeg=True, mindist=5.0, n_jobs=1)
# # Save forward operator
# fname_fwd = "./Source_fwd/fsaverage_{}-fwd.fif".format(study_order[i])
# mne.write_forward_solution(fname_fwd, fwd, overwrite=True)
# # Check the alignment looks correct between EEG sensors and the template
# mne.viz.plot_alignment(
# subject_eeg.info, trans, src=src, fwd=fwd, dig=True,
# meg=["helmet", "sensors"], subjects_dir=subjects_dir, surfaces="auto")
### Load Parcellation
# Desikan-Killiany atlas (34 ROI from both hemispheres = 68 ROIs)
# Named aparc.annot in MNE python fsaverage folder
labels = mne.read_labels_from_annot("fsaverage", parc="aparc",
subjects_dir=subjects_dir)
labels = labels[:-1] # remove unknowns
label_names = [label.name for label in labels]
n_roi = len(labels)
# Prepare brain lobe information
Frontal_rois = ['superiorfrontal-lh','superiorfrontal-rh',
'rostralmiddlefrontal-lh','rostralmiddlefrontal-rh',
'caudalmiddlefrontal-lh','caudalmiddlefrontal-rh',
'parsopercularis-lh','parsopercularis-rh',
'parstriangularis-lh','parstriangularis-rh',
'parsorbitalis-lh','parsorbitalis-rh',
'lateralorbitofrontal-lh','lateralorbitofrontal-rh',
'medialorbitofrontal-lh','medialorbitofrontal-rh',
'precentral-lh','precentral-rh',
'paracentral-lh','paracentral-rh',
'frontalpole-lh','frontalpole-rh']
Parietal_rois = ['superiorparietal-lh','superiorparietal-rh',
'inferiorparietal-lh','inferiorparietal-rh',
'supramarginal-lh','supramarginal-rh',
'postcentral-lh','postcentral-rh',
'precuneus-lh','precuneus-rh']
Temporal_rois = ['superiortemporal-lh','superiortemporal-rh',
'middletemporal-lh','middletemporal-rh',
'inferiortemporal-lh','inferiortemporal-rh',
'bankssts-lh','bankssts-rh',
'fusiform-lh','fusiform-rh',
'transversetemporal-lh','transversetemporal-rh',
'entorhinal-lh','entorhinal-rh',
'temporalpole-lh','temporalpole-rh',
'parahippocampal-lh','parahippocampal-rh']
Occipital_rois = ['lateraloccipital-lh','lateraloccipital-rh',
'lingual-lh','lingual-rh',
'cuneus-lh','cuneus-rh',
'pericalcarine-lh','pericalcarine-rh']
Cingulate_rois = ['rostralanteriorcingulate-lh','rostralanteriorcingulate-rh',
'caudalanteriorcingulate-lh','caudalanteriorcingulate-rh',
'posteriorcingulate-lh','posteriorcingulate-rh',
'isthmuscingulate-lh','isthmuscingulate-rh']
Insular_rois = ['insula-lh','insula-rh']
Lobes = [Frontal_rois,Parietal_rois,Temporal_rois,Occipital_rois,Cingulate_rois,Insular_rois]
Brain_region_labels = ["Frontal","Parietal","Temporal","Occipital","Cingulate","Insular"]
Brain_region_hemi_labels = np.repeat(Brain_region_labels,2).astype("<U12")
Brain_region_hemi_labels[::2] = [ele+"-lh" for ele in Brain_region_labels]
Brain_region_hemi_labels[1::2] = [ele+"-rh" for ele in Brain_region_labels]
Brain_region = np.array(label_names, dtype = "<U32")
for l in range(len(Lobes)):
Brain_region[np.array([i in Lobes[l] for i in Brain_region])] = Brain_region_labels[l]
### Concatenate the microstates into one Raw Object to apply inverse on it
n_maps = 8
Microstate_names = [chr(ele) for ele in range(65,65+n_maps)]
for f in len(all_freq_ranges):
ff = freq_names[f]
with open(f"{microstate_save_path}Reordered/Intrabrain_microstate_fit_all_{ff}{n_maps}.pkl", "rb") as file:
microstate_results = pickle.load(file)
# Get the microstates and reshape to have channels in the first dim
maps = microstate_results[0]
maps = maps.transpose()
raw_maps = mne.io.RawArray(maps,subject_eeg.info)
raw_maps._filenames = [""] # Fix error with NoneType for "filename" for raw created with RawArray
raw_maps.set_eeg_reference(projection=True) # needed for inverse modelling
# Using assumption about equal variance and no correlations I make a diagonal matrix as cov
noise_cov = mne.make_ad_hoc_cov(subject_eeg.info, None)
# Make inverse operator
# Using default depth parameter = 0.8 and free orientation (loose = 1)
inverse_operator = mne.minimum_norm.make_inverse_operator(subject_eeg.info,
fwd, noise_cov,
loose = 1, depth = 0.8,
verbose = 0)
src_inv = inverse_operator["src"]
# Compute inverse solution and retrieve the source localized microstate activities for each label
# Define regularization
snr = 3 # Default setting
# Use eLORETA and only keep the activity normal to the cortical surface
stc = mne.minimum_norm.apply_inverse_raw(raw_maps,inverse_operator,
lambda2 = 1/(snr**2),
pick_ori = "normal",
method = "eLORETA", verbose = 2)
# Get the source activity in the ROIs
label_activity = mne.extract_label_time_course(stc, labels, src_inv, mode="mean_flip",
return_generator=False, verbose=0)
# Visualize the microstates in source space
# This way of plotting makes the color scale fixed across microstates
brain = stc.plot(
hemi="lh",
subjects_dir=subjects_dir,
smoothing_steps=1,
)
### Convert Label Activity to Pandas DataFrame
# With ROI names and then add Brain Region label
col_names = ["ROI", "Microstate", "Value"]
col_names = ["Microstate", "ROI", "Value"]
col_val = [Microstate_names, label_names]
# Create the source microstate activity dataframe
sMicro_df = numpy_arr_to_pandas_df(label_activity.T, col_names = col_names, col_values = col_val)
assert sMicro_df.loc[(sMicro_df["ROI"]==label_names[4])&
(sMicro_df["Microstate"]==Microstate_names[3]),
"Value"].iloc[0] == label_activity[4,3]
# Add brain region information
sMicro_df.insert(2, "Brain_region", np.tile(Brain_region,int(sMicro_df.shape[0]/n_roi)))
sMicro_df["Brain_region"] = sMicro_df["Brain_region"].astype("category").\
cat.reorder_categories(Brain_region_labels, ordered=True)
# Add hemisphere information
sMicro_df.insert(3, "Hemisphere", [ele[-2:] for ele in sMicro_df["ROI"]])
# Add a colum that combines brain region and hemisphere for plotting
sMicro_df.insert(4, "Brain_region_hemi", [b+"-"+h for b, h in zip(sMicro_df["Brain_region"],sMicro_df["Hemisphere"])])
sMicro_df["Brain_region_hemi"] = sMicro_df["Brain_region_hemi"].astype("category").\
cat.reorder_categories(Brain_region_hemi_labels, ordered=True)
# Save the dataframe
sMicro_df.to_pickle(os.path.join(microstate_save_path,f"Single_micro_{ff}_source_activity_df.pkl"))
# %% eLORETA on two-brain microstates
# Continued based on fwd operator and template loaded for intrabrain
n_maps = 8
Microstate_names = [chr(ele) for ele in range(65,65+n_maps)]
for f in len(all_freq_ranges):
ff = freq_names[f]
with open(f"{microstate_save_path}Reordered/Dualmicro_fit_all_{ff}_data_maps{n_maps}.pkl", "rb") as file:
microstate_results = pickle.load(file)
# Get the microstates
maps = microstate_results[0]
maps = maps.reshape(2*n_maps,n_channels)
# # Check the maps were split properly
# plot_microstates(n_maps, maps[:8], microstate_results[3])
# plot_microstates(n_maps, maps[8:], microstate_results[3])
# Maps are ordered as: ppn1 A, ppn2 A, ppn1 B, ppn2 B etc
# Transpose to have channels in the first dim
maps = maps.transpose()
raw_maps = mne.io.RawArray(maps,subject_eeg.info)
raw_maps._filenames = [""] # Fix error with NoneType for "filename" for raw created with RawArray
raw_maps.set_eeg_reference(projection=True) # needed for inverse modelling
# Using assumption about equal variance and no correlations I make a diagonal matrix as cov
noise_cov = mne.make_ad_hoc_cov(subject_eeg.info, None)
# Make inverse operator
# Using default depth parameter = 0.8 and free orientation (loose = 1)
inverse_operator = mne.minimum_norm.make_inverse_operator(subject_eeg.info,
fwd, noise_cov,
loose = 1, depth = 0.8,
verbose = 0)
src_inv = inverse_operator["src"]
# Compute inverse solution and retrieve the source localized microstate activities for each label
# Define regularization
snr = 3 # Default setting
# Use eLORETA and only keep the activity normal to the cortical surface
stc = mne.minimum_norm.apply_inverse_raw(raw_maps,inverse_operator,
lambda2 = 1/(snr**2),
pick_ori = "normal",
method = "eLORETA", verbose = 2)
# Get the source activity in the ROIs
label_activity = mne.extract_label_time_course(stc, labels, src_inv, mode="mean_flip",
return_generator=False, verbose=0)
# Visualize the microstates in source space
# This way of plotting makes the color scale fixed across microstates
brain = stc.plot(
hemi="lh",
subjects_dir=subjects_dir,
smoothing_steps=1,
)
# Visualize with different color scales for each microstate
Microstate_names2 = np.repeat(Microstate_names,2).astype("<U2")
Microstate_names2[::2] = [ele+"1" for ele in Microstate_names]
Microstate_names2[1::2] = [ele+"2" for ele in Microstate_names]
# Save source activations for each microstate
# Lateral and medial for each hemisphere + dorsal + flatmaps
save_path = f"{fig_save_path}Microstates/SourceDualmicroPrototypes/"
hemis = ["lh","rh"]
views = ["lateral","medial"]
for i in range(len(Microstate_names2)):
times0 = np.linspace(0,1,sfreq+1)[:2*n_maps+1]
stc0 = stc.copy().crop(times0[i],times0[i+1],include_tmax=False)
# Color bar limits defined as max saturation of top 1% (yellow or teal)
# middle at 5%, which means they will have alpha = 1 and progressively be
# closer to yellow or teal
# Lower boundary at 10%, which means they will be red/blue but with decreased
# transparency
clim_max = -(np.sort(-np.abs(stc0.data),axis=0)[stc0.shape[0]//100])[0]
clim_mid = -(np.sort(-np.abs(stc0.data),axis=0)[stc0.shape[0]//20])[0]
clim_min = -(np.sort(-np.abs(stc0.data),axis=0)[stc0.shape[0]//10])[0]
clim0 = {"kind":"value","pos_lims":[clim_min,clim_mid,clim_max]}
# Lateral and medial
for h in range(len(hemis)):
hh = hemis[h]
brain = stc0.plot(
hemi=hh,
subjects_dir=subjects_dir,
smoothing_steps=10, # spatial smoothing
colorbar=False,
background="white",
cortex="classic",
size=800,
transparent=True,
views=views[0],
clim=clim0,
)
brain.save_image(os.path.join(save_path, f"Dualmicro_source_{Microstate_names2[i]}_{hh}_{views[0]}"+".png"))
brain.show_view(views[1])
brain.save_image(os.path.join(save_path, f"Dualmicro_source_{Microstate_names2[i]}_{hh}_{views[1]}"+".png"))
# Dorsal map
brain = stc0.plot(
hemi="both",
subjects_dir=subjects_dir,
smoothing_steps=10, # spatial smoothing
colorbar=True,
background="white",
cortex="classic",
size=1500,
transparent=True,
views="dorsal",
clim=clim0,
)
brain.save_image(os.path.join(save_path, f"Dualmicro_source_{Microstate_names2[i]}_dorsal"+".png"))
# Flat map
brain = stc0.plot(
hemi="both",
surface="flat",
subjects_dir=subjects_dir,
smoothing_steps=10, # spatial smoothing
colorbar=False,
background="white",
cortex="classic",
size=1500,
transparent=True,
views="flat",
clim=clim0,
)
brain.save_image(os.path.join(save_path, f"Dualmicro_source_{Microstate_names2[i]}_flat"+".png"))
# Close all figures
mne.viz.close_all_3d_figures()
# Mean
brain = stc.mean().plot(
hemi="lh",
subjects_dir=subjects_dir,
smoothing_steps=10,
)
### Convert Label Activity to Pandas DataFrame
# With ROI names and then add Brain Region label
col_names = ["ROI", "Microstate", "Value"]
col_names = ["Microstate", "ROI", "Value"]
col_val = [Microstate_names2, label_names]
dtypes = [str, str, "float64"]
# Create the source microstate activity dataframe
sMicro_df = numpy_arr_to_pandas_df(label_activity.T, col_names, col_val, dtypes)
assert sMicro_df.loc[(sMicro_df["ROI"]==label_names[4])&
(sMicro_df["Microstate"]==Microstate_names2[3]),
"Value"].iloc[0] == label_activity[4,3]
# Add brain region information
sMicro_df.insert(2, "Brain_region", np.tile(Brain_region,int(sMicro_df.shape[0]/n_roi)))
sMicro_df["Brain_region"] = sMicro_df["Brain_region"].astype("category").\
cat.reorder_categories(Brain_region_labels, ordered=True)
# Add hemisphere information
sMicro_df.insert(3, "Hemisphere", [ele[-2:] for ele in sMicro_df["ROI"]])
# Add a colum that combines brain region and hemisphere for plotting
sMicro_df.insert(4, "Brain_region_hemi", [b+"-"+h for b, h in zip(sMicro_df["Brain_region"],sMicro_df["Hemisphere"])])
sMicro_df["Brain_region_hemi"] = sMicro_df["Brain_region_hemi"].astype("category").\
cat.reorder_categories(Brain_region_hemi_labels, ordered=True)
# Save the dataframe
sMicro_df.to_pickle(os.path.join(microstate_save_path,"Dualmicro_{ff}_source_activity_df.pkl"))
# %% LRTC with DFA on Two-person microstate label time series
# Using Detrended Fluctuation Analysis (DFA)
# Adapted from Python Implementation by Arthur-Ervin Avramiea <a.e.avramiea@vu.nl>
# From NBT2 toolbox
"""
See Hardstone et al, 2012 for more info
Perform DFA
1 Compute cumulative sum of time series to create signal profile
2 Define set of window sizes (see below)
3 Remove the linear trend using least-squares for each window
4 Calculate standard deviation for each window and take the mean
5 Plot fluctuation function (Standard deviation) as function
for all window sizes, on double logarithmic scale
6 The DFA exponent alpha correspond to Hurst exponent
f(L) = sd = L^alpha (with alpha as linear coefficient in log plot)
If 0 < alpha < 0.5: The process exhibits anti-correlations
If 0.5 < alpha < 1: The process exhibits positive correlations
If alpha = 0.5: The process is indistinguishable from a random process
If 1.0 < alpha < 2.0: The process is non-stationary. H = alpha - 1
Window sizes should be equally spaced on a logarithmic scale
Sizes should be at least 4 samples and up to 10% of total signal length
### Specific for our microstate DFA analysis
We have 8 microstates, but to compute the random walk we will partition
the microstate sequence into two classes (see reference on microstate Hurst
https://pubmed.ncbi.nlm.nih.gov/20921381/)
A/B/C/D will be assigned the positive direction, while E/F/G/H will be
assigned the negative direction, corresponding to whether ppn1 or ppn2
are in one of the canonical microstates, while the other have a non-specific
(average) topography.
Each 25s trial is too short to estimate LRTC on, so I will concatenate all
the trials corresponding to each condition.
This should yield up to 25s * 16 trials = 400s of data for each condition,
except rest which is up to 120s * 2 trials = 240s
DFA is computed from 8 trials and then averaged, to avoid the
problem of flipping in the asymmetric trials. We change windows size to 5-20s
To ensure consistency the same procedure is applied to the symmetric trials
"""
# Window sizes
compute_interval = [5,20] # the window sizes should be between 5s and 30s
# Compute DFA window sizes for the given Interval
window_sizes = np.floor(np.logspace(-1,3,40) * sfreq).astype(int) # %logspace from 0.1 seccond (10^-1) to 1000 (10^3) seconds
window_sizes = window_sizes[(window_sizes >= compute_interval[0]*sfreq) & \
(window_sizes <= compute_interval[1]*sfreq)]
for f in len(all_freq_ranges):
ff = freq_names[f]
# Nolds are already using all cores so multiprocessing with concurrent makes it slower
n_maps = 8
with open(f"{microstate_save_path}Reordered/Dualmicro_fit_all_{ff}_data_maps{n_maps}.pkl", "rb") as file:
microstate_results = pickle.load(file)
# Load all trialinfos
with open(f"{microstate_save_path}Dualmicro_fit_all_{ff}_trial_events_infos.pkl", "rb") as file:
trialinfo_list = pickle.load(file)
# Pre-allocate memory
DFA_arr = np.zeros((n_pairs,len(collapsed_event_id)))
Fluctuation_arr = np.zeros((n_pairs,len(collapsed_event_id),len(window_sizes)))
# Get start time
c_time1 = time.localtime()
c_time1 = time.strftime("%a %d %b %Y %H:%M:%S", c_time1)
print("Started {}".format(c_time1))
# Nolds are already using all cores so concurrent futures with make it slower
for i in range(n_pairs):
# Compute DFA
dfa_temp, fluc_temp = compute_dualmicro_DFA(i, microstate_results,
trialinfo_list, sfreq, window_sizes, event_id, collapsed_event_id, True)
# Save to array
DFA_arr[i] = dfa_temp
Fluctuation_arr[i] = fluc_temp
print("Finished {} out of {} pairs".format(i+1,n_pairs))
# Get ending time
c_time2 = time.localtime()
c_time2 = time.strftime("%a %d %b %Y %H:%M:%S", c_time2)
print(("Started {} \nEnded Time {}".format(c_time1,c_time2)))
# Save the raw DFA analysis data
np.save(microstate_save_path+"DFA_arr.npy", DFA_arr)
np.save(microstate_save_path+"Fluctuation_arr.npy", Fluctuation_arr)
# Convert to Pandas dataframe (DFA exponent)
col_names = ["Pair_ID", "Event_ID", "Value"]
col_values = [Pair_id,list(collapsed_event_id.keys())]
dtypes = ["int64",str,"float64"]
DFA_df = numpy_arr_to_pandas_df(DFA_arr, col_names, col_values, dtypes)
# Add dummy variable to enabling combining of dataframes
measurement_id = ["DFA"]*len(DFA_df)
DFA_df.insert(2, "Measurement", measurement_id)
# Save df
DFA_df.to_pickle(os.path.join(microstate_save_path,f"Dualmicro_{ff}_DFA_exponent_df.pkl"))
# %% DFA in pseudo-pairs
for f in len(all_freq_ranges):
ff = freq_names[f]
# Nolds are already using all cores so multiprocessing with concurrent makes it slower
n_maps = 8
# Load all the backfit pseudo-pair results
with open(f"{microstate_save_path}Reordered/Backfitting/Dualmicro_fit_all_{ff}_data_maps{n_maps}.pkl", "rb") as file:
backfit_results = pickle.load(file) # [pseudo_pair_id, L, GEV, events]
# Pre-allocate memory
DFA_arr = np.zeros((n_pairs,len(collapsed_event_id)))
Fluctuation_arr = np.zeros((n_pairs,len(collapsed_event_id),len(window_sizes)))
# Get start time
c_time1 = time.localtime()
c_time1 = time.strftime("%a %d %b %Y %H:%M:%S", c_time1)
print("Started {}".format(c_time1))
# Nolds are already using all cores so concurrent futures with make it slower
for i in range(n_pairs):
# Compute DFA
dfa_temp, fluc_temp = compute_dualmicro_DFA_pseudo(i, backfit_results,
sfreq, window_sizes, event_id, collapsed_event_id, True)
# Save to array
DFA_arr[i] = dfa_temp
Fluctuation_arr[i] = fluc_temp
print("Finished {} out of {} pairs".format(i+1,n_pairs))
# Get ending time
c_time2 = time.localtime()
c_time2 = time.strftime("%a %d %b %Y %H:%M:%S", c_time2)
print(("Started {} \nEnded Time {}".format(c_time1,c_time2)))
# Save the raw DFA analysis data
np.save(microstate_save_path+"DFA_arr.npy", DFA_arr)
np.save(microstate_save_path+"Fluctuation_arr.npy", Fluctuation_arr)
# Convert to Pandas dataframe (DFA exponent)
col_names = ["Pair_ID", "Event_ID", "Value"]
col_values = [Pair_id,list(collapsed_event_id.keys())]
dtypes = ["int64",str,"float64"]
DFA_df = numpy_arr_to_pandas_df(DFA_arr, col_names, col_values, dtypes)
# Add dummy variable to enabling combining of dataframes
measurement_id = ["DFA"]*len(DFA_df)
DFA_df.insert(2, "Measurement", measurement_id)
# Save df
DFA_df.to_pickle(os.path.join(microstate_save_path,f"Dualmicro_{ff}_DFA_exponent_df.pkl"))
# %% Time-lagged inter-brain microstate synchrony
# Hard-coded the optimal number of microstates based on CV criterion and GEV
n_maps = 5
# The lag (number of samples) we will iterate over to find greatest time-lagged interbrain microstate synchrony
lag_search_range = sfreq # 1 second in both directions
lag_interval = np.linspace(-lag_search_range,lag_search_range,lag_search_range*2+1).astype(int)
Microstate_names = [chr(ele) for ele in range(65,65+n_maps)]
# Insert Z as the symbol for non common microstate
Microstate_names.insert(0,"Z")
# Loop over frequencies
for f in len(all_freq_ranges):
ff = freq_names[f]
# Load all microstate results
with open(f"{microstate_save_path}Reordered/Intrabrain_microstate_fit_all_{ff}{n_maps}.pkl", "rb") as file:
microstate_results = pickle.load(file)
# Load all trialinfos
with open(f"{microstate_save_path}Intrabrain_microstate_fit_all_{ff}_trialinfos.pkl", "rb") as file:
trialinfo_list = pickle.load(file)
m_labels = [0]*(n_subjects//2)
events = [0]*(n_subjects//2)
m_feats = [0]*(n_subjects//2)
shift_info = [0]*(n_subjects//2)
Pair_id = [0]*(n_subjects//2)
for i in tqdm(range(n_subjects//2)):
m_labels[i], events[i], m_feats[i], shift_info[i] = shifted_interbrain_microstate_feature_computation(i,
n_maps, microstate_results, trialinfo_list, sfreq,
event_id, collapsed_event_id, lag_search_range, lag_interval)
Pair_id[i] = int(str(Subject_id[2*i])[1:-1])
print(f"Finished computing interbrain microstate features for pair {Pair_id[i]}")
Pair_id = [ele+100 for ele in Pair_id]
# Save the raw microstate features
with open(f"{microstate_save_path}/raw_shifted_interbrain_single_micro_fit_all_{ff}_maps{n_maps}.pkl", "wb") as filehandle:
pickle.dump([Pair_id, m_feats, shift_info], filehandle) # [Subject][Dur_arr,Occ_arr,TCo_arr,TMx_arr,Ent_arr][Event, map*]
# * the feature is calculated for each map, where applicable.
# Transition matrix is calculated for each map -> map transition probability
# The first row and column correspond to the non common microstate, i.e.
# there is a different microstate in the pair
# with open(f"{microstate_save_path}/raw_shifted_interbrain_single_micro_fit_all_{ff}_maps{n_maps}.pkl", "rb") as file:
# Pair_id, m_feats, shift_info = pickle.load(file) # [Subject][Dur_arr,Occ_arr,TCo_arr,TMx_arr,Ent_arr] [Event, map*]
n_pairs = len(Pair_id)
### Convert all features to dataframes for further processing
col_names = ["Pair_ID", "Event_ID", "Microstate", "Value"]
col_values = [Pair_id,list(collapsed_event_id.keys()),Microstate_names]
dtypes = [int,str,str,"float64"]
# Ratio total Time Covered
TCo_arr = np.stack([ele[2] for ele in m_feats]) # [Subject, event, n_map]
TCo_df = numpy_arr_to_pandas_df(TCo_arr, col_names, col_values, dtypes)
# Add dummy variable to enabling combining of dataframes
measurement_id = ["Time_covered"]*len(TCo_df)
TCo_df.insert(2, "Measurement", measurement_id)
# Save df
TCo_df.to_pickle(os.path.join(microstate_save_path,f"Shifted_IB_Single_micro_fit_all_{ff}_maps{n_maps}_ratio_time_covered_df.pkl"))