Newer
Older
# -*- coding: utf-8 -*-
"""
Updated Oct 18 2022
@author: Qianliang Li (glia@dtu.dk)
This script contains the code to estimate the following EEG features:
1. Power Spectral Density
2. Frontal Theta/Beta Ratio
3. Asymmetry
4. Peak Alpha Frequency
5. 1/f Exponents
6. Microstates
7. Long-Range Temporal Correlation (DFA Exponent)
Source localization and functional connectivity
8. Imaginary part of Coherence
9. Weighted Phase Lag Index
10. (Orthogonalized) Power Envelope Correlations
11. Granger Causality
It should be run after Preprocessing.py
All features are saved in pandas DataFrame format for the machine learning
pipeline
Note that the code has not been changed to fit the demonstration dataset,
thus just running it might introduce some errors.
The code is provided to show how we performed the feature estimation
and if you are adapting the code, you should check if it fits your dataset
e.g. the questionnaire data, sensors and source parcellation etc
The script was written in Spyder. The outline panel can be used to navigate
the different parts easier (Default shortcut: Ctrl + Shift + O)
"""
wkdir = "/home/s200431"
os.chdir(wkdir)
# Load all libraries from the Preamble
from Preamble import *
# %% Load preprocessed epochs and questionnaire data
load_path = "/home/s200431/PreprocessedData"
# Get filenames
files = []
for r, d, f in os.walk(load_path):
for file in f:
if ".fif" in file:
files.append(os.path.join(r, file))
files.sort()
# Subject IDs
Subject_id = [0] * len(files)
for i in range(len(files)):
temp = files[i].split("/")
temp = temp[-1].split(".")
temp = temp[0].split("_")
Subject_id[i] = int(temp[0])
# Should exclude subject 100326 due to 7 bad channels
# Exclude 200013 and 200015 due to too many dropped epochs
# (200001, 200004, 200053 and 200072 were already excluded prior to preprocessing)
# Exclude 302215, 302224, 302227, 302233, 302264, 302268, 302275 due to too many dropped epochs
# 13 subjects excluded in total + 4 I did not receive because they were marked as bad from Helse
bad_subjects = [100326, 200013, 200015, 302224, 302227, 302233, 302264, 302268, 302275]
good_subject_idx = [not i in bad_subjects for i in Subject_id]
Subject_id = list(np.array(Subject_id)[good_subject_idx])
files = list(np.array(files)[good_subject_idx])
# Load ISAF
n_ISAF = 51-1
ISAF7_final_epochs = [0]*n_ISAF
for n in range(len(ISAF7_final_epochs)):
ISAF7_final_epochs[n] = mne.read_epochs(fname = os.path.join(files[n]),
verbose=0)
# Load HELSE
n_HELSE = 70-2
HELSE_final_epochs = [0]*n_HELSE
for n in range(len(HELSE_final_epochs)):
HELSE_final_epochs[n] = mne.read_epochs(fname = os.path.join(files[n+n_ISAF]),
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
# Rename channels to match ISAF (Using 10-20 MCN)
mne.rename_channels(HELSE_final_epochs[n].info, {"T3":"T7",
"T4":"T8",
"T5":"P7",
"T6":"P8"})
# Warning about chronological order is due to interleaved EO->EC->EO->EC being concatenated as 5xEC->5xEO
# Load Baseline
n_Base = 91-6
Base_final_epochs = [0]*n_Base
for n in range(len(Base_final_epochs)):
Base_final_epochs [n] = mne.read_epochs(fname = os.path.join(files[n+n_ISAF+n_HELSE]),
verbose=0)
# I will use the union of the channels in both dataset (except mastoids)
# This means I add empty channels and interpolate when it is missing
# Helsefond montage has wrong calibration, head size are too big.
# Thus I will need to re-calibrate by comparing with ISAF7
# Notice I already used the final dig montage for Baseline data
# Get channel names
ISAF7_chs = ISAF7_final_epochs[0].copy().info["ch_names"]
Helse_chs = HELSE_final_epochs[0].copy().info["ch_names"]
Base_chs = Base_final_epochs[0].copy().info["ch_names"]
# Get intersection of channels
intersect_ch = list(set(Helse_chs) & set(ISAF7_chs))
intersect_ch_ratio = [0]*len(intersect_ch)
for i in range(len(intersect_ch)):
# Get channel name
ch_name0 = intersect_ch[i]
# Get index and electrode location
ISAF7_ch_idx = np.where(np.array(ISAF7_chs) == ch_name0)[0]
ISAF7_ch_loc = ISAF7_final_epochs[0].info["chs"][int(ISAF7_ch_idx)]["loc"]
Helse_ch_idx = np.where(np.array(Helse_chs) == ch_name0)[0]
Helse_ch_loc = HELSE_final_epochs[0].info["chs"][int(Helse_ch_idx)]["loc"]
# Calculate ratio
intersect_ch_ratio[i] = [ch_name0,ISAF7_ch_loc[0:3]/Helse_ch_loc[0:3]]
# Most of the ratios are either around 0.095 or 0/Inf when division with 0
# We also see that Cz for ISAF is defined as (0,0,0.095m). For Helse Cz is (0,0,1m)
Helse_to_ISAF7_cal = 0.095
# Now we are ready to make a combined montage (info["dig"])
# Get list of channels to add
ISAF7_add_ch_list = list(set(Helse_chs)-set(ISAF7_chs))
Helse_add_ch_list = list(set(ISAF7_chs)-set(Helse_chs))
combined_ch_list = Helse_chs + ISAF7_chs
# Remove duplicates while maintaining A-P order
duplicate = set()
final_ch_list = [x for x in combined_ch_list if not (x in duplicate or duplicate.add(x))]
# Move AFz and POz to correct position
final_ch_list.insert(3,final_ch_list.pop(-2)) # from second last to 3
final_ch_list.insert(-5,final_ch_list.pop(-1)) # from last to seventh from last
# The order of DigPoints in info are based on sorted ch names
Helse_dig = HELSE_final_epochs[0].copy().info["dig"]
Helse_chs_sorted = Helse_chs.copy()
Helse_chs_sorted.sort()
ISAF7_dig = ISAF7_final_epochs[0].copy().info["dig"]
ISAF7_chs_sorted = ISAF7_chs.copy()
ISAF7_chs_sorted.sort()
# Make one list with DigPoints from Helse + unique channels from ISAF7
ch_idx = [i for i, item in enumerate(ISAF7_chs_sorted) if item in set(Helse_add_ch_list)] # indices of unique channels
final_ch_list_sorted = final_ch_list.copy()
final_ch_list_sorted.sort()
dig_insert_idx = [i for i, item in enumerate(final_ch_list_sorted) if item in set(Helse_add_ch_list)] # find where ISAF7 channels should be inserted
# Prepare combined dig montage
final_dig = Helse_dig.copy()
# Calibrate Helse digpoints
for i in range(len(final_dig)):
final_dig[i]["r"] = final_dig[i]["r"]*Helse_to_ISAF7_cal
# Insert ISAF7 digpoints
for i in range(len(ch_idx)):
final_dig.insert(dig_insert_idx[i],ISAF7_dig[ch_idx[i]])
# Remove mastoids
Mastoid_ch = ["M1", "M2"]
M_idx = [i for i, item in enumerate(final_ch_list_sorted) if item in set(Mastoid_ch)] # find mastoids ch
M_idx2 = [i for i, item in enumerate(final_ch_list) if item in set(Mastoid_ch)] # find mastoids ch
M_idx3 = [i for i, item in enumerate(Helse_add_ch_list) if item in set(Mastoid_ch)] # find mastoids ch
for i in reversed(range(len(M_idx))):
del final_ch_list_sorted[M_idx[i]]
del final_dig[M_idx[i]]
# Mastoids are placed in the back of final_ch_list and Helse_add_ch_list and are also removed
del final_ch_list[M_idx2[i]]
del Helse_add_ch_list[M_idx3[i]]
# T7, T8, Pz, P8 and P7 are placed wrongly (probably due to renaming)
# This is fixed manually
final_dig.insert(-7,final_dig.pop(-4)) # swap between P8 and T7
final_dig.insert(-6,final_dig.pop(-3)) # swap between T7 and T8
final_dig.insert(-4,final_dig.pop(-4)) # swap between Pz and T7
final_dig.insert(-5,final_dig.pop(-5)) # swap between Pz and POz
# Update EEG identity number
for i in range(len(final_dig)):
final_dig[i]["ident"] = i+1
# Make final digital montage
final_digmon = mne.channels.DigMontage(dig=final_dig, ch_names=final_ch_list_sorted)
# final_digmon.plot() # visually inspect topographical positions
# final_digmon.plot(kind="3d") # visually inspect 3D positions
# final_digmon.save("final_digmon.fif") # Save digital montage
with open("final_digmon_ch_names.pkl", "wb") as filehandle:
# The data is stored as binary data stream
pickle.dump(final_digmon.ch_names, filehandle)
# Remove mastoids from ISAF, add channels from Helse and interpolate
for n in range(len(ISAF7_final_epochs)):
# Remove mastoid channels
ISAF7_final_epochs[n].drop_channels(Mastoid_ch)
# Add empty channels to interpolate - notice that the locations are set to 0
mne.add_reference_channels(ISAF7_final_epochs[n],ISAF7_add_ch_list,copy=False)
# Fix channel info (both after removal of mastoids and newly added chs)
# Ch info loc are linked for all reference channels and this link is removed
for c in range(ISAF7_final_epochs[n].info["nchan"]):
ISAF7_final_epochs[n].info["chs"][c]["loc"] = ISAF7_final_epochs[n].info["chs"][c]["loc"].copy()
ISAF7_final_epochs[n].info["chs"][c]["scanno"] = c+1
ISAF7_final_epochs[n].info["chs"][c]["logno"] = c+1
# Set new combined montage
ISAF7_final_epochs[n].set_montage(final_digmon)
# Set newly added channels as "bad" and interpolate
ISAF7_final_epochs[n].info["bads"] = ISAF7_add_ch_list
ISAF7_final_epochs[n].interpolate_bads(reset_bads=True)
# Fix "picks" in order to reorder channels
ISAF7_final_epochs[n].picks = np.array(range(ISAF7_final_epochs[n].info["nchan"]))
# Reorder channel
ISAF7_final_epochs[n].reorder_channels(final_ch_list)
# Add channels from ISAF to Helse and interpolate
for n in range(len(HELSE_final_epochs)):
# Add empty channels to interpolate
mne.add_reference_channels(HELSE_final_epochs[n],Helse_add_ch_list,copy=False)
# Fix channel info (both after removal of mastoids and newly added chs)
# Ch info loc are linked for all reference channels and this link is removed
for c in range(HELSE_final_epochs[n].info["nchan"]):
HELSE_final_epochs[n].info["chs"][c]["loc"] = HELSE_final_epochs[n].info["chs"][c]["loc"].copy()
HELSE_final_epochs[n].info["chs"][c]["scanno"] = c+1
HELSE_final_epochs[n].info["chs"][c]["logno"] = c+1
# Set new combined montage
HELSE_final_epochs[n].set_montage(final_digmon)
# Set newly added channels as "bad" and interpolate
HELSE_final_epochs[n].info["bads"] = Helse_add_ch_list
HELSE_final_epochs[n].interpolate_bads(reset_bads=True)
# Fix "picks" in order to reorder channels
HELSE_final_epochs[n].picks = np.array(range(HELSE_final_epochs[n].info["nchan"]))
# Reorder channels
HELSE_final_epochs[n].reorder_channels(final_ch_list)
# Add missing channels to Baseline and interpolate
Base_add_ch_list = list(set(final_ch_list)-set(Base_chs))
for n in range(len(Base_final_epochs)):
# Add empty channels to interpolate
mne.add_reference_channels(Base_final_epochs[n],Base_add_ch_list,copy=False)
# Fix channel info (both after removal of mastoids and newly added chs)
# Ch info loc are linked for all reference channels and this link is removed
for c in range(Base_final_epochs[n].info["nchan"]):
Base_final_epochs[n].info["chs"][c]["loc"] = Base_final_epochs[n].info["chs"][c]["loc"].copy()
Base_final_epochs[n].info["chs"][c]["scanno"] = c+1
Base_final_epochs[n].info["chs"][c]["logno"] = c+1
# Set new combined montage
Base_final_epochs[n].set_montage(final_digmon)
# Set newly added channels as "bad" and interpolate
Base_final_epochs[n].info["bads"] = Base_add_ch_list
Base_final_epochs[n].interpolate_bads(reset_bads=True)
# Fix "picks" in order to reorder channels
Base_final_epochs[n].picks = np.array(range(Base_final_epochs[n].info["nchan"]))
# Reorder channels
Base_final_epochs[n].reorder_channels(final_ch_list)
# Combine both dataset in one list
final_epochs = ISAF7_final_epochs+HELSE_final_epochs+Base_final_epochs
# Check number of epochs
file_lengths = [0]*len(final_epochs)
for i in range(len(final_epochs)):
file_lengths[i] = len(final_epochs[i])
# sns.distplot(file_lengths) # visualize
np.min(file_lengths)/150*100 # Max 20% epochs dropped. Above and the subjects were excluded
n_subjects = len(final_epochs)
# Re-sample files to 200Hz (Data was already lowpass filtered at 100, so above 200 is oversampling)
for i in range(len(final_epochs)):
final_epochs[i].resample(sfreq=200, verbose=2)
# # Save final epochs data
# save_path = "/home/glia/Analysis/Final_epochs_data"
# for n in range(len(final_epochs)):
# # Make file writeable
# final_epochs[n]._times_readonly.flags["WRITEABLE"] = False
# # Save file
# final_epochs[n].save(fname = os.path.join(save_path,str("{}_final_epoch".format(Subject_id[n]) + "-epo.fif")),
# overwrite=True, verbose=0)
ISAF7_dropped_epochs_df = pd.read_pickle("ISAF7_dropped_epochs.pkl")
Helse_dropped_epochs_df = pd.read_pickle("HELSE_dropped_epochs.pkl")
Base_dropped_epochs_df = pd.read_pickle("Base_dropped_epochs.pkl")
Drop_epochs_df = pd.concat([ISAF7_dropped_epochs_df,Helse_dropped_epochs_df,
Base_dropped_epochs_df]).reset_index(drop=True)
good_subject_df_idx = [not i in bad_subjects for i in Drop_epochs_df["Subject_ID"]]
Drop_epochs_df = Drop_epochs_df.loc[good_subject_df_idx,:]
Drop_epochs_df = Drop_epochs_df.sort_values(by=["Subject_ID"]).reset_index(drop=True)
### Load questionnaire data
# ISAF
qdf_ISAF7 = pd.read_csv("/data/raw/FOR_DTU/Questionnaires_for_DTU.csv",
# Rename Subject_ID column
qdf_ISAF7.rename({"ID_number": "Subject_ID"}, axis=1, inplace=True)
# Sort Subject_id to match Subject_id for files
qdf_ISAF7 = qdf_ISAF7.sort_values(by=["Subject_ID"], ignore_index=True)
# Get column idx for PCL_t7 columns
PCL_idx = qdf_ISAF7.columns.str.contains("PCL") & np.invert(qdf_ISAF7.columns.str.contains("PCL_"))
# Keep subject id
PCL_idx[qdf_ISAF7.columns=="Subject_ID"] = True
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
# Make a final df and exclude dropped subjects
final_qdf0 = qdf_ISAF7.loc[qdf_ISAF7["Subject_ID"].isin(Subject_id),PCL_idx].reset_index(drop=True)
# Make column that is sum of all PCL
final_qdf0.insert(len(final_qdf0.columns),"PCL_total",np.sum(final_qdf0.iloc[:,1:],axis=1))
# Helse
qdf_helse = pd.read_csv("/data/may2020/Questionnaires/HelsfondenQuestData_nytLbn.csv",
sep=",", na_values=' ')
# Rename subject ID column
qdf_helse.rename(columns={"Nyt_lbn":"Subject_ID"}, inplace=True)
Helse_ID_modifier = 200000
# Add 200000 to id
qdf_helse["Subject_ID"] += Helse_ID_modifier
# Sort Subject_id to match Subject_id for files
qdf_helse = qdf_helse.sort_values(by=["Subject_ID"], ignore_index=True)
# Get column idx for PCL columns (don't use summarized columns with _)
PCL_idx = qdf_helse.columns.str.contains("PCL") & np.invert(qdf_helse.columns.str.contains("PCL_"))
# Keep subject id
PCL_idx[qdf_helse.columns=="Subject_ID"] = True
# Make a final df and exclude dropped subjects
final_qdf1 = qdf_helse.loc[qdf_helse["Subject_ID"].isin(Subject_id),PCL_idx].reset_index(drop=True)
# Make column that is sum of all PCL
final_qdf1.insert(len(final_qdf1.columns),"PCL_total",np.sum(final_qdf1.iloc[:,1:],axis=1))
# Baseline
# antal_børm renamed to antal_boern
qdf_base = pd.read_csv("/data/sep2020/BaselineForLi.csv", sep=",", na_values=' ')
# Rename subject ID column
qdf_base.rename(columns={"LbnRand":"Subject_ID"}, inplace=True)
Base_ID_modifier = 300000
# Add 300000 to id
qdf_base["Subject_ID"] += Base_ID_modifier
# Sort Subject_id to match Subject_id for files
qdf_base = qdf_base.sort_values(by=["Subject_ID"], ignore_index=True)
# Get column idx for PCL columns (don't use summarized columns with _)
PCL_idx = qdf_base.columns.str.contains("PCL") & np.invert(qdf_base.columns.str.contains("PCL_"))
# Keep subject id
PCL_idx[qdf_base.columns=="Subject_ID"] = True
# Make a final df and exclude dropped subjects
final_qdf2 = qdf_base.loc[qdf_base["Subject_ID"].isin(Subject_id),PCL_idx].reset_index(drop=True)
# Make column that is sum of all PCL
final_qdf2.insert(len(final_qdf2.columns),"PCL_total",np.sum(final_qdf2.iloc[:,1:],axis=1))
# Find NaN
nan_idx = np.where(final_qdf2.isna()==True)
final_qdf2.iloc[nan_idx[0],np.concatenate([np.array([0]),nan_idx[1]])] # 2252 has NaN for PCL3 and 12
# Interpolate with mean of column
final_qdf2 = final_qdf2.fillna(final_qdf2.mean())
# Combine the 3 datasets
final_qdf0.columns = final_qdf1.columns # fix colnames with t7
final_qdf = pd.concat([final_qdf0,final_qdf1,final_qdf2], ignore_index=True)
# Define folder for saving features
Feature_savepath = "./Features/"
Stat_savepath = "./Statistics/"
Model_savepath = "./Model/"
# Ensure all columns are integers
final_qdf = final_qdf.astype("int")
final_qdf.to_pickle(os.path.join(Feature_savepath,"final_qdf.pkl"))
# Define cases as >= 44 total PCL
# Type: numpy array with subject id
cases = np.array(final_qdf["Subject_ID"][final_qdf["PCL_total"]>=44])
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
# Check percentage of cases in both datasets
len(np.where((cases>100000)&(cases<200000))[0])/n_ISAF # around 32%
len(np.where((cases>200000)&(cases<300000))[0])/n_HELSE # around 51%
len(np.where((cases>300000)&(cases<400000))[0])/n_Base # around 66%
# There is clearly class imbalance between studies!
### Get depression scores as binary above threshold
# BDI >= 20 is moderate depression
# DASS-42 >= 14 is moderate depression for depression subscale
dep_cases = np.concatenate([np.array(qdf_ISAF7["Subject_ID"][qdf_ISAF7["BDI_t7"] >= 20]),
np.array(qdf_helse["Subject_ID"][qdf_helse["DASS_D_t0"] >= 14]),
np.array(qdf_base["Subject_ID"][qdf_base["DASS_D_t0"] >= 14])])
dep_cases.sort()
dep_cases = dep_cases[np.isin(dep_cases,Subject_id)] # only keep those that we received and not excluded
# Check percentage of dep cases in both datasets
len(np.where((dep_cases>100000)&(dep_cases<200000))[0])/n_ISAF # around 34%
len(np.where((dep_cases>200000)&(dep_cases<300000))[0])/n_HELSE # around 53%
len(np.where((dep_cases>300000)&(dep_cases<400000))[0])/n_Base # around 72%
# Make normalized to max depression score to combine from both scales
# Relative score seem to be consistent between BDI-II and DASS-42 and clinical label
max_BDI = 63
max_DASS = 42
# Get normalized depression scores for each dataset
ISAF7_dep_score = qdf_ISAF7["BDI_t7"][qdf_ISAF7["Subject_ID"].isin(Subject_id)]/max_BDI
Helse_dep_score = qdf_helse["DASS_D_t0"][qdf_helse["Subject_ID"].isin(Subject_id)]/max_DASS
Base_dep_score = qdf_base["DASS_D_t0"][qdf_base["Subject_ID"].isin(Subject_id)]/max_DASS
Norm_dep_score = np.concatenate([ISAF7_dep_score.to_numpy(),Helse_dep_score.to_numpy(),Base_dep_score.to_numpy()])
# Check if subject id match when using concat
test_d1 = qdf_ISAF7["Subject_ID"][qdf_ISAF7["Subject_ID"].isin(Subject_id)]
test_d2 = qdf_helse["Subject_ID"][qdf_helse["Subject_ID"].isin(Subject_id)]
test_d3 = qdf_base["Subject_ID"][qdf_base["Subject_ID"].isin(Subject_id)]
test_d4 = np.concatenate([test_d1.to_numpy(),test_d2.to_numpy(),test_d3.to_numpy()])
assert all(np.equal(Subject_id,test_d4))
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
# %% Power spectrum features
Freq_Bands = {"delta": [1.25, 4.0],
"theta": [4.0, 8.0],
"alpha": [8.0, 13.0],
"beta": [13.0, 30.0],
"gamma": [30.0, 49.0]}
ch_names = final_epochs[0].info["ch_names"]
n_channels = final_epochs[0].info["nchan"]
# Pre-allocate memory
power_bands = [0]*len(final_epochs)
def power_band_estimation(n):
# Get index for eyes open and eyes closed
EC_index = final_epochs[n].events[:,2] == 1
EO_index = final_epochs[n].events[:,2] == 2
# Calculate the power spectral density
psds, freqs = psd_multitaper(final_epochs[n], fmin = 1, fmax = 50) # output (epochs, channels, freqs)
temp_power_band = []
for fmin, fmax in Freq_Bands.values():
# Calculate the power each frequency band
psds_band = psds[:, :, (freqs >= fmin) & (freqs < fmax)].sum(axis=-1)
# Calculate the mean for each eye status
psds_band_eye = np.array([psds_band[EC_index,:].mean(axis=0),
psds_band[EO_index,:].mean(axis=0)])
# Append for each freq band
temp_power_band.append(psds_band_eye)
# Output: List with the 5 bands, and each element is a 2D array with eye status as 1st dimension and channels as 2nd dimension
# The list is reshaped and absolute and relative power are calculated
abs_power_band = np.reshape(temp_power_band, (5, 2, n_channels))
abs_power_band = 10.*np.log10(abs_power_band) # Convert to decibel scale
rel_power_band = np.reshape(temp_power_band, (5, 2, n_channels))
rel_power_band = rel_power_band/np.sum(rel_power_band, axis=0, keepdims=True)
# each eye condition and channel have been normalized to power in all 5 frequencies for that given eye condition and channel
# Make one list in 1 dimension
abs_power_values = np.concatenate(np.concatenate(abs_power_band, axis=0), axis=0)
rel_power_values = np.concatenate(np.concatenate(rel_power_band, axis=0), axis=0)
## Output: First the channels, then the eye status and finally the frequency bands are concatenated
## E.g. element 26 is 3rd channel, eyes open, first frequency band
#assert abs_power_values[26] == abs_power_band[0,1,2]
#assert abs_power_values[47] == abs_power_band[0,1,23] # +21 channels to last
#assert abs_power_values[50] == abs_power_band[1,0,2] # once all channels have been changed then the freq is changed and eye status
# Get result
res = np.concatenate([abs_power_values,rel_power_values],axis=0)
return n, res
with concurrent.futures.ProcessPoolExecutor() as executor:
for n, result in executor.map(power_band_estimation, range(len(final_epochs))): # Function and arguments
power_bands[n] = result
for i in range(len(power_bands)):
n, results = power_band_estimation(i)
power_bands[i] = results
# Combine all data into one dataframe
# First the columns are prepared
n_subjects = len(Subject_id)
# The group status (PTSD/CTRL) is made using the information about the cases
Group_status = np.array(["CTRL"]*n_subjects)
Group_status[np.array([i in cases for i in Subject_id])] = "PTSD"
# A variable that codes the channels based on A/P localization is also made
Frontal_chs = ["Fp1", "Fpz", "Fp2", "AFz", "Fz", "F3", "F4", "F7", "F8"]
Central_chs = ["Cz", "C3", "C4", "T7", "T8", "FT7", "FC3", "FCz", "FC4", "FT8", "TP7", "CP3", "CPz", "CP4", "TP8"]
Posterior_chs = ["Pz", "P3", "P4", "P7", "P8", "POz", "O1", "O2", "Oz"]
Parietal_chs = ["TP7", "CP3", "CPz", "CP4", "TP8", "P7", "P3", "Pz", "P4", "P8", "POz"]
Brain_region_labels = ["Frontal","Central","Posterior","Parietal"]
Brain_region = np.array(ch_names, dtype = "<U9")
Brain_region[np.array([i in Frontal_chs for i in ch_names])] = Brain_region_labels[0]
Brain_region[np.array([i in Central_chs for i in ch_names])] = Brain_region_labels[1]
Brain_region[np.array([i in Posterior_chs for i in ch_names])] = Brain_region_labels[2]
Brain_region[np.array([i in Parietal_chs for i in ch_names])] = Brain_region_labels[3]
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
# A variable that codes the channels based on M/L localization
Left_chs = ["Fp1", "F3", "F7", "FC3", "FT7", "C3", "T7", "CP3", "TP7", "P3", "P7", "O1"]
Right_chs = ["Fp2", "F4", "F8", "FC4", "FT8", "C4", "T8", "CP4", "TP8", "P4", "P8", "O2"]
Mid_chs = ["Fpz", "AFz", "Fz", "FCz", "Cz", "CPz", "Pz", "POz", "Oz"]
Brain_side = np.array(ch_names, dtype = "<U5")
Brain_side[np.array([i in Left_chs for i in ch_names])] = "Left"
Brain_side[np.array([i in Right_chs for i in ch_names])] = "Right"
Brain_side[np.array([i in Mid_chs for i in ch_names])] = "Mid"
# Eye status is added
eye_status = list(final_epochs[0].event_id.keys())
n_eye_status = len(eye_status)
# Frequency bands
freq_bands_name = list(Freq_Bands.keys())
n_freq_bands = len(freq_bands_name)
# Quantification (Abs/Rel)
quant_status = ["Absolute", "Relative"]
n_quant_status = len(quant_status)
# The dataframe is made by combining all the unlisted pds values
# Each row correspond to a different channel. It is reset after all channel names have been used
# Each eye status element is repeated n_channel times, before it is reset
# Each freq_band element is repeated n_channel * n_eye_status times, before it is reset
# Each quantification status element is repeated n_channel * n_eye_status * n_freq_bands times, before it is reset
power_df = pd.DataFrame(data = {"Subject_ID": [ele for ele in Subject_id for i in range(n_eye_status*n_quant_status*n_freq_bands*n_channels)],
"Group_status": [ele for ele in Group_status for i in range(n_eye_status*n_quant_status*n_freq_bands*n_channels)],
"Channel": ch_names*(n_eye_status*n_quant_status*n_freq_bands*n_subjects),
"Brain_region": list(Brain_region)*(n_eye_status*n_quant_status*n_freq_bands*n_subjects),
"Brain_side": list(Brain_side)*(n_eye_status*n_quant_status*n_freq_bands*n_subjects),
"Eye_status": [ele for ele in eye_status for i in range(n_channels)]*n_quant_status*n_freq_bands*n_subjects,
"Freq_band": [ele for ele in freq_bands_name for i in range(n_channels*n_eye_status)]*n_quant_status*n_subjects,
"Quant_status": [ele for ele in quant_status for i in range(n_channels*n_eye_status*n_freq_bands)]*n_subjects,
"PSD": list(np.concatenate(power_bands, axis=0))
})
# Absolute power is in decibels (10*log10(power))
# Fix Freq_band categorical order
power_df["Freq_band"] = power_df["Freq_band"].astype("category").\
cat.reorder_categories(list(Freq_Bands.keys()), ordered=True)
# Fix Brain_region categorical order
power_df["Brain_region"] = power_df["Brain_region"].astype("category").\
cat.reorder_categories(Brain_region_labels, ordered=True)
# power_df.to_pickle(os.path.join(Feature_savepath,"Power_df.pkl"))
# %% Theta-beta ratio
# Frontal theta/beta ratio has been implicated in cognitive control of attention
power_df = pd.read_pickle(os.path.join(Feature_savepath,"Power_df.pkl"))
eye_status = list(final_epochs[0].event_id)
n_eye_status = len(eye_status)
# Subset frontal absolute power
power_df_sub1 = power_df[(power_df["Quant_status"] == "Absolute")&
(power_df["Brain_region"] == "Frontal")]
# Subset frontal, midline absolute power
power_df_sub2 = power_df[(power_df["Quant_status"] == "Absolute")&
(power_df["Brain_region"] == "Frontal")&
(power_df["Brain_side"] == "Mid")]
# Subset posterior absolute power
power_df_sub3 = power_df[(power_df["Quant_status"] == "Absolute")&
(power_df["Brain_region"] == "Posterior")]
# Calculate average frontal power theta
frontal_theta_mean_subject = power_df_sub1[power_df_sub1["Freq_band"] == "theta"].\
groupby(["Subject_ID","Group_status","Eye_status"]).mean().reset_index()
# Calculate average frontal power beta
frontal_beta_mean_subject = power_df_sub1[power_df_sub1["Freq_band"] == "beta"].\
groupby(["Subject_ID","Group_status","Eye_status"]).mean().reset_index()
# Extract all values
frontal_beta_subject_values = power_df_sub1[power_df_sub1["Freq_band"] == "beta"]
# Calculate average frontal, midline power theta
frontal_midline_theta_mean_subject = power_df_sub2[power_df_sub2["Freq_band"] == "theta"].\
groupby(["Subject_ID","Group_status","Eye_status"]).mean().reset_index()
# Extract all values
frontal_midline_theta_subject_values = power_df_sub2[power_df_sub2["Freq_band"] == "theta"]
# Calculate average parietal alpha power
parietal_alpha_mean_subject = power_df_sub3[power_df_sub3["Freq_band"] == "alpha"].\
groupby(["Subject_ID","Group_status","Eye_status"]).mean().reset_index()
# Extract all values
parietal_alpha_subject_values = power_df_sub3[power_df_sub3["Freq_band"] == "alpha"]
# Convert from dB to raw power
frontal_theta_mean_subject["PSD"] = 10**(frontal_theta_mean_subject["PSD"]/10)
frontal_beta_mean_subject["PSD"] = 10**(frontal_beta_mean_subject["PSD"]/10)
frontal_midline_theta_mean_subject["PSD"] = 10**(frontal_midline_theta_mean_subject["PSD"]/10)
frontal_beta_subject_values["PSD"] = 10**(frontal_beta_subject_values["PSD"]/10)
frontal_midline_theta_subject_values["PSD"] = 10**(frontal_midline_theta_subject_values["PSD"]/10)
parietal_alpha_mean_subject["PSD"] = 10**(parietal_alpha_mean_subject["PSD"]/10)
parietal_alpha_subject_values["PSD"] = 10**(parietal_alpha_subject_values["PSD"]/10)
frontal_beta_mean_subject.to_pickle(os.path.join(Feature_savepath,"fBMS_df.pkl"))
frontal_midline_theta_mean_subject.to_pickle(os.path.join(Feature_savepath,"fMTMS_df.pkl"))
frontal_beta_subject_values.to_pickle(os.path.join(Feature_savepath,"fBSV_df.pkl"))
frontal_midline_theta_subject_values.to_pickle(os.path.join(Feature_savepath,"fMTSV_df.pkl"))
parietal_alpha_mean_subject.to_pickle(os.path.join(Feature_savepath,"pAMS_df.pkl"))
parietal_alpha_subject_values.to_pickle(os.path.join(Feature_savepath,"pASV_df.pkl"))
# Calculate mean for each group and take ratio for whole group
# To confirm trend observed in PSD plots
mean_group_f_theta = frontal_theta_mean_subject.iloc[:,1:].groupby(["Group_status","Eye_status"]).mean()
mean_group_f_beta = frontal_beta_mean_subject.iloc[:,1:].groupby(["Group_status","Eye_status"]).mean()
mean_group_f_theta_beta_ratio = mean_group_f_theta/mean_group_f_beta
# Calculate ratio for each subject
frontal_theta_beta_ratio = frontal_theta_mean_subject.copy()
frontal_theta_beta_ratio["PSD"] = frontal_theta_mean_subject["PSD"]/frontal_beta_mean_subject["PSD"]
# Take the natural log of ratio
frontal_theta_beta_ratio["PSD"] = np.log(frontal_theta_beta_ratio["PSD"])
# Rename and save feature
frontal_theta_beta_ratio.rename(columns={"PSD":"TBR"},inplace=True)
# Add dummy variable for re-using plot code
dummy_variable = ["Frontal Theta Beta Ratio"]*frontal_theta_beta_ratio.shape[0]
frontal_theta_beta_ratio.insert(3, "Measurement", dummy_variable )
# frontal_theta_beta_ratio.to_pickle(os.path.join(Feature_savepath,"fTBR_df.pkl"))
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
# %% Frequency bands asymmetry
# Defined as ln(right) - ln(left)
# Thus we should only work with the absolute values and undo the dB transformation
# Here I avg over all areas. I.e. mean((ln(F4)-ln(F3),(ln(F8)-ln(F7),(ln(Fp2)-ln(Fp1))) for frontal
ROI = ["Frontal", "Central", "Posterior"]
qq = "Absolute" # only calculate asymmetry for absolute
# Pre-allocate memory
asymmetry = np.zeros(shape=(len(np.unique(power_df["Subject_ID"])),
len(np.unique(power_df["Eye_status"])),
len(list(Freq_Bands.keys())),
len(ROI)))
def calculate_asymmetry(i):
ii = np.unique(power_df["Subject_ID"])[i]
temp_asymmetry = np.zeros(shape=(len(np.unique(power_df["Eye_status"])),
len(list(Freq_Bands.keys())),
len(ROI)))
for e in range(len(np.unique(power_df["Eye_status"]))):
ee = np.unique(power_df["Eye_status"])[e]
for f in range(len(list(Freq_Bands.keys()))):
ff = list(Freq_Bands.keys())[f]
# Get the specific part of the df
temp_power_df = power_df[(power_df["Quant_status"] == qq) &
(power_df["Eye_status"] == ee) &
(power_df["Subject_ID"] == ii) &
(power_df["Freq_band"] == ff)].copy()
# Convert from dB to raw power
temp_power_df.loc[:,"PSD"] = np.array(10**(temp_power_df["PSD"]/10))
# Calculate the power asymmetry
for r in range(len(ROI)):
rr = ROI[r]
temp_power_roi_df = temp_power_df[(temp_power_df["Brain_region"] == rr)&
~(temp_power_df["Brain_side"] == "Mid")]
# Sort using channel names to make sure F8-F7 and not F4-F7 etc.
temp_power_roi_df = temp_power_roi_df.sort_values("Channel").reset_index(drop=True)
# Get the log power
R_power = temp_power_roi_df[(temp_power_roi_df["Brain_side"] == "Right")]["PSD"]
ln_R_power = np.log(R_power) # get log power
L_power = temp_power_roi_df[(temp_power_roi_df["Brain_side"] == "Left")]["PSD"]
ln_L_power = np.log(L_power) # get log power
# Pairwise subtraction followed by averaging
asymmetry_value = np.mean(np.array(ln_R_power) - np.array(ln_L_power))
# Save it to the array
temp_asymmetry[e,f,r] = asymmetry_value
# Print progress
print("{} out of {} finished testing".format(i+1,n_subjects))
return i, temp_asymmetry
with concurrent.futures.ProcessPoolExecutor() as executor:
for i, res in executor.map(calculate_asymmetry, range(len(np.unique(power_df["Subject_ID"])))): # Function and arguments
asymmetry[i,:,:,:] = res
# Prepare conversion of array to df using flatten
n_subjects = len(Subject_id)
# The group status (PTSD/CTRL) is made using the information about the cases
Group_status = np.array(["CTRL"]*n_subjects)
Group_status[np.array([i in cases for i in Subject_id])] = "PTSD"
# Eye status is added
eye_status = list(final_epochs[0].event_id.keys())
n_eye_status = len(eye_status)
# Frequency bands
freq_bands_name = list(Freq_Bands.keys())
n_freq_bands = len(freq_bands_name)
# ROIs
n_ROI = len(ROI)
# Make the dataframe
asymmetry_df = pd.DataFrame(data = {"Subject_ID": [ele for ele in Subject_id for i in range(n_eye_status*n_freq_bands*n_ROI)],
"Group_status": [ele for ele in Group_status for i in range(n_eye_status*n_freq_bands*n_ROI)],
"Eye_status": [ele for ele in eye_status for i in range(n_freq_bands*n_ROI)]*(n_subjects),
"Freq_band": [ele for ele in freq_bands_name for i in range(n_ROI)]*(n_subjects*n_eye_status),
"ROI": list(ROI)*(n_subjects*n_eye_status*n_freq_bands),
"Asymmetry_score": asymmetry.flatten(order="C")
})
# Flatten with order=C means that it first goes through last axis,
# then repeat along 2nd last axis, and then repeat along 3rd last etc
# Asymmetry numpy to pandas conversion check
random_point=321
asymmetry_df.iloc[random_point]
i = np.where(np.unique(power_df["Subject_ID"]) == asymmetry_df.iloc[random_point]["Subject_ID"])[0]
e = np.where(np.unique(power_df["Eye_status"]) == asymmetry_df.iloc[random_point]["Eye_status"])[0]
f = np.where(np.array(list(Freq_Bands.keys())) == asymmetry_df.iloc[random_point]["Freq_band"])[0]
r = np.where(np.array(ROI) == asymmetry_df.iloc[random_point]["ROI"])[0]
assert asymmetry[i,e,f,r] == asymmetry_df.iloc[random_point]["Asymmetry_score"]
# Save the dataframe
asymmetry_df.to_pickle(os.path.join(Feature_savepath,"asymmetry_df.pkl"))
# %% Using FOOOF
# Peak alpha frequency (PAF) and 1/f exponent (OOF)
# Using the FOOOF algorithm (Fitting oscillations and one over f)
# Published by Donoghue et al, 2020 in Nature Neuroscience
# To start, FOOOF takes the freqs and power spectra as input
n_channels = final_epochs[0].info["nchan"]
ch_names = final_epochs[0].info["ch_names"]
sfreq = final_epochs[0].info["sfreq"]
Freq_Bands = {"delta": [1.25, 4.0],
"theta": [4.0, 8.0],
"alpha": [8.0, 13.0],
"beta": [13.0, 30.0],
"gamma": [30.0, 49.0]}
n_freq_bands = len(Freq_Bands)
# From visual inspection there seems to be problem if PSD is too steep at the start
# To overcome this problem, we try multiple start freq
OOF_r2_thres = 0.95 # a high threshold as we allow for overfitting
PAF_r2_thres = 0.90 # a more lenient threshold for PAF, as it is usually still captured even if fit for 1/f is not perfect
PTF_r2_thres = 0.90 # a more lenient threshold for PTF, as it is usually still captured even if fit for 1/f is not perfect
PBF_r2_thres = 0.90 # a more lenient threshold for PBF, as it is usually still captured even if fit for 1/f is not perfect
freq_start_it_range = [2,3,4,5,6]
freq_end = 40 # Stop freq at 40Hz to not be influenced by the Notch Filter
eye_status = list(final_epochs[0].event_id.keys())
n_eye_status = len(eye_status)
PAF_data = np.zeros((n_subjects,n_eye_status,n_channels,3)) # CF, power, band_width
PTF_data = np.zeros((n_subjects,n_eye_status,n_channels,3)) # CF, power, band_width
PBF_data = np.zeros((n_subjects,n_eye_status,n_channels,3)) # CF, power, band_width
OOF_data = np.zeros((n_subjects,n_eye_status,n_channels,2)) # offset and exponent
def FOOOF_estimation(i):
PAF_data0 = np.zeros((n_eye_status,n_channels,3)) # CF, power, band_width
PTF_data0 = np.zeros((n_eye_status,n_channels,3)) # CF, power, band_width
PBF_data0 = np.zeros((n_eye_status,n_channels,3)) # CF, power, band_width
OOF_data0 = np.zeros((n_eye_status,n_channels,2)) # offset and exponent
# Get Eye status
eye_idx = [final_epochs[i].events[:,2] == 1, final_epochs[i].events[:,2] == 2] # EC and EO
# Calculate the power spectral density
psd, freqs = psd_multitaper(final_epochs[i], fmin = 1, fmax = 50) # output (epochs, channels, freqs)
# Retrieve psds for the 2 conditions and calculate mean across epochs
psds = []
for e in range(n_eye_status):
# Get the epochs for specific eye condition
temp_psd = psd[eye_idx[e],:,:]
# Calculate the mean across epochs
temp_psd = np.mean(temp_psd, axis=0)
# Save
psds.append(temp_psd)
# Try multiple start freq
PAF_data00 = np.zeros((n_eye_status,n_channels,len(freq_start_it_range),3)) # CF, power, band_width
PTF_data00 = np.zeros((n_eye_status,n_channels,len(freq_start_it_range),3)) # CF, power, band_width
PBF_data00 = np.zeros((n_eye_status,n_channels,len(freq_start_it_range),3)) # CF, power, band_width
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
OOF_data00 = np.zeros((n_eye_status,n_channels,len(freq_start_it_range),2)) # offset and exponent
r2s00 = np.zeros((n_eye_status,n_channels,len(freq_start_it_range)))
for e in range(n_eye_status):
psds_avg = psds[e]
for f in range(len(freq_start_it_range)):
# Initiate FOOOF group for analysis of multiple PSD
fg = fooof.FOOOFGroup()
# Set the frequency range to fit the model
freq_range = [freq_start_it_range[f], freq_end] # variable freq start to 49Hz
# Fit to each source PSD separately, but in parallel
fg.fit(freqs,psds_avg,freq_range,n_jobs=1)
# Extract aperiodic parameters
aps = fg.get_params('aperiodic_params')
# Extract peak parameters
peaks = fg.get_params('peak_params')
# Extract goodness-of-fit metrics
r2s = fg.get_params('r_squared')
# Save OOF and r2s
OOF_data00[e,:,f] = aps
r2s00[e,:,f] = r2s
# Find the alpha peak with greatest power
for c in range(n_channels):
peaks0 = peaks[peaks[:,3] == c]
# Subset the peaks within the alpha band
in_alpha_band = (peaks0[:,0] >= Freq_Bands["alpha"][0]) & (peaks0[:,0] <= Freq_Bands["alpha"][1])
if sum(in_alpha_band) > 0: # Any alpha peaks?
# Choose the peak with the highest power
max_alpha_idx = np.argmax(peaks0[in_alpha_band,1])
# Save results
PAF_data00[e,c,f] = peaks0[in_alpha_band][max_alpha_idx,:-1]
else:
# No alpha peaks
PAF_data00[e,c,f] = [np.nan]*3
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
# Find the theta peak with greatest power
for c in range(n_channels):
peaks0 = peaks[peaks[:,3] == c]
# Subset the peaks within the theta band
in_theta_band = (peaks0[:,0] >= Freq_Bands["theta"][0]) & (peaks0[:,0] <= Freq_Bands["theta"][1])
if sum(in_theta_band) > 0:
# Choose the peak with the highest power
max_theta_idx = np.argmax(peaks0[in_theta_band,1])
# Save results
PTF_data00[e,c,f] = peaks0[in_theta_band][max_theta_idx,:-1]
else:
# No theta peaks
PTF_data00[e,c,f] = [np.nan]*3
# Find the beta peak with greatest power
for c in range(n_channels):
peaks0 = peaks[peaks[:,3] == c]
# Subset the peaks within the beta band
in_beta_band = (peaks0[:,0] >= Freq_Bands["beta"][0]) & (peaks0[:,0] <= Freq_Bands["beta"][1])
if sum(in_beta_band) > 0:
# Choose the peak with the highest power
max_beta_idx = np.argmax(peaks0[in_beta_band,1])
# Save results
PBF_data00[e,c,f] = peaks0[in_beta_band][max_beta_idx,:-1]
else:
# No beta peaks
PBF_data00[e,c,f] = [np.nan]*3
# Check criterias
good_fits_OOF = (r2s00 > OOF_r2_thres) & (OOF_data00[:,:,:,1] > 0) # r^2 > 0.95 and exponent > 0
good_fits_PAF = (r2s00 > PAF_r2_thres) & (np.isfinite(PAF_data00[:,:,:,0])) # r^2 > 0.90 and detected peak in alpha band
good_fits_PTF = (r2s00 > PTF_r2_thres) & (np.isfinite(PTF_data00[:,:,:,0])) # r^2 > 0.90 and detected peak in theta band
good_fits_PBF = (r2s00 > PBF_r2_thres) & (np.isfinite(PBF_data00[:,:,:,0])) # r^2 > 0.90 and detected peak in beta band
# Save the data or NaN if criterias were not fulfilled
for e in range(n_eye_status):
for c in range(n_channels):
if sum(good_fits_OOF[e,c]) == 0: # no good OOF estimation
OOF_data0[e,c] = [np.nan]*2
else: # Save OOF associated with greatest r^2 that fulfilled criterias
OOF_data0[e,c] = OOF_data00[e,c,np.argmax(r2s00[e,c,good_fits_OOF[e,c]])]
if sum(good_fits_PAF[e,c]) == 0: # no good PAF estimation
PAF_data0[e,c] = [np.nan]*3
else: # Save PAF associated with greatest r^2 that fulfilled criterias
PAF_data0[e,c] = PAF_data00[e,c,np.argmax(r2s00[e,c,good_fits_PAF[e,c]])]
if sum(good_fits_PTF[e,c]) == 0: # no good PTF estimation
PTF_data0[e,c] = [np.nan]*3
else: # Save PTF associated with greatest r^2 that fulfilled criterias
PTF_data0[e,c] = PTF_data00[e,c,np.argmax(r2s00[e,c,good_fits_PTF[e,c]])]
if sum(good_fits_PBF[e,c]) == 0: # no good PBF estimation
PBF_data0[e,c] = [np.nan]*3
else: # Save PBF associated with greatest r^2 that fulfilled criterias
PBF_data0[e,c] = PBF_data00[e,c,np.argmax(r2s00[e,c,good_fits_PBF[e,c]])]
print("Finished {} out of {} subjects".format(i+1,n_subjects))
# Get current time
c_time1 = time.localtime()
c_time1 = time.strftime("%a %d %b %Y %H:%M:%S", c_time1)
print(c_time1)
# with concurrent.futures.ProcessPoolExecutor() as executor:
# for i, PAF_result, OOF_result in executor.map(FOOOF_estimation, range(n_subjects)): # Function and arguments
# PAF_data[i] = PAF_result
# OOF_data[i] = OOF_result
for i in range(n_subjects):
j, PAF_result, OOF_result, PTF_data0, PBF_data0 = FOOOF_estimation(i) # Function and arguments
PAF_data[i] = PAF_result
OOF_data[i] = OOF_result
PTF_data[i] = PTF_data0
PBF_data[i] = PBF_data0
# Save data
with open(Feature_savepath+"PAF_data_arr.pkl", "wb") as file:
pickle.dump(PAF_data, file)
with open(Feature_savepath+"PTF_data_arr.pkl", "wb") as file:
pickle.dump(PTF_data, file)
with open(Feature_savepath+"PBF_data_arr.pkl", "wb") as file:
pickle.dump(PBF_data, file)
# with open(Feature_savepath+"OOF_data_arr.pkl", "wb") as file:
# pickle.dump(OOF_data, file)
# Get current time
c_time2 = time.localtime()
c_time2 = time.strftime("%a %d %b %Y %H:%M:%S", c_time2)
print("Started", c_time1, "\nFinished",c_time2)
# Convert to Pandas dataframe (only keep mean parameter for PAF)
# The dimensions will each be a column with numbers and the last column will be the actual values
ori = PAF_data[:,:,:,0]
arr = np.column_stack(list(map(np.ravel, np.meshgrid(*map(np.arange, ori.shape), indexing="ij"))) + [ori.ravel()])
arr_2 = np.column_stack(list(map(np.ravel, np.meshgrid(*map(np.arange, ori_2.shape), indexing="ij"))) + [ori_2.ravel()])
arr_3 = np.column_stack(list(map(np.ravel, np.meshgrid(*map(np.arange, ori_3.shape), indexing="ij"))) + [ori_3.ravel()])
PAF_data_df = pd.DataFrame(arr, columns = ["Subject_ID", "Eye_status", "Channel", "Value"])
PTF_data_df = pd.DataFrame(arr_2, columns = ["Subject_ID", "Eye_status", "Channel", "Value"])
PBF_data_df = pd.DataFrame(arr_3, columns = ["Subject_ID", "Eye_status", "Channel", "Value"])
# Change from numerical coding to actual values
index_values = [Subject_id,eye_status,ch_names]
temp_df = PAF_data_df.copy() # make temp df to not sequential overwrite what is changed
temp_df_2 = PTF_data_df.copy() # make temp df to not sequential overwrite what is changed
temp_df_3 = PBF_data_df.copy() # make temp df to not sequential overwrite what is changed
for col in range(len(index_values)):
col_name = PAF_data_df.columns[col]
col_name_2 = PTF_data_df.columns[col]
col_name_3 = PBF_data_df.columns[col]
for shape in range(ori.shape[col]):
temp_df.loc[PAF_data_df.iloc[:,col] == shape,col_name]\
= index_values[col][shape]
temp_df_2.loc[PTF_data_df.iloc[:,col] == shape,col_name_2]\
= index_values[col][shape]
temp_df_3.loc[PBF_data_df.iloc[:,col] == shape,col_name_3]\
= index_values[col][shape]
PTF_data_df = temp_df_2 # replace original df
PBF_data_df = temp_df_3 # replace original df
# Add group status
Group_status = np.array(["CTRL"]*len(PAF_data_df["Subject_ID"]))
Group_status[np.array([i in cases for i in PAF_data_df["Subject_ID"]])] = "PTSD"
# Add to dataframe
PAF_data_df.insert(3, "Group_status", Group_status)
PTF_data_df.insert(3, "Group_status", Group_status)
PBF_data_df.insert(3, "Group_status", Group_status)
# Global peak alpha
PAF_data_df_global = PAF_data_df.groupby(["Subject_ID", "Group_status", "Eye_status"]).mean().reset_index() # by default pandas mean skip nan
PTF_data_df_global = PTF_data_df.groupby(["Subject_ID", "Group_status", "Eye_status"]).mean().reset_index() # by default pandas mean skip nan
PBF_data_df_global = PBF_data_df.groupby(["Subject_ID", "Group_status", "Eye_status"]).mean().reset_index() # by default pandas mean skip nan
# Add dummy variable for re-using plot code
dummy_variable = ["Global Peak Alpha Frequency"]*PAF_data_df_global.shape[0]
dummy_variable_2 = ["Global Peak Theta Frequency"]*PTF_data_df_global.shape[0]
dummy_variable_3 = ["Global Peak Beta Frequency"]*PBF_data_df_global.shape[0]
PTF_data_df_global.insert(3, "Measurement", dummy_variable_2 )
PBF_data_df_global.insert(3, "Measurement", dummy_variable_3 )
# Regional peak alpha
# A variable that codes the channels based on A/P localization is also made
Frontal_chs = ["Fp1", "Fpz", "Fp2", "AFz", "Fz", "F3", "F4", "F7", "F8"]
Central_chs = ["Cz", "C3", "C4", "T7", "T8", "FT7", "FC3", "FCz", "FC4", "FT8", "TP7", "CP3", "CPz", "CP4", "TP8"]
Posterior_chs = ["Pz", "P3", "P4", "P7", "P8", "POz", "O1", "O2", "Oz"]
Parietal_chs = ["TP7", "CP3", "CPz", "CP4", "TP8", "P7", "P3", "Pz", "P4", "P8", "POz"]
Brain_region_labels = ["Frontal","Central","Posterior","Parietal"]
Brain_region[np.array([i in Frontal_chs for i in ch_names])] = Brain_region_labels[0]
Brain_region[np.array([i in Central_chs for i in ch_names])] = Brain_region_labels[1]
Brain_region[np.array([i in Posterior_chs for i in ch_names])] = Brain_region_labels[2]
Brain_region[np.array([i in Parietal_chs for i in ch_names])] = Brain_region_labels[3]
PAF_data_df.insert(4, "Brain_region", list(Brain_region)*int(PAF_data_df.shape[0]/len(Brain_region)))
PTF_data_df.insert(4, "Brain_region", list(Brain_region)*int(PTF_data_df.shape[0]/len(Brain_region)))
PBF_data_df.insert(4, "Brain_region", list(Brain_region)*int(PBF_data_df.shape[0]/len(Brain_region)))
# A variable that codes the channels based on M/L localization
Left_chs = ["Fp1", "F3", "F7", "FC3", "FT7", "C3", "T7", "CP3", "TP7", "P3", "P7", "O1"]
Right_chs = ["Fp2", "F4", "F8", "FC4", "FT8", "C4", "T8", "CP4", "TP8", "P4", "P8", "O2"]
Mid_chs = ["Fpz", "AFz", "Fz", "FCz", "Cz", "CPz", "Pz", "POz", "Oz"]
Brain_side = np.array(ch_names, dtype = "<U5")
Brain_side[np.array([i in Left_chs for i in ch_names])] = "Left"
Brain_side[np.array([i in Right_chs for i in ch_names])] = "Right"
Brain_side[np.array([i in Mid_chs for i in ch_names])] = "Mid"
# Insert side type into dataframe:
PAF_data_df.insert(5, "Brain_side", list(Brain_side)*int(PAF_data_df.shape[0]/len(Brain_side)))
PTF_data_df.insert(5, "Brain_side", list(Brain_side)*int(PTF_data_df.shape[0]/len(Brain_side)))
PBF_data_df.insert(5, "Brain_side", list(Brain_side)*int(PBF_data_df.shape[0]/len(Brain_side)))
# Define region of interest before saving
PAF_data_df = PAF_data_df[(PAF_data_df["Brain_region"] == "Parietal")] # Parietal region in peak alpha frequencys
PTF_data_df = PTF_data_df[(PTF_data_df["Brain_region"] == "Frontal") &
((PTF_data_df["Brain_side"] == "Mid"))] # Frontal midline theta peak frequencys