Skip to content
Snippets Groups Projects
FeatureEstimation.py 156 KiB
Newer Older
  • Learn to ignore specific revisions
  • s200431's avatar
    s200431 committed
    PBF_data_df = PBF_data_df[(PBF_data_df["Brain_region"] == "Frontal")] # Frontal beta peak frequencys
    
    glia's avatar
    glia committed
    
    
    
    # Save the dataframes
    
    s200431's avatar
    s200431 committed
    PAF_data_df.to_pickle(os.path.join(Feature_savepath,"PAF_data_FOOOF_df.pkl"))
    PAF_data_df_global.to_pickle(os.path.join(Feature_savepath,"PAF_data_FOOOF_global_df.pkl"))
    PTF_data_df.to_pickle(os.path.join(Feature_savepath,"PTF_data_FOOOF_df.pkl"))
    PTF_data_df_global.to_pickle(os.path.join(Feature_savepath,"PTF_data_FOOOF_global_df.pkl"))
    PBF_data_df.to_pickle(os.path.join(Feature_savepath,"PBF_data_FOOOF_df.pkl"))
    PBF_data_df_global.to_pickle(os.path.join(Feature_savepath,"PBF_data_FOOOF_global_df.pkl"))
    
    s200431's avatar
    s200431 committed
    # # Convert to Pandas dataframe (only keep exponent parameter for OOF)
    # # The dimensions will each be a column with numbers and the last column will be the actual values
    # ori = OOF_data[:,:,:,1]
    # arr = np.column_stack(list(map(np.ravel, np.meshgrid(*map(np.arange, ori.shape), indexing="ij"))) + [ori.ravel()])
    # PAF_data_df = pd.DataFrame(arr, columns = ["Subject_ID", "Eye_status", "Channel", "Value"])
    # # Change from numerical coding to actual values
    
    # index_values = [Subject_id,eye_status,ch_names]
    # temp_df = PAF_data_df.copy() # make temp df to not sequential overwrite what is changed
    # for col in range(len(index_values)):
    #     col_name = PAF_data_df.columns[col]
    #     for shape in range(ori.shape[col]):
    #         temp_df.loc[PAF_data_df.iloc[:,col] == shape,col_name]\
    #         = index_values[col][shape]
    # OOF_data_df = temp_df # replace original df 
    
    # # Add group status
    # Group_status = np.array(["CTRL"]*len(OOF_data_df["Subject_ID"]))
    # Group_status[np.array([i in cases for i in OOF_data_df["Subject_ID"]])] = "PTSD"
    # # Add to dataframe
    # OOF_data_df.insert(3, "Group_status", Group_status)
    
    # # Regional OOF
    # OOF_data_df.insert(4, "Brain_region", list(Brain_region)*int(PAF_data_df.shape[0]/len(Brain_region)))
    
    # # Save the dataframes
    # OOF_data_df.to_pickle(os.path.join(Feature_savepath,"OOF_data_FOOOF_df.pkl"))
    """
    
    glia's avatar
    glia committed
    # %% Microstate analysis
    # The function takes the data as a numpy array (n_t, n_ch)
    # The data is already re-referenced to common average
    # Variables for the clustering function are extracted
    sfreq = final_epochs[0].info["sfreq"]
    eye_status = list(final_epochs[0].event_id.keys())
    n_eye_status = len(eye_status)
    ch_names = final_epochs[0].info["ch_names"]
    n_channels = len(ch_names)
    locs = np.zeros((n_channels,2)) # xy coordinates of the electrodes
    for c in range(n_channels):
        locs[c] = final_epochs[0].info["chs"][c]["loc"][0:2]
    
    # The epochs are transformed to numpy arrays
    micro_data = []
    EC_micro_data = []
    EO_micro_data = []
    for i in range(n_subjects):
        # Transform data to correct shape
        micro_data.append(final_epochs[i].get_data()) # get data
        arr_shape = micro_data[i].shape # get shape
        micro_data[i] = micro_data[i].swapaxes(1,2) # swap ch and time axis
        micro_data[i] = micro_data[i].reshape(arr_shape[0]*arr_shape[2],arr_shape[1]) # reshape by combining epochs and times
        # Get indices for eyes open and closed
        EC_index = final_epochs[i].events[:,2] == 1
        EO_index = final_epochs[i].events[:,2] == 2
        # Repeat with 4s * sample frequency to correct for concatenation of times and epochs
        EC_index = np.repeat(EC_index,4*sfreq)
        EO_index = np.repeat(EO_index,4*sfreq)
        # Save data where it is divided into eye status
        EC_micro_data.append(micro_data[i][EC_index])
        EO_micro_data.append(micro_data[i][EO_index])
    
    # Global explained variance and Cross-validation criterion is used to determine number of microstates
    # First all data is concatenated to find the optimal number of maps for all data
    micro_data_all = np.vstack(micro_data)
    
    # Determine the number of clusters
    # I use a slightly modified kmeans function which returns the cv_min
    
    glia's avatar
    glia committed
    global_gev = []
    cv_criterion = []
    for n_maps in range(2,7):
        maps, L, gfp_peaks, gev, cv_min = kmeans_return_all(micro_data_all, n_maps)
        global_gev.append(np.sum(gev))
        cv_criterion.append(cv_min)
    # Save run results
    cluster_results = np.array([global_gev,cv_criterion])
    np.save("Microstate_n_cluster_test_results.npy", cluster_results) # (gev/cv_crit, n_maps from 2 to 6)
    
    #cluster_results = np.load("Microstate_n_cluster_test_results.npy")
    #global_gev = cluster_results[0,:]
    #cv_criterion = cluster_results[1,:]
    
    # Evaluate best n_maps
    plt.figure()
    plt.plot(np.linspace(2,6,len(cv_criterion)),(cv_criterion/np.sum(cv_criterion)), label="CV Criterion")
    plt.plot(np.linspace(2,6,len(cv_criterion)),(global_gev/np.sum(global_gev)), label="GEV")
    plt.legend()
    plt.ylabel("Normalized to total")
    
    glia's avatar
    glia committed
    # The lower CV the better.
    # But the higher GEV the better.
    # Based on the plots and the recommendation by vong Wegner & Laufs 2018
    
    # we used 5 microstates
    
    glia's avatar
    glia committed
    
    # In order to compare between groups, I fix the microstates by clustering on data from both groups
    # Due to instability of maps when running multiple times, I increased n_maps from 4 to 6
    
    glia's avatar
    glia committed
    mode = ["aahc", "kmeans", "kmedoids", "pca", "ica"][1]
    
    # K-means is stochastic, thus I run it multiple times in order to find the maps with highest GEV
    # Each K-means is run 5 times and best map is chosen. But I do this 10 times more, so in total 50 times!
    n_run = 10
    # Pre-allocate memory
    microstate_cluster_results = []
    
    # Parallel processing can only be implemented by ensuring different seeds
    # Otherwise the iteration would be the same.
    # However the k-means already use parallel processing so making outer loop with
    # concurrent processes make it use too many processors
    # Get current time
    c_time1 = time.localtime()
    c_time1 = time.strftime("%a %d %b %Y %H:%M:%S", c_time1)
    print(c_time1)
    
    # Change datatype due to error with computational power in clustering 
    EC_down = np.array(EC_micro_data, dtype = object)
    #EC_down = EC_down.astype('float32')
    EO_down = np.array(EO_micro_data, dtype = object)
    #EO_down = EO_down.astype('float32')
    
    glia's avatar
    glia committed
    
    for r in range(n_run):
        maps = [0]*2
        m_labels = [0]*2
        gfp_peaks = [0]*2
        gev = [0]*2
        # Eyes closed
        counter = 0
        maps_, x_, gfp_peaks_, gev_ = clustering(
    
            np.vstack(EC_down), sfreq, ch_names, locs, mode, n_maps, doplot=False) # doplot=True is bugged
    
    glia's avatar
    glia committed
        maps[counter] = maps_
        m_labels[counter] = x_
        gfp_peaks[counter] = gfp_peaks_
        gev[counter] = gev_
        counter += 1
        # Eyes open
        maps_, x_, gfp_peaks_, gev_ = clustering(
    
            np.vstack(EO_down), sfreq, ch_names, locs, mode, n_maps, doplot=False) # doplot=True is bugged
    
    glia's avatar
    glia committed
        maps[counter] = maps_
        m_labels[counter] = x_
        gfp_peaks[counter] = gfp_peaks_
        gev[counter] = gev_
        counter += 1
        
        microstate_cluster_results.append([maps, m_labels, gfp_peaks, gev])
        print("Finished {} out of {}".format(r+1, n_run))
    
    # Get current time
    c_time2 = time.localtime()
    c_time2 = time.strftime("%a %d %b %Y %H:%M:%S", c_time2)
    print("Started", c_time1, "\nFinished",c_time2)
    
    # Save the results
    
    with open(Feature_savepath+"Microstate_5_maps_10x5_k_means_results.pkl", "wb") as file:
    
    glia's avatar
    glia committed
        pickle.dump(microstate_cluster_results, file)
    
    # # Load
    # with open(Feature_savepath+"Microstate_4_maps_10x5_k_means_results.pkl", "rb") as file:
    #     microstate_cluster_results = pickle.load(file)
    
    # Find the best maps (Highest GEV across all the K-means clusters)
    EC_total_gevs = np.sum(np.vstack(np.array(microstate_cluster_results)[:,3,0]), axis=1) # (runs, maps/labels/gfp/gev, ec/eo)
    EO_total_gevs = np.sum(np.vstack(np.array(microstate_cluster_results)[:,3,1]), axis=1)
    Best_EC_idx = np.argmax(EC_total_gevs)
    Best_EO_idx = np.argmax(EO_total_gevs)
    # Update the variables for the best maps
    maps = [microstate_cluster_results[Best_EC_idx][0][0],microstate_cluster_results[Best_EO_idx][0][1]]
    m_labels = [microstate_cluster_results[Best_EC_idx][1][0],microstate_cluster_results[Best_EO_idx][1][1]]
    gfp_peaks = [microstate_cluster_results[Best_EC_idx][2][0],microstate_cluster_results[Best_EO_idx][2][1]]
    gev = [microstate_cluster_results[Best_EC_idx][3][0],microstate_cluster_results[Best_EO_idx][3][1]]
    
    # Plot the maps
    plt.style.use('default')
    
    labels = ["EC", "EO"] #Eyes-closed, Eyes-open
    
    glia's avatar
    glia committed
    for i in range(len(labels)):    
        fig, axarr = plt.subplots(1, n_maps, figsize=(20,5))
        fig.patch.set_facecolor('white')
        for imap in range(n_maps):
            mne.viz.plot_topomap(maps[i][imap,:], pos = final_epochs[0].info, axes = axarr[imap]) # plot
            axarr[imap].set_title("GEV: {:.2f}".format(gev[i][imap]), fontsize=16, fontweight="bold") # title
        fig.suptitle("Microstates: {}".format(labels[i]), fontsize=20, fontweight="bold")
    
    # Manual re-order the maps
    # Due the random initiation of K-means this have to be modified every time clusters are made!
    # Assign map labels (e.g. 0, 2, 1, 3)
    order = [0]*2
    
    order[0] = [3,0,1,2,4] # EC
    order[1] = [3,1,0,2,4] # EO
    
    glia's avatar
    glia committed
    for i in range(len(order)):
        maps[i] = maps[i][order[i],:] # re-order maps
        gev[i] = gev[i][order[i]] # re-order GEV
        # Make directory to find and replace map labels
        dic0 = {value:key for key, value in enumerate(order[i])}
        m_labels[i][:] = [dic0.get(n, n) for n in m_labels[i]] # re-order labels
    
    # The maps seems to be correlated both negatively and positively (see spatial correlation plots)
    # Thus the sign of the map does not really reflect which areas are positive or negative (absolute)
    # But more which areas are different during each state (relatively)
    # I can therefore change the sign of the map for the visualizaiton
    
    sign_swap = [[1,-1,1,1,1],[1,1,1,-1,1]]
    
    glia's avatar
    glia committed
    for i in range(len(order)):
        for m in range(n_maps):
            maps[i][m] *= sign_swap[i][m]
    
    # Plot the maps and save
    
    save_path = "/home/s200431/Figures/Microstates"
    
    glia's avatar
    glia committed
    labels = ["EC", "EO"]
    for i in range(len(labels)):    
        fig, axarr = plt.subplots(1, n_maps, figsize=(20,5))
        fig.patch.set_facecolor('white')
        for imap in range(n_maps):
            mne.viz.plot_topomap(maps[i][imap,:], pos = final_epochs[0].info, axes = axarr[imap]) # plot
            axarr[imap].set_title("GEV: {:.2f}".format(gev[i][imap]), fontsize=16, fontweight="bold") # title
        fig.suptitle("Microstates: {} - Total GEV: {:.2f}".format(labels[i],sum(gev[i])), fontsize=20, fontweight="bold")
        # Save the figure
        fig.savefig(os.path.join(save_path,str("Microstates_{}".format(labels[i]) + ".png")))
    
    # Calculate spatial correlation between maps and actual data points (topography)
    # The sign of the map is changed so the correlation is positive
    # By default the code looks for highest spatial correlation (regardless of sign)
    # Thus depending on random initiation point the map might be opposite
    plt.style.use('ggplot')
    def spatial_correlation(data, maps):
        n_t = data.shape[0]
        n_ch = data.shape[1]
        data = data - data.mean(axis=1, keepdims=True)
    
        # GFP peaks
        gfp = np.std(data, axis=1)
        gfp_peaks = locmax(gfp)
        gfp_values = gfp[gfp_peaks]
        gfp2 = np.sum(gfp_values**2) # normalizing constant in GEV
        n_gfp = gfp_peaks.shape[0]
    
        # Spatial correlation
        C = np.dot(data, maps.T)
        C /= (n_ch*np.outer(gfp, np.std(maps, axis=1)))
        L = np.argmax(C**2, axis=1) # C is squared here which means the maps do no retain information about the sign of the correlation
        
        return C
    
    C_EC = spatial_correlation(np.vstack(np.array(EC_micro_data)), maps[0])
    C_EO = spatial_correlation(np.vstack(np.array(EO_micro_data)), maps[1])
    C = [C_EC, C_EO]
    
    # Plot the distribution of spatial correlation for each label and each map
    labels = ["EC", "EO"]
    for i in range(len(labels)):
        fig, axarr = plt.subplots(n_maps, n_maps, figsize=(16,16))
        for Lmap in range(n_maps):
            for Mmap in range(n_maps):
                sns.distplot(C[i][m_labels[i] == Lmap,Mmap], ax = axarr[Lmap,Mmap])
                axarr[Lmap,Mmap].set_xlabel("Spatial correlation")
        plt.suptitle("Distribution of spatial correlation_{}".format(labels[i]), fontsize=20, fontweight="bold")
        # Add common x and y axis labels by making one big axis
        fig.add_subplot(111, frameon=False)
        plt.tick_params(labelcolor="none", top="off", bottom="off", left="off", right="off") # hide tick labels and ticks
        plt.grid(False) # remove global grid
        plt.xlabel("Microstate number", labelpad=20)
        plt.ylabel("Label number", labelpad=10)
        fig.savefig(os.path.join(save_path,str("Microstates_Spatial_Correlation_Label_State_{}".format(labels[i]) + ".png")))
    
    # Plot the distribution of spatial correlation for all data and each map
    labels = ["EC", "EO"]
    for i in range(len(labels)):
        fig, axarr = plt.subplots(1,n_maps, figsize=(20,5))
        for imap in range(n_maps):
            sns.distplot(C[i][:,imap], ax = axarr[imap])
            plt.xlabel("Spatial correlation")
        plt.suptitle("Distribution of spatial correlation", fontsize=20, fontweight="bold")
        # Add common x and y axis labels by making one big axis
        fig.add_subplot(111, frameon=False)
        plt.tick_params(labelcolor="none", top="off", bottom="off", left="off", right="off") # hide tick labels and ticks
        plt.grid(False) # remove global grid
        plt.xlabel("Microstate number", labelpad=20)
        plt.ylabel("Label number")
    
    # Prepare for calculation of transition matrix
    # I modified the function, so it takes the list argument gap_index
    # gap_index should have the indices right before gaps in data
    
    # Gaps: Between dropped epochs, trials (eo/ec) and subjects
    # The between subjects gaps is removed by dividing the data into subjects
    n_trials = 5
    n_epoch_length = final_epochs[0].get_data().shape[2]
    
    micro_labels = []
    micro_subject_EC_idx = [0]
    micro_subject_EO_idx = [0]
    gaps_idx = []
    gaps_trials_idx = []
    for i in range(n_subjects):
        # Get indices for subject
        micro_subject_EC_idx.append(micro_subject_EC_idx[i]+EC_micro_data[i].shape[0])
        temp_EC = m_labels[0][micro_subject_EC_idx[i]:micro_subject_EC_idx[i+1]]
        # Get labels for subject i EO
        micro_subject_EO_idx.append(micro_subject_EO_idx[i]+EO_micro_data[i].shape[0])
        temp_EO = m_labels[1][micro_subject_EO_idx[i]:micro_subject_EO_idx[i+1]]
        # Save
        micro_labels.append([temp_EC,temp_EO]) # (subject, eye)
        
        # Get indices with gaps
        # Dropped epochs are first considered
        # Each epoch last 4s, which correspond to 2000 samples and a trial is 15 epochs - dropped epochs
        # Get epochs for each condition
        EC_drop_epochs = Drop_epochs_df.iloc[i,1:][Drop_epochs_df.iloc[i,1:] <= 75].to_numpy()
        EO_drop_epochs = Drop_epochs_df.iloc[i,1:][(Drop_epochs_df.iloc[i,1:] >= 75)&
                                                (Drop_epochs_df.iloc[i,1:] <= 150)].to_numpy()
        # Get indices for the epochs for EC that were dropped and correct for changing index due to drop
        EC_drop_epochs_gaps_idx = []
        counter = 0
        for d in range(len(EC_drop_epochs)):
            drop_epoch_number = EC_drop_epochs[d]
            Drop_epoch_idx = (drop_epoch_number-counter)*n_epoch_length # counter subtracted as the drop index is before dropped
            EC_drop_epochs_gaps_idx.append(Drop_epoch_idx-1) # -1 for point just before gap
            counter += 1
        # Negative index might occur if the first epochs were removed. This index is not needed for transition matrix
        if len(EC_drop_epochs_gaps_idx) > 0:
            for d in range(len(EC_drop_epochs_gaps_idx)): # check all, e.g. if epoch 0,1,2,3 are dropped then all should be caught
                if EC_drop_epochs_gaps_idx[0] == -1:
                    EC_drop_epochs_gaps_idx = EC_drop_epochs_gaps_idx[1:len(EC_drop_epochs)]
        
        # Get indices for the epochs for EO that were dropped and correct for changing index due to drop
        EO_drop_epochs_gaps_idx = []
        counter = 0
        for d in range(len(EO_drop_epochs)):
            drop_epoch_number = EO_drop_epochs[d]-75
            Drop_epoch_idx = (drop_epoch_number-counter)*n_epoch_length # counter subtracted as the drop index is before dropped
            EO_drop_epochs_gaps_idx.append(Drop_epoch_idx-1) # -1 for point just before gap
            counter += 1
        # Negative index might occur if the first epoch was removed. This index is not needed for transition matrix
        if len(EO_drop_epochs_gaps_idx) > 0:
            for d in range(len(EO_drop_epochs_gaps_idx)): # check all, e.g. if epoch 0,1,2,3 are dropped then all should be caught
                if EO_drop_epochs_gaps_idx[0] == -1:
                    EO_drop_epochs_gaps_idx = EO_drop_epochs_gaps_idx[1:len(EO_drop_epochs)]
        
        # Gaps between trials
        Trial_indices = [0, 15, 30, 45, 60, 75] # all the indices for start and end of the 5 trials
        EC_trial_gaps_idx = []
        EO_trial_gaps_idx = []
        counter_EC = 0
        counter_EO = 0
        for t in range(len(Trial_indices)-2): # -2 as start and end is not used in transition matrix
            temp_drop = EC_drop_epochs[(EC_drop_epochs >= Trial_indices[t])&
                                (EC_drop_epochs < Trial_indices[t+1])]
            # Correct the trial id for any potential drops within that trial
            counter_EC += len(temp_drop)
            trial_idx_corrected_for_drops = 15*(t+1)-counter_EC
            EC_trial_gaps_idx.append((trial_idx_corrected_for_drops*n_epoch_length)-1) # multiply id with length of epoch and subtract 1
            
            temp_drop = EO_drop_epochs[(EO_drop_epochs >= Trial_indices[t]+75)&
                                (EO_drop_epochs < Trial_indices[t+1]+75)]
            # Correct the trial id for any potential drops within that trial
            counter_EO += len(temp_drop)
            trial_idx_corrected_for_drops = 15*(t+1)-counter_EO
            EO_trial_gaps_idx.append((trial_idx_corrected_for_drops*n_epoch_length)-1) # multiply id with length of epoch and subtract 1
        
        # Concatenate all drop indices
        gaps_idx.append([np.unique(np.sort(EC_drop_epochs_gaps_idx+EC_trial_gaps_idx)),
                        np.unique(np.sort(EO_drop_epochs_gaps_idx+EO_trial_gaps_idx))])
        # Make on with trial gaps only for use in LRTC analysis
        gaps_trials_idx.append([EC_trial_gaps_idx,EO_trial_gaps_idx])
    
    # Save the gap idx files
    np.save("Gaps_idx.npy",np.array(gaps_idx))
    np.save("Gaps_trials_idx.npy",np.array(gaps_trials_idx))
    
    # %% Calculate microstate features
    # Symbol distribution (also called ratio of time covered RTT)
    # Transition matrix
    # Shannon entropy
    EC_p_hat = p_empirical(m_labels[0], n_maps)
    EO_p_hat = p_empirical(m_labels[1], n_maps)
    # Sanity check: Overall between EC and EO
    
    microstate_time_data = np.zeros((n_subjects,n_eye_status,n_maps))
    microstate_transition_data = np.zeros((n_subjects,n_eye_status,n_maps,n_maps))
    microstate_entropy_data = np.zeros((n_subjects,n_eye_status))
    
    s200431's avatar
    s200431 committed
    microstate_orrurence_data = np.zeros((n_subjects,n_eye_status,n_maps))
    microstate_mean_duration_data = np.zeros((n_subjects,n_eye_status,n_maps))
    
    glia's avatar
    glia committed
    for i in range(n_subjects):
        # Calculate ratio of time covered
        temp_EC_p_hat = p_empirical(micro_labels[i][0], n_maps)
        temp_EO_p_hat = p_empirical(micro_labels[i][1], n_maps)
    
    s200431's avatar
    s200431 committed
    
        # Calcuate number of occurences for each microstate
        for j in range(len(micro_labels[i][0])-1):
           if micro_labels[i][0][j] != micro_labels[i][0][j+1]:
                microstate_orrurence_data[i][0][micro_labels[i][0][j]] += 1
        for j in range(len(micro_labels[i][1])-1):
            if micro_labels[i][1][j] != micro_labels[i][1][j+1]:
                microstate_orrurence_data[i][1][micro_labels[i][1][j]] += 1
    
        # Calculate mean duration of each microstate
        for j in range(n_maps):
            microstate_mean_duration_data[i][0][j] = sum(micro_labels[i][0] == j)/microstate_orrurence_data[i][0][j]
            microstate_mean_duration_data[i][1][j] = sum(micro_labels[i][1] == j)/microstate_orrurence_data[i][1][j]
    
    
    glia's avatar
    glia committed
        # Calculate transition matrix
    
    glia's avatar
    glia committed
        temp_EC_T_hat = T_empirical(micro_labels[i][0], n_maps, gaps_idx[i][0])
        temp_EO_T_hat = T_empirical(micro_labels[i][1], n_maps, gaps_idx[i][1])
    
        """
        temp_EC_T_hat = T_empirical(micro_labels[i][0], n_maps)
        temp_EO_T_hat = T_empirical(micro_labels[i][1], n_maps)
    
    glia's avatar
    glia committed
        # Calculate Shannon entropy
        temp_EC_h_hat = H_1(micro_labels[i][0], n_maps)
        temp_EO_h_hat = H_1(micro_labels[i][1], n_maps)
        
        # Save the data
        microstate_time_data[i,0,:] = temp_EC_p_hat
        microstate_time_data[i,1,:] = temp_EO_p_hat
        microstate_transition_data[i,0,:,:] = temp_EC_T_hat
        microstate_transition_data[i,1,:,:] = temp_EO_T_hat
        microstate_entropy_data[i,0] = temp_EC_h_hat/max_entropy(n_maps) # ratio of max entropy
        microstate_entropy_data[i,1] = temp_EO_h_hat/max_entropy(n_maps) # ratio of max entropy
    
    # Save transition data
    np.save(Feature_savepath+"microstate_transition_data.npy", microstate_transition_data)
    # Convert transition data to dataframe for further processing with other features
    # Transition matrix should be read as probability of row to column
    microstate_transition_data_arr =\
    
    s200431's avatar
    s200431 committed
         microstate_transition_data.reshape((n_subjects,n_eye_status,n_maps*n_maps)) # flatten 5 x 5 matrix to 1D
    
    transition_info = ["M1->M1", "M1->M2", "M1->M3", "M1->M4", "M1->M5",
                       "M2->M1", "M2->M2", "M2->M3", "M2->M4", "M2-M5",
                       "M3->M1", "M3->M2", "M3->M3", "M3->M4", "M3->M5",
                       "M4->M1", "M4->M2", "M4->M3", "M4->M4", "M4->M5",
                       "M5->M1", "M5->M2", "M5->M3", "M5->M4", "M5->M5"]
    
    glia's avatar
    glia committed
    
    arr = np.column_stack(list(map(np.ravel, np.meshgrid(*map(np.arange, microstate_transition_data_arr.shape), indexing="ij"))) + [microstate_transition_data_arr.ravel()])
    microstate_transition_data_df = pd.DataFrame(arr, columns = ["Subject_ID", "Eye_status", "Transition", "Value"])
    # Change from numerical coding to actual values
    eye_status = list(final_epochs[0].event_id.keys())
    
    index_values = [Subject_id,eye_status,transition_info]
    for col in range(len(index_values)):
        col_name = microstate_transition_data_df.columns[col]
        for shape in reversed(range(microstate_transition_data_arr.shape[col])): # notice this is the shape of original numpy array. Not shape of DF
            microstate_transition_data_df.loc[microstate_transition_data_df.iloc[:,col] == shape,col_name]\
            = index_values[col][shape]
    
    # Add group status
    Group_status = np.array(["CTRL"]*len(microstate_transition_data_df["Subject_ID"]))
    Group_status[np.array([i in cases for i in microstate_transition_data_df["Subject_ID"]])] = "PTSD"
    # Add to dataframe
    microstate_transition_data_df.insert(2, "Group_status", Group_status)
    
    # Save df
    microstate_transition_data_df.to_pickle(os.path.join(Feature_savepath,"microstate_transition_data_df.pkl"))
    
    # Convert time covered data to Pandas dataframe
    
    s200431's avatar
    s200431 committed
    # Convert orrurence data to Pandas dataframe
    # Convert mean duration data to Pandas dataframe
    
    glia's avatar
    glia committed
    # The dimensions will each be a column with numbers and the last column will be the actual values
    arr = np.column_stack(list(map(np.ravel, np.meshgrid(*map(np.arange, microstate_time_data.shape), indexing="ij"))) + [microstate_time_data.ravel()])
    
    s200431's avatar
    s200431 committed
    arr_2 = np.column_stack(list(map(np.ravel, np.meshgrid(*map(np.arange, microstate_orrurence_data.shape), indexing="ij"))) + [microstate_orrurence_data.ravel()])
    arr_3 = np.column_stack(list(map(np.ravel, np.meshgrid(*map(np.arange, microstate_mean_duration_data.shape), indexing="ij"))) + [microstate_mean_duration_data.ravel()])
    
    glia's avatar
    glia committed
    microstate_time_df = pd.DataFrame(arr, columns = ["Subject_ID", "Eye_status", "Microstate", "Value"])
    
    s200431's avatar
    s200431 committed
    microstate_orrurence_df = pd.DataFrame(arr_2, columns = ["Subject_ID", "Eye_status", "Microstate", "Value"])
    microstate_mean_duration_df = pd.DataFrame(arr_3, columns = ["Subject_ID", "Eye_status", "Microstate", "Value"])
    
    
    glia's avatar
    glia committed
    # Change from numerical coding to actual values
    eye_status = list(final_epochs[0].event_id.keys())
    
    glia's avatar
    glia committed
    
    index_values = [Subject_id,eye_status,microstates]
    for col in range(len(index_values)):
        col_name = microstate_time_df.columns[col]
    
    s200431's avatar
    s200431 committed
        col_name_2 = microstate_orrurence_df.columns[col]
        col_name_3 = microstate_mean_duration_df.columns[col]
    
    glia's avatar
    glia committed
        for shape in reversed(range(microstate_time_data.shape[col])): # notice this is the shape of original numpy array. Not shape of DF
            microstate_time_df.loc[microstate_time_df.iloc[:,col] == shape,col_name]\
            = index_values[col][shape]
    
    s200431's avatar
    s200431 committed
            microstate_orrurence_df.loc[microstate_orrurence_df.iloc[:,col] == shape,col_name_2]\
            = index_values[col][shape]
            microstate_mean_duration_df.loc[microstate_mean_duration_df.iloc[:,col] == shape,col_name_3]\
            = index_values[col][shape]
    
    glia's avatar
    glia committed
    # Reversed in inner loop is used to avoid sequencial data being overwritten.
    # E.g. if 0 is renamed to 1, then the next loop all 1's will be renamed to 2
    
    # Add group status
    Group_status = np.array(["CTRL"]*len(microstate_time_df["Subject_ID"]))
    Group_status[np.array([i in cases for i in microstate_time_df["Subject_ID"]])] = "PTSD"
    
    s200431's avatar
    s200431 committed
    Group_status_2 = np.array(["CTRL"]*len(microstate_orrurence_df["Subject_ID"]))
    Group_status_2[np.array([i in cases for i in microstate_orrurence_df["Subject_ID"]])] = "PTSD"
    Group_status_3 = np.array(["CTRL"]*len(microstate_mean_duration_df["Subject_ID"]))
    Group_status_3[np.array([i in cases for i in microstate_mean_duration_df["Subject_ID"]])] = "PTSD"
    
    
    glia's avatar
    glia committed
    # Add to dataframe
    microstate_time_df.insert(2, "Group_status", Group_status)
    
    s200431's avatar
    s200431 committed
    microstate_orrurence_df.insert(2, "Group_status", Group_status_2)
    microstate_mean_duration_df.insert(2, "Group_status", Group_status_3)
    
    glia's avatar
    glia committed
    
    # Save df
    microstate_time_df.to_pickle(os.path.join(Feature_savepath,"microstate_time_df.pkl"))
    
    s200431's avatar
    s200431 committed
    microstate_orrurence_df.to_pickle(os.path.join(Feature_savepath,"microstate_orrurence_df.pkl"))
    microstate_mean_duration_df.to_pickle(os.path.join(Feature_savepath,"microstate_mean_duration_df.pkl"))
    
    glia's avatar
    glia committed
    
    # Transition data - mean
    # Get index for groups
    PTSD_idx = np.array([i in cases for i in Subject_id])
    CTRL_idx = np.array([not i in cases for i in Subject_id])
    n_groups = 2
    
    microstate_transition_data_mean = np.zeros((n_groups,n_eye_status,n_maps,n_maps))
    microstate_transition_data_mean[0,:,:,:] = np.mean(microstate_transition_data[PTSD_idx,:,:,:], axis=0)
    microstate_transition_data_mean[1,:,:,:] = np.mean(microstate_transition_data[CTRL_idx,:,:,:], axis=0)
    
    # Convert entropy data to Pandas dataframe
    # The dimensions will each be a column with numbers and the last column will be the actual values
    arr = np.column_stack(list(map(np.ravel, np.meshgrid(*map(np.arange, microstate_entropy_data.shape), indexing="ij"))) + [microstate_entropy_data.ravel()])
    microstate_entropy_df = pd.DataFrame(arr, columns = ["Subject_ID", "Eye_status", "Value"])
    # Change from numerical coding to actual values
    eye_status = list(final_epochs[0].event_id.keys())
    
    index_values = [Subject_id,eye_status]
    for col in range(len(index_values)):
        col_name = microstate_entropy_df.columns[col]
        for shape in reversed(range(microstate_entropy_data.shape[col])): # notice this is the shape of original numpy array. Not shape of DF
            microstate_entropy_df.loc[microstate_entropy_df.iloc[:,col] == shape,col_name]\
            = index_values[col][shape]
    # Reversed in inner loop is used to avoid sequencial data being overwritten.
    # E.g. if 0 is renamed to 1, then the next loop all 1's will be renamed to 2
    
    # Add group status
    Group_status = np.array(["CTRL"]*len(microstate_entropy_df["Subject_ID"]))
    Group_status[np.array([i in cases for i in microstate_entropy_df["Subject_ID"]])] = "PTSD"
    # Add to dataframe
    microstate_entropy_df.insert(2, "Group_status", Group_status)
    # Add dummy variable for re-using plot code
    dummy_variable = ["Entropy"]*len(Group_status)
    microstate_entropy_df.insert(3, "Measurement", dummy_variable)
    
    # Save df
    microstate_entropy_df.to_pickle(os.path.join(Feature_savepath,"microstate_entropy_df.pkl"))
    
    
    # # %% Long-range temporal correlations (LRTC)
    # """
    # See Hardstone et al, 2012
    # Hurst exponent estimation steps:
    #     1. Preprocess
    #     2. Band-pass filter for frequency band of interest
    #     3. Hilbert transform to obtain amplitude envelope
    #     4. Perform DFA
    #         4.1 Compute cumulative sum of time series to create signal profile
    #         4.2 Define set of window sizes (see below)
    #         4.3 Remove the linear trend using least-squares for each window
    #         4.4 Calculate standard deviation for each window and take the mean
    #         4.5 Plot fluctuation function (Standard deviation) as function
    #             for all window sizes, on double logarithmic scale
    #         4.6 The DFA exponent alpha correspond to Hurst exponent
    #             f(L) = sd = L^alpha (with alpha as linear coefficient in log plot)
    
    # If 0 < alpha < 0.5: The process exhibits anti-correlations
    # If 0.5 < alpha < 1: The process exhibits positive correlations
    # If alpha = 0.5: The process is indistinguishable from a random process
    # If 1.0 < alpha < 2.0: The process is non-stationary. H = alpha - 1
    
    # Window sizes should be equally spaced on a logarithmic scale
    # Sizes should be at least 4 samples and up to 10% of total signal length
    # Filters can influence neighboring samples, thus filters should be tested
    # on white noise to estimate window sizes that are unaffected by filters
    
    # filter_length=str(2*1/fmin)+"s" # cannot be used with default transition bandwidth
    
    # """
    # # From simulations with white noise I determined window size thresholds for the 5 frequency bands:
    # thresholds = [7,7,7,6.5,6.5]
    # # And their corresponding log step sizes
    # with open("LRTC_log_win_sizes.pkl", "rb") as filehandle:
    #     log_win_sizes = pickle.load(filehandle)
    
    # # Variables for the the different conditions
    # # Sampling frequency
    # sfreq = final_epochs[0].info["sfreq"]
    # # Channels
    # ch_names = final_epochs[0].info["ch_names"]
    # n_channels = len(ch_names)
    # # Frequency
    # Freq_Bands = {"delta": [1.25, 4.0],
    #               "theta": [4.0, 8.0],
    #               "alpha": [8.0, 13.0],
    #               "beta": [13.0, 30.0],
    #               "gamma": [30.0, 49.0]}
    # n_freq_bands = len(Freq_Bands)
    # # Eye status
    # eye_status = list(final_epochs[0].event_id.keys())
    # n_eye_status = len(eye_status)
    
    # ### Estimating Hurst exponent for the data
    # # The data should be re-referenced to common average (Already done)
    
    # # Data are transformed to numpy arrays
    # # Then divided into EO and EC and further into each of the 5 trials
    # # So DFA is estimated for each trial separately, which was concluded from simulations
    # gaps_trials_idx = np.load("Gaps_trials_idx.npy") # re-used from microstate analysis
    # n_trials = 5
    
    # H_data = []
    # for i in range(n_subjects):
    #     # Transform data to correct shape
    #     temp_arr = final_epochs[i].get_data() # get data
    #     arr_shape = temp_arr.shape # get shape
    #     temp_arr = temp_arr.swapaxes(1,2) # swap ch and time axis
    #     temp_arr = temp_arr.reshape(arr_shape[0]*arr_shape[2],arr_shape[1]) # reshape by combining epochs and times
    #     # Get indices for eyes open and closed
    #     EC_index = final_epochs[i].events[:,2] == 1
    #     EO_index = final_epochs[i].events[:,2] == 2
    #     # Repeat with 4s * sample frequency to correct for concatenation of times and epochs
    #     EC_index = np.repeat(EC_index,4*sfreq)
    #     EO_index = np.repeat(EO_index,4*sfreq)
    #     # Divide into eye status
    #     EC_data = temp_arr[EC_index]
    #     EO_data = temp_arr[EO_index]
    #     # Divide into trials
    #     EC_gap_idx = np.array([0]+list(gaps_trials_idx[i,0])+[len(EC_data)])
    #     EO_gap_idx = np.array([0]+list(gaps_trials_idx[i,1])+[len(EO_data)])
    
    glia's avatar
    glia committed
        
    
    #     EC_trial_data = []
    #     EO_trial_data = []
    #     for t in range(n_trials):
    #         EC_trial_data.append(EC_data[EC_gap_idx[t]:EC_gap_idx[t+1]])
    #         EO_trial_data.append(EO_data[EO_gap_idx[t]:EO_gap_idx[t+1]])
    
    glia's avatar
    glia committed
            
    
    #     # Save data
    #     H_data.append([EC_trial_data,EO_trial_data]) # output [subject][eye][trial][time,ch]
    
    # # Calculate H for each subject, eye status, trial, freq and channel
    # H_arr = np.zeros((n_subjects,n_eye_status,n_trials,n_channels,n_freq_bands))
    # w_len = [len(ele) for ele in log_win_sizes]
    # DFA_arr = np.empty((n_subjects,n_eye_status,n_trials,n_channels,n_freq_bands,2,np.max(w_len)))
    # DFA_arr[:] = np.nan
    
    # # Get current time
    # c_time1 = time.localtime()
    # c_time1 = time.strftime("%a %d %b %Y %H:%M:%S", c_time1)
    # print("Started",c_time1)
    
    # # Nolds are already using all cores so multiprocessing with make it slower
    # # Warning occurs when R2 is estimated during detrending - but R2 is not used
    # warnings.simplefilter("ignore")
    # for i in range(n_subjects):
    #     # Pre-allocate memory
    #     DFA_temp = np.empty((n_eye_status,n_trials,n_channels,n_freq_bands,2,np.max(w_len)))
    #     DFA_temp[:] = np.nan
    #     H_temp = np.empty((n_eye_status,n_trials,n_channels,n_freq_bands))
    #     for e in range(n_eye_status):
    #         for trial in range(n_trials):
    #             for c in range(n_channels):
    #                 # Get the data
    #                 signal = H_data[i][e][trial][:,c]
    
    glia's avatar
    glia committed
                    
    
    #                 counter = 0 # prepare counter
    #                 for fmin, fmax in Freq_Bands.values():
    #                     # Filter for each freq band
    #                     signal_filtered = mne.filter.filter_data(signal, sfreq=sfreq, verbose=0,
    #                                                   l_freq=fmin, h_freq=fmax)
    #                     # Hilbert transform
    #                     analytic_signal = scipy.signal.hilbert(signal_filtered)
    #                     # Get Amplitude envelope
    #                     # np.abs is the same as np.linalg.norm, i.e. the length for complex input which is the amplitude
    #                     ampltude_envelope = np.abs(analytic_signal)
    #                     # Perform DFA using predefined window sizes from simulation
    #                     a, dfa_data = nolds.dfa(ampltude_envelope,
    #                                             nvals=np.exp(log_win_sizes[counter]).astype("int"),
    #                                             debug_data=True)
    #                     # Save DFA results
    #                     DFA_temp[e,trial,c,counter,:,0:w_len[counter]] = dfa_data[0:2]
    #                     H_temp[e,trial,c,counter] = a
    #                     # Update counter
    #                     counter += 1
    
    #     # Print run status
    #     print("Finished {} out of {}".format(i+1,n_subjects))
    #     # Save the results
    #     H_arr[i] = H_temp
    #     DFA_arr[i] = DFA_temp
    
    # warnings.simplefilter("default")
    
    # # Get current time
    # c_time2 = time.localtime()
    # c_time2 = time.strftime("%a %d %b %Y %H:%M:%S", c_time2)
    # print("Started", c_time1, "\nCurrent Time",c_time2)
    
    # # Save the DFA analysis data 
    # np.save(Feature_savepath+"DFA_arr.npy", DFA_arr)
    # np.save(Feature_savepath+"H_arr.npy", H_arr)
    
    glia's avatar
    glia committed
    
    
    1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
    # # Load
    # DFA_arr = np.load(Feature_savepath+"DFA_arr.npy")
    # H_arr = np.load(Feature_savepath+"H_arr.npy")
    
    # # Average the Hurst Exponent across trials
    # H_arr = np.mean(H_arr, axis=2)
    
    # # Convert to Pandas dataframe (Hurst exponent)
    # # The dimensions will each be a column with numbers and the last column will be the actual values
    # arr = np.column_stack(list(map(np.ravel, np.meshgrid(*map(np.arange, H_arr.shape), indexing="ij"))) + [H_arr.ravel()])
    # H_data_df = pd.DataFrame(arr, columns = ["Subject_ID", "Eye_status", "Channel", "Freq_band", "Value"])
    # # Change from numerical coding to actual values
    # eye_status = list(final_epochs[0].event_id.keys())
    # ch_name = final_epochs[0].info["ch_names"]
    
    # index_values = [Subject_id,eye_status,ch_name,list(Freq_Bands.keys())]
    # for col in range(len(index_values)):
    #     col_name = H_data_df.columns[col]
    #     for shape in range(H_arr.shape[col]): # notice this is the shape of original numpy array. Not shape of DF
    #         H_data_df.loc[H_data_df.iloc[:,col] == shape,col_name]\
    #         = index_values[col][shape]
    
    # # Add group status
    # Group_status = np.array(["CTRL"]*len(H_data_df["Subject_ID"]))
    # Group_status[np.array([i in cases for i in H_data_df["Subject_ID"]])] = "PTSD"
    # # Add to dataframe
    # H_data_df.insert(2, "Group_status", Group_status)
    
    # # Fix Freq_band categorical order
    # H_data_df["Freq_band"] = H_data_df["Freq_band"].astype("category").\
    #             cat.reorder_categories(list(Freq_Bands.keys()), ordered=True)
    
    # # Global Hurst exponent
    # H_data_df_global = H_data_df.groupby(["Subject_ID", "Eye_status", "Freq_band"]).mean().reset_index() # by default pandas mean skip nan
    # # Add group status (cannot use group_by as each subject only have 1 group, not both)
    # Group_status = np.array(["CTRL"]*len(H_data_df_global["Subject_ID"]))
    # Group_status[np.array([i in cases for i in H_data_df_global["Subject_ID"]])] = "PTSD"
    # # Add to dataframe
    # H_data_df_global.insert(2, "Group_status", Group_status)
    # # Add dummy variable for re-using plot code
    # dummy_variable = ["Global Hurst Exponent"]*H_data_df_global.shape[0]
    # H_data_df_global.insert(3, "Measurement", dummy_variable )
    
    # # Save the data
    # H_data_df.to_pickle(os.path.join(Feature_savepath,"H_data_df.pkl"))
    # H_data_df_global.to_pickle(os.path.join(Feature_savepath,"H_data_global_df.pkl"))
    
    # # %% Source localization of sensor data
    # # Using non-interpolated channels
    # # Even interpolated channels during preprocessing and visual inspection
    # # are dropped
    
    # # Prepare epochs for estimation of source connectivity
    # source_epochs = [0]*n_subjects
    # for i in range(n_subjects):
    #     source_epochs[i] = final_epochs[i].copy()
    
    # ### Make forward solutions
    # # A forward solution is first made for all individuals with no dropped channels
    # # Afterwards individual forward solutions are made for subjects with bad
    # # channels that were interpolated in preprocessing and these are dropped
    # # First forward operator is computed using a template MRI for each dataset
    # fs_dir = "/home/glia/MNE-fsaverage-data/fsaverage"
    # subjects_dir = os.path.dirname(fs_dir)
    # trans = "fsaverage"
    # src = os.path.join(fs_dir, "bem", "fsaverage-ico-5-src.fif")
    # bem = os.path.join(fs_dir, "bem", "fsaverage-5120-5120-5120-bem-sol.fif")
    
    # # Read the template sourcespace
    # sourcespace = mne.read_source_spaces(src)
    
    # temp_idx = 0 # Index with subject that had no bad channels
    # subject_eeg = source_epochs[temp_idx].copy()
    # subject_eeg.set_eeg_reference(projection=True) # needed for inverse modelling
    # # Make forward solution
    # fwd = mne.make_forward_solution(subject_eeg.info, trans=trans, src=src,
    #                             bem=bem, eeg=True, mindist=5.0, n_jobs=1)
    # # Save forward operator
    # fname_fwd = "./Source_fwd/fsaverage-fwd.fif"
    # mne.write_forward_solution(fname_fwd, fwd, overwrite=True)
    
    # # A specific forward solution is also made for each subject with bad channels
    # with open("./Preprocessing/bad_ch.pkl", "rb") as file:
    #    bad_ch = pickle.load(file)
    
    # All_bad_ch = bad_ch
    # All_drop_epochs = dropped_epochs_df
    # All_dropped_ch = []
    
    # Bad_ch_idx = [idx for idx, item in enumerate(All_bad_ch) if item != 0]
    # Bad_ch_subjects = All_drop_epochs["Subject_ID"][Bad_ch_idx]
    # # For each subject with bad channels, drop the channels and make forward operator
    # for n in range(len(Bad_ch_subjects)):
    #     Subject = Bad_ch_subjects.iloc[n]
    #     try:
    #         Subject_idx = Subject_id.index(Subject)
    #         # Get unique bad channels
    #         Bad_ch0 = All_bad_ch[Bad_ch_idx[n]]
    #         Bad_ch1 = []
    #         for i2 in range(len(Bad_ch0)):
    #             if type(Bad_ch0[i2]) == list:
    #                 for i3 in range(len(Bad_ch0[i2])):
    #                     Bad_ch1.append(Bad_ch0[i2][i3])
    #             elif type(Bad_ch0[i2]) == str:
    #                 Bad_ch1.append(Bad_ch0[i2])
    #         Bad_ch1 = np.unique(Bad_ch1)
    #         # Drop the bad channels
    #         source_epochs[Subject_idx].drop_channels(Bad_ch1)
    #         # Save the overview of dropped channels
    #         All_dropped_ch.append([Subject,Subject_idx,Bad_ch1])
    #         # Make forward operator
    #         subject_eeg = source_epochs[Subject_idx].copy()
    #         subject_eeg.set_eeg_reference(projection=True) # needed for inverse modelling
    #         # Make forward solution
    #         fwd = mne.make_forward_solution(subject_eeg.info, trans=trans, src=src,
    #                                     bem=bem, eeg=True, mindist=5.0, n_jobs=1)
    #         # Save forward operator
    #         fname_fwd = "./Source_fwd/fsaverage_{}-fwd.fif".format(Subject)
    #         mne.write_forward_solution(fname_fwd, fwd, overwrite=True)
    #     except:
    #         print(Subject,"was already dropped")
    
    # with open("./Preprocessing/All_datasets_bad_ch.pkl", "wb") as filehandle:
    #     pickle.dump(All_dropped_ch, filehandle)
    
    
    # # %% Load forward operators
    # # Re-use for all subjects without dropped channels
    # fname_fwd = "./Source_fwd/fsaverage-fwd.fif"
    # fwd = mne.read_forward_solution(fname_fwd)
    
    # fwd_list = [fwd]*n_subjects
    
    # # Use specific forward solutions for subjects with dropped channels
    # with open("./Preprocessing/All_datasets_bad_ch.pkl", "rb") as file:
    #    All_dropped_ch = pickle.load(file)
    
    # for i in range(len(All_dropped_ch)):
    #     Subject = All_dropped_ch[i][0]
    #     Subject_idx = All_dropped_ch[i][1]
    #     fname_fwd = "./Source_fwd/fsaverage_{}-fwd.fif".format(Subject)
    #     fwd = mne.read_forward_solution(fname_fwd)
    #     fwd_list[Subject_idx] = fwd
    
    # # Check the correct number of channels are present in fwd
    # random_point = int(np.random.randint(0,len(All_dropped_ch)-1,1))
    # assert len(fwds[All_dropped_ch[random_point][1]].ch_names) == source_epochs[All_dropped_ch[random_point][1]].info["nchan"]
    
    # # %% Make parcellation
    # # After mapping to source space, I end up with 20484 vertices
    # # but I wanted to map to fewer sources and not many more
    # # Thus I need to perform parcellation
    # # Get labels for FreeSurfer "aparc" cortical parcellation (example with 74 labels/hemi - Destriuex)
    # labels_aparc = mne.read_labels_from_annot("fsaverage", parc="aparc.a2009s",
    #                                     subjects_dir=subjects_dir)
    # labels_aparc = labels_aparc[:-2] # remove unknowns
    
    # labels_aparc_names = [label.name for label in labels_aparc]
    
    # # Manually adding the 31 ROIs (14-lh/rh + 3 in midline) from Toll et al, 2020
    # # Making fuction to take subset of a label
    # def label_subset(label, subset, name="ROI_name"):
    #     label_subset = mne.Label(label.vertices[subset], label.pos[subset,:],
    #                          label.values[subset], label.hemi,
    #                          name = "{}-{}".format(name,label.hemi),
    #                          subject = label.subject, color = None)
    #     return label_subset
    
    # ### Visual area 1 (V1 and somatosensory cortex BA1-3)
    # label_filenames = ["lh.V1.label", "rh.V1.label",
    #                    "lh.BA1.label", "rh.BA1.label",
    #                    "lh.BA2.label", "rh.BA2.label",
    #                    "lh.BA3a.label", "rh.BA3a.label",
    #                    "lh.BA3b.label", "rh.BA3b.label"]
    # labels0 = [0]*len(label_filenames)
    # for i, filename in enumerate(label_filenames):
    #     labels0[i] = mne.read_label(os.path.join(fs_dir, "label", filename), subject="fsaverage")
    # # Add V1 to final label variable
    # labels = labels0[:2]
    # # Rename to remove redundant hemi information
    # labels[0].name = "V1-{}".format(labels[0].hemi)
    # labels[1].name = "V1-{}".format(labels[1].hemi)
    # # Assign a color
    # labels[0].color = matplotlib.colors.to_rgba("salmon")
    # labels[1].color = matplotlib.colors.to_rgba("salmon")
    # # Combine Brodmann Areas for SMC. Only use vertices ones to avoid duplication error
    # SMC_labels = labels0[2:]
    # for hem in range(2):
    #     SMC_p1 = SMC_labels[hem]
    #     for i in range(1,len(SMC_labels)//2):
    #         SMC_p2 = SMC_labels[hem+2*i]
    #         p2_idx = np.isin(SMC_p2.vertices, SMC_p1.vertices, invert=True)
    #         SMC_p21 = label_subset(SMC_p2, p2_idx, "SMC")
    #         SMC_p1 = SMC_p1.__add__(SMC_p21)
    #     SMC_p1.name = SMC_p21.name
    #     # Assign a color
    #     SMC_p1.color = matplotlib.colors.to_rgba("orange")
    #     labels.append(SMC_p1)
    
    # ### Inferior frontal junction
    # # Located at junction between inferior frontal and inferior precentral sulcus
    # label_aparc_names0 = ["S_front_inf","S_precentral-inf-part"]
    # temp_labels = []
    # for i in range(len(label_aparc_names0)):
    #     labels_aparc_idx = [labels_aparc_names.index(l) for l in labels_aparc_names if l.startswith(label_aparc_names0[i])]
    #     for i2 in range(len(labels_aparc_idx)):
    #         temp_labels.append(labels_aparc[labels_aparc_idx[i2]].copy())
    
    # pos1 = temp_labels[0].pos
    # pos2 = temp_labels[2].pos
    # distm = scipy.spatial.distance.cdist(pos1,pos2)
    # # Find the closest points between the 2 ROIs
    # l1_idx = np.unique(np.where(distm<np.quantile(distm, 0.001))[0]) # q chosen to correspond to around 10% of ROI
    # l2_idx = np.unique(np.where(distm<np.quantile(distm, 0.0005))[1]) # q chosen to correspond to around 10% of ROI
    
    # IFJ_label_p1 = label_subset(temp_labels[0], l1_idx, "IFJ")
    # IFJ_label_p2 = label_subset(temp_labels[2], l2_idx, "IFJ")
    # # Combine the 2 parts
    # IFJ_label = IFJ_label_p1.__add__(IFJ_label_p2)
    # IFJ_label.name = IFJ_label_p1.name
    # # Assign a color
    # IFJ_label.color = matplotlib.colors.to_rgba("chartreuse")
    # # Append to final list
    # labels.append(IFJ_label)
    
    # # Do the same for the right hemisphere
    # pos1 = temp_labels[1].pos
    # pos2 = temp_labels[3].pos
    # distm = scipy.spatial.distance.cdist(pos1,pos2)
    # # Find the closest points between the 2 ROIs
    # l1_idx = np.unique(np.where(distm<np.quantile(distm, 0.00075))[0]) # q chosen to correspond to around 10% of ROI
    # l2_idx = np.unique(np.where(distm<np.quantile(distm, 0.0005))[1]) # q chosen to correspond to around 10% of ROI
    # IFJ_label_p1 = label_subset(temp_labels[1], l1_idx, "IFJ")
    # IFJ_label_p2 = label_subset(temp_labels[3], l2_idx, "IFJ")
    # # Combine the 2 parts
    # IFJ_label = IFJ_label_p1.__add__(IFJ_label_p2)
    # IFJ_label.name = IFJ_label_p1.name
    # # Assign a color
    # IFJ_label.color = matplotlib.colors.to_rgba("chartreuse")
    # # Append to final list
    # labels.append(IFJ_label)
    
    # ### Intraparietal sulcus
    # label_aparc_names0 = ["S_intrapariet_and_P_trans"]
    # labels_aparc_idx = [labels_aparc_names.index(l) for l in labels_aparc_names if l.startswith(label_aparc_names0[0])]
    # for i in range(len(labels_aparc_idx)):
    #     labels.append(labels_aparc[labels_aparc_idx[i]].copy())
    #     labels[-1].name = "IPS-{}".format(labels[-1].hemi)
    
    # ### Frontal eye field as intersection between middle frontal gyrus and precentral gyrus
    # label_aparc_names0 = ["G_front_middle","G_precentral"]
    # temp_labels = []
    # for i in range(len(label_aparc_names0)):
    #     labels_aparc_idx = [labels_aparc_names.index(l) for l in labels_aparc_names if l.startswith(label_aparc_names0[i])]
    #     for i2 in range(len(labels_aparc_idx)):
    #         temp_labels.append(labels_aparc[labels_aparc_idx[i2]].copy())
    
    # # Take 10% of middle frontal gyrus closest to precentral gyrus (most posterior)
    # temp_label0 = temp_labels[0]
    # G_fm_y = temp_label0.pos[:,1]
    # thres_G_fm_y = np.sort(G_fm_y)[len(G_fm_y)//10]
    # idx_p1 = np.where(G_fm_y<thres_G_fm_y)[0]
    # FEF_label_p1 = label_subset(temp_label0, idx_p1, "FEF")
    # # Take 10% closest for precentral gyrus (most anterior)
    # temp_label0 = temp_labels[2]
    # # I cannot only use y (anterior/posterior) but also need to restrict z-position
    # G_pre_cen_z = temp_label0.pos[:,2]
    # thres_G_pre_cen_z = 0.04 # visually inspected threshold
    # G_pre_cen_y = temp_label0.pos[:,1]
    # thres_G_pre_cen_y = np.sort(G_pre_cen_y[G_pre_cen_z>thres_G_pre_cen_z])[-len(G_pre_cen_y)//10] # notice - for anterior
    # idx_p2 = np.where((G_pre_cen_y>thres_G_pre_cen_y) & (G_pre_cen_z>thres_G_pre_cen_z))[0]
    # FEF_label_p2 = label_subset(temp_label0, idx_p2, "FEF")
    # # Combine the 2 parts
    # FEF_label = FEF_label_p1.__add__(FEF_label_p2)
    # FEF_label.name = FEF_label_p1.name
    # # Assign a color
    # FEF_label.color = matplotlib.colors.to_rgba("aqua")
    # # Append to final list
    # labels.append(FEF_label)
    
    # # Do the same for the right hemisphere
    # temp_label0 = temp_labels[1]
    # G_fm_y = temp_label0.pos[:,1]
    # thres_G_fm_y = np.sort(G_fm_y)[len(G_fm_y)//10]
    # idx_p1 = np.where(G_fm_y<thres_G_fm_y)[0]
    # FEF_label_p1 = label_subset(temp_label0, idx_p1, "FEF")
    
    # temp_label0 = temp_labels[3]
    # G_pre_cen_z = temp_label0.pos[:,2]
    # thres_G_pre_cen_z = 0.04 # visually inspected threshold
    # G_pre_cen_y = temp_label0.pos[:,1]
    # thres_G_pre_cen_y = np.sort(G_pre_cen_y[G_pre_cen_z>thres_G_pre_cen_z])[-len(G_pre_cen_y)//10] # notice - for anterior
    # idx_p2 = np.where((G_pre_cen_y>thres_G_pre_cen_y) & (G_pre_cen_z>thres_G_pre_cen_z))[0]
    # FEF_label_p2 = label_subset(temp_label0, idx_p2, "FEF")
    # # Combine the 2 parts
    # FEF_label = FEF_label_p1.__add__(FEF_label_p2)
    # FEF_label.name = FEF_label_p1.name
    # # Assign a color
    # FEF_label.color = matplotlib.colors.to_rgba("aqua")
    # # Append to final list