Newer
Older
PBF_data_df = PBF_data_df[(PBF_data_df["Brain_region"] == "Frontal")] # Frontal beta peak frequencys
PAF_data_df.to_pickle(os.path.join(Feature_savepath,"PAF_data_FOOOF_df.pkl"))
PAF_data_df_global.to_pickle(os.path.join(Feature_savepath,"PAF_data_FOOOF_global_df.pkl"))
PTF_data_df.to_pickle(os.path.join(Feature_savepath,"PTF_data_FOOOF_df.pkl"))
PTF_data_df_global.to_pickle(os.path.join(Feature_savepath,"PTF_data_FOOOF_global_df.pkl"))
PBF_data_df.to_pickle(os.path.join(Feature_savepath,"PBF_data_FOOOF_df.pkl"))
PBF_data_df_global.to_pickle(os.path.join(Feature_savepath,"PBF_data_FOOOF_global_df.pkl"))
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
# # Convert to Pandas dataframe (only keep exponent parameter for OOF)
# # The dimensions will each be a column with numbers and the last column will be the actual values
# ori = OOF_data[:,:,:,1]
# arr = np.column_stack(list(map(np.ravel, np.meshgrid(*map(np.arange, ori.shape), indexing="ij"))) + [ori.ravel()])
# PAF_data_df = pd.DataFrame(arr, columns = ["Subject_ID", "Eye_status", "Channel", "Value"])
# # Change from numerical coding to actual values
# index_values = [Subject_id,eye_status,ch_names]
# temp_df = PAF_data_df.copy() # make temp df to not sequential overwrite what is changed
# for col in range(len(index_values)):
# col_name = PAF_data_df.columns[col]
# for shape in range(ori.shape[col]):
# temp_df.loc[PAF_data_df.iloc[:,col] == shape,col_name]\
# = index_values[col][shape]
# OOF_data_df = temp_df # replace original df
# # Add group status
# Group_status = np.array(["CTRL"]*len(OOF_data_df["Subject_ID"]))
# Group_status[np.array([i in cases for i in OOF_data_df["Subject_ID"]])] = "PTSD"
# # Add to dataframe
# OOF_data_df.insert(3, "Group_status", Group_status)
# # Regional OOF
# OOF_data_df.insert(4, "Brain_region", list(Brain_region)*int(PAF_data_df.shape[0]/len(Brain_region)))
# # Save the dataframes
# OOF_data_df.to_pickle(os.path.join(Feature_savepath,"OOF_data_FOOOF_df.pkl"))
"""
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
# %% Microstate analysis
# The function takes the data as a numpy array (n_t, n_ch)
# The data is already re-referenced to common average
# Variables for the clustering function are extracted
sfreq = final_epochs[0].info["sfreq"]
eye_status = list(final_epochs[0].event_id.keys())
n_eye_status = len(eye_status)
ch_names = final_epochs[0].info["ch_names"]
n_channels = len(ch_names)
locs = np.zeros((n_channels,2)) # xy coordinates of the electrodes
for c in range(n_channels):
locs[c] = final_epochs[0].info["chs"][c]["loc"][0:2]
# The epochs are transformed to numpy arrays
micro_data = []
EC_micro_data = []
EO_micro_data = []
for i in range(n_subjects):
# Transform data to correct shape
micro_data.append(final_epochs[i].get_data()) # get data
arr_shape = micro_data[i].shape # get shape
micro_data[i] = micro_data[i].swapaxes(1,2) # swap ch and time axis
micro_data[i] = micro_data[i].reshape(arr_shape[0]*arr_shape[2],arr_shape[1]) # reshape by combining epochs and times
# Get indices for eyes open and closed
EC_index = final_epochs[i].events[:,2] == 1
EO_index = final_epochs[i].events[:,2] == 2
# Repeat with 4s * sample frequency to correct for concatenation of times and epochs
EC_index = np.repeat(EC_index,4*sfreq)
EO_index = np.repeat(EO_index,4*sfreq)
# Save data where it is divided into eye status
EC_micro_data.append(micro_data[i][EC_index])
EO_micro_data.append(micro_data[i][EO_index])
# Global explained variance and Cross-validation criterion is used to determine number of microstates
# First all data is concatenated to find the optimal number of maps for all data
micro_data_all = np.vstack(micro_data)
# Determine the number of clusters
# I use a slightly modified kmeans function which returns the cv_min
global_gev = []
cv_criterion = []
for n_maps in range(2,7):
maps, L, gfp_peaks, gev, cv_min = kmeans_return_all(micro_data_all, n_maps)
global_gev.append(np.sum(gev))
cv_criterion.append(cv_min)
# Save run results
cluster_results = np.array([global_gev,cv_criterion])
np.save("Microstate_n_cluster_test_results.npy", cluster_results) # (gev/cv_crit, n_maps from 2 to 6)
#cluster_results = np.load("Microstate_n_cluster_test_results.npy")
#global_gev = cluster_results[0,:]
#cv_criterion = cluster_results[1,:]
# Evaluate best n_maps
plt.figure()
plt.plot(np.linspace(2,6,len(cv_criterion)),(cv_criterion/np.sum(cv_criterion)), label="CV Criterion")
plt.plot(np.linspace(2,6,len(cv_criterion)),(global_gev/np.sum(global_gev)), label="GEV")
plt.legend()
plt.ylabel("Normalized to total")
# The lower CV the better.
# But the higher GEV the better.
# Based on the plots and the recommendation by vong Wegner & Laufs 2018
# In order to compare between groups, I fix the microstates by clustering on data from both groups
# Due to instability of maps when running multiple times, I increased n_maps from 4 to 6
mode = ["aahc", "kmeans", "kmedoids", "pca", "ica"][1]
# K-means is stochastic, thus I run it multiple times in order to find the maps with highest GEV
# Each K-means is run 5 times and best map is chosen. But I do this 10 times more, so in total 50 times!
n_run = 10
# Pre-allocate memory
microstate_cluster_results = []
# Parallel processing can only be implemented by ensuring different seeds
# Otherwise the iteration would be the same.
# However the k-means already use parallel processing so making outer loop with
# concurrent processes make it use too many processors
# Get current time
c_time1 = time.localtime()
c_time1 = time.strftime("%a %d %b %Y %H:%M:%S", c_time1)
print(c_time1)
# Change datatype due to error with computational power in clustering
EC_down = np.array(EC_micro_data, dtype = object)
#EC_down = EC_down.astype('float32')
EO_down = np.array(EO_micro_data, dtype = object)
#EO_down = EO_down.astype('float32')
for r in range(n_run):
maps = [0]*2
m_labels = [0]*2
gfp_peaks = [0]*2
gev = [0]*2
# Eyes closed
counter = 0
maps_, x_, gfp_peaks_, gev_ = clustering(
np.vstack(EC_down), sfreq, ch_names, locs, mode, n_maps, doplot=False) # doplot=True is bugged
maps[counter] = maps_
m_labels[counter] = x_
gfp_peaks[counter] = gfp_peaks_
gev[counter] = gev_
counter += 1
# Eyes open
maps_, x_, gfp_peaks_, gev_ = clustering(
np.vstack(EO_down), sfreq, ch_names, locs, mode, n_maps, doplot=False) # doplot=True is bugged
maps[counter] = maps_
m_labels[counter] = x_
gfp_peaks[counter] = gfp_peaks_
gev[counter] = gev_
counter += 1
microstate_cluster_results.append([maps, m_labels, gfp_peaks, gev])
print("Finished {} out of {}".format(r+1, n_run))
# Get current time
c_time2 = time.localtime()
c_time2 = time.strftime("%a %d %b %Y %H:%M:%S", c_time2)
print("Started", c_time1, "\nFinished",c_time2)
# Save the results
with open(Feature_savepath+"Microstate_5_maps_10x5_k_means_results.pkl", "wb") as file:
pickle.dump(microstate_cluster_results, file)
# # Load
# with open(Feature_savepath+"Microstate_4_maps_10x5_k_means_results.pkl", "rb") as file:
# microstate_cluster_results = pickle.load(file)
# Find the best maps (Highest GEV across all the K-means clusters)
EC_total_gevs = np.sum(np.vstack(np.array(microstate_cluster_results)[:,3,0]), axis=1) # (runs, maps/labels/gfp/gev, ec/eo)
EO_total_gevs = np.sum(np.vstack(np.array(microstate_cluster_results)[:,3,1]), axis=1)
Best_EC_idx = np.argmax(EC_total_gevs)
Best_EO_idx = np.argmax(EO_total_gevs)
# Update the variables for the best maps
maps = [microstate_cluster_results[Best_EC_idx][0][0],microstate_cluster_results[Best_EO_idx][0][1]]
m_labels = [microstate_cluster_results[Best_EC_idx][1][0],microstate_cluster_results[Best_EO_idx][1][1]]
gfp_peaks = [microstate_cluster_results[Best_EC_idx][2][0],microstate_cluster_results[Best_EO_idx][2][1]]
gev = [microstate_cluster_results[Best_EC_idx][3][0],microstate_cluster_results[Best_EO_idx][3][1]]
# Plot the maps
plt.style.use('default')
labels = ["EC", "EO"] #Eyes-closed, Eyes-open
for i in range(len(labels)):
fig, axarr = plt.subplots(1, n_maps, figsize=(20,5))
fig.patch.set_facecolor('white')
for imap in range(n_maps):
mne.viz.plot_topomap(maps[i][imap,:], pos = final_epochs[0].info, axes = axarr[imap]) # plot
axarr[imap].set_title("GEV: {:.2f}".format(gev[i][imap]), fontsize=16, fontweight="bold") # title
fig.suptitle("Microstates: {}".format(labels[i]), fontsize=20, fontweight="bold")
# Manual re-order the maps
# Due the random initiation of K-means this have to be modified every time clusters are made!
# Assign map labels (e.g. 0, 2, 1, 3)
order = [0]*2
order[0] = [3,0,1,2,4] # EC
order[1] = [3,1,0,2,4] # EO
for i in range(len(order)):
maps[i] = maps[i][order[i],:] # re-order maps
gev[i] = gev[i][order[i]] # re-order GEV
# Make directory to find and replace map labels
dic0 = {value:key for key, value in enumerate(order[i])}
m_labels[i][:] = [dic0.get(n, n) for n in m_labels[i]] # re-order labels
# The maps seems to be correlated both negatively and positively (see spatial correlation plots)
# Thus the sign of the map does not really reflect which areas are positive or negative (absolute)
# But more which areas are different during each state (relatively)
# I can therefore change the sign of the map for the visualizaiton
sign_swap = [[1,-1,1,1,1],[1,1,1,-1,1]]
for i in range(len(order)):
for m in range(n_maps):
maps[i][m] *= sign_swap[i][m]
# Plot the maps and save
save_path = "/home/s200431/Figures/Microstates"
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
labels = ["EC", "EO"]
for i in range(len(labels)):
fig, axarr = plt.subplots(1, n_maps, figsize=(20,5))
fig.patch.set_facecolor('white')
for imap in range(n_maps):
mne.viz.plot_topomap(maps[i][imap,:], pos = final_epochs[0].info, axes = axarr[imap]) # plot
axarr[imap].set_title("GEV: {:.2f}".format(gev[i][imap]), fontsize=16, fontweight="bold") # title
fig.suptitle("Microstates: {} - Total GEV: {:.2f}".format(labels[i],sum(gev[i])), fontsize=20, fontweight="bold")
# Save the figure
fig.savefig(os.path.join(save_path,str("Microstates_{}".format(labels[i]) + ".png")))
# Calculate spatial correlation between maps and actual data points (topography)
# The sign of the map is changed so the correlation is positive
# By default the code looks for highest spatial correlation (regardless of sign)
# Thus depending on random initiation point the map might be opposite
plt.style.use('ggplot')
def spatial_correlation(data, maps):
n_t = data.shape[0]
n_ch = data.shape[1]
data = data - data.mean(axis=1, keepdims=True)
# GFP peaks
gfp = np.std(data, axis=1)
gfp_peaks = locmax(gfp)
gfp_values = gfp[gfp_peaks]
gfp2 = np.sum(gfp_values**2) # normalizing constant in GEV
n_gfp = gfp_peaks.shape[0]
# Spatial correlation
C = np.dot(data, maps.T)
C /= (n_ch*np.outer(gfp, np.std(maps, axis=1)))
L = np.argmax(C**2, axis=1) # C is squared here which means the maps do no retain information about the sign of the correlation
return C
C_EC = spatial_correlation(np.vstack(np.array(EC_micro_data)), maps[0])
C_EO = spatial_correlation(np.vstack(np.array(EO_micro_data)), maps[1])
C = [C_EC, C_EO]
# Plot the distribution of spatial correlation for each label and each map
labels = ["EC", "EO"]
for i in range(len(labels)):
fig, axarr = plt.subplots(n_maps, n_maps, figsize=(16,16))
for Lmap in range(n_maps):
for Mmap in range(n_maps):
sns.distplot(C[i][m_labels[i] == Lmap,Mmap], ax = axarr[Lmap,Mmap])
axarr[Lmap,Mmap].set_xlabel("Spatial correlation")
plt.suptitle("Distribution of spatial correlation_{}".format(labels[i]), fontsize=20, fontweight="bold")
# Add common x and y axis labels by making one big axis
fig.add_subplot(111, frameon=False)
plt.tick_params(labelcolor="none", top="off", bottom="off", left="off", right="off") # hide tick labels and ticks
plt.grid(False) # remove global grid
plt.xlabel("Microstate number", labelpad=20)
plt.ylabel("Label number", labelpad=10)
fig.savefig(os.path.join(save_path,str("Microstates_Spatial_Correlation_Label_State_{}".format(labels[i]) + ".png")))
# Plot the distribution of spatial correlation for all data and each map
labels = ["EC", "EO"]
for i in range(len(labels)):
fig, axarr = plt.subplots(1,n_maps, figsize=(20,5))
for imap in range(n_maps):
sns.distplot(C[i][:,imap], ax = axarr[imap])
plt.xlabel("Spatial correlation")
plt.suptitle("Distribution of spatial correlation", fontsize=20, fontweight="bold")
# Add common x and y axis labels by making one big axis
fig.add_subplot(111, frameon=False)
plt.tick_params(labelcolor="none", top="off", bottom="off", left="off", right="off") # hide tick labels and ticks
plt.grid(False) # remove global grid
plt.xlabel("Microstate number", labelpad=20)
plt.ylabel("Label number")
# Prepare for calculation of transition matrix
# I modified the function, so it takes the list argument gap_index
# gap_index should have the indices right before gaps in data
# Gaps: Between dropped epochs, trials (eo/ec) and subjects
# The between subjects gaps is removed by dividing the data into subjects
n_trials = 5
n_epoch_length = final_epochs[0].get_data().shape[2]
micro_labels = []
micro_subject_EC_idx = [0]
micro_subject_EO_idx = [0]
gaps_idx = []
gaps_trials_idx = []
for i in range(n_subjects):
# Get indices for subject
micro_subject_EC_idx.append(micro_subject_EC_idx[i]+EC_micro_data[i].shape[0])
temp_EC = m_labels[0][micro_subject_EC_idx[i]:micro_subject_EC_idx[i+1]]
# Get labels for subject i EO
micro_subject_EO_idx.append(micro_subject_EO_idx[i]+EO_micro_data[i].shape[0])
temp_EO = m_labels[1][micro_subject_EO_idx[i]:micro_subject_EO_idx[i+1]]
# Save
micro_labels.append([temp_EC,temp_EO]) # (subject, eye)
# Get indices with gaps
# Dropped epochs are first considered
# Each epoch last 4s, which correspond to 2000 samples and a trial is 15 epochs - dropped epochs
# Get epochs for each condition
EC_drop_epochs = Drop_epochs_df.iloc[i,1:][Drop_epochs_df.iloc[i,1:] <= 75].to_numpy()
EO_drop_epochs = Drop_epochs_df.iloc[i,1:][(Drop_epochs_df.iloc[i,1:] >= 75)&
(Drop_epochs_df.iloc[i,1:] <= 150)].to_numpy()
# Get indices for the epochs for EC that were dropped and correct for changing index due to drop
EC_drop_epochs_gaps_idx = []
counter = 0
for d in range(len(EC_drop_epochs)):
drop_epoch_number = EC_drop_epochs[d]
Drop_epoch_idx = (drop_epoch_number-counter)*n_epoch_length # counter subtracted as the drop index is before dropped
EC_drop_epochs_gaps_idx.append(Drop_epoch_idx-1) # -1 for point just before gap
counter += 1
# Negative index might occur if the first epochs were removed. This index is not needed for transition matrix
if len(EC_drop_epochs_gaps_idx) > 0:
for d in range(len(EC_drop_epochs_gaps_idx)): # check all, e.g. if epoch 0,1,2,3 are dropped then all should be caught
if EC_drop_epochs_gaps_idx[0] == -1:
EC_drop_epochs_gaps_idx = EC_drop_epochs_gaps_idx[1:len(EC_drop_epochs)]
# Get indices for the epochs for EO that were dropped and correct for changing index due to drop
EO_drop_epochs_gaps_idx = []
counter = 0
for d in range(len(EO_drop_epochs)):
drop_epoch_number = EO_drop_epochs[d]-75
Drop_epoch_idx = (drop_epoch_number-counter)*n_epoch_length # counter subtracted as the drop index is before dropped
EO_drop_epochs_gaps_idx.append(Drop_epoch_idx-1) # -1 for point just before gap
counter += 1
# Negative index might occur if the first epoch was removed. This index is not needed for transition matrix
if len(EO_drop_epochs_gaps_idx) > 0:
for d in range(len(EO_drop_epochs_gaps_idx)): # check all, e.g. if epoch 0,1,2,3 are dropped then all should be caught
if EO_drop_epochs_gaps_idx[0] == -1:
EO_drop_epochs_gaps_idx = EO_drop_epochs_gaps_idx[1:len(EO_drop_epochs)]
# Gaps between trials
Trial_indices = [0, 15, 30, 45, 60, 75] # all the indices for start and end of the 5 trials
EC_trial_gaps_idx = []
EO_trial_gaps_idx = []
counter_EC = 0
counter_EO = 0
for t in range(len(Trial_indices)-2): # -2 as start and end is not used in transition matrix
temp_drop = EC_drop_epochs[(EC_drop_epochs >= Trial_indices[t])&
(EC_drop_epochs < Trial_indices[t+1])]
# Correct the trial id for any potential drops within that trial
counter_EC += len(temp_drop)
trial_idx_corrected_for_drops = 15*(t+1)-counter_EC
EC_trial_gaps_idx.append((trial_idx_corrected_for_drops*n_epoch_length)-1) # multiply id with length of epoch and subtract 1
temp_drop = EO_drop_epochs[(EO_drop_epochs >= Trial_indices[t]+75)&
(EO_drop_epochs < Trial_indices[t+1]+75)]
# Correct the trial id for any potential drops within that trial
counter_EO += len(temp_drop)
trial_idx_corrected_for_drops = 15*(t+1)-counter_EO
EO_trial_gaps_idx.append((trial_idx_corrected_for_drops*n_epoch_length)-1) # multiply id with length of epoch and subtract 1
# Concatenate all drop indices
gaps_idx.append([np.unique(np.sort(EC_drop_epochs_gaps_idx+EC_trial_gaps_idx)),
np.unique(np.sort(EO_drop_epochs_gaps_idx+EO_trial_gaps_idx))])
# Make on with trial gaps only for use in LRTC analysis
gaps_trials_idx.append([EC_trial_gaps_idx,EO_trial_gaps_idx])
# Save the gap idx files
np.save("Gaps_idx.npy",np.array(gaps_idx))
np.save("Gaps_trials_idx.npy",np.array(gaps_trials_idx))
# %% Calculate microstate features
# Symbol distribution (also called ratio of time covered RTT)
# Transition matrix
# Shannon entropy
EC_p_hat = p_empirical(m_labels[0], n_maps)
EO_p_hat = p_empirical(m_labels[1], n_maps)
# Sanity check: Overall between EC and EO
microstate_time_data = np.zeros((n_subjects,n_eye_status,n_maps))
microstate_transition_data = np.zeros((n_subjects,n_eye_status,n_maps,n_maps))
microstate_entropy_data = np.zeros((n_subjects,n_eye_status))
microstate_orrurence_data = np.zeros((n_subjects,n_eye_status,n_maps))
microstate_mean_duration_data = np.zeros((n_subjects,n_eye_status,n_maps))
for i in range(n_subjects):
# Calculate ratio of time covered
temp_EC_p_hat = p_empirical(micro_labels[i][0], n_maps)
temp_EO_p_hat = p_empirical(micro_labels[i][1], n_maps)
# Calcuate number of occurences for each microstate
for j in range(len(micro_labels[i][0])-1):
if micro_labels[i][0][j] != micro_labels[i][0][j+1]:
microstate_orrurence_data[i][0][micro_labels[i][0][j]] += 1
for j in range(len(micro_labels[i][1])-1):
if micro_labels[i][1][j] != micro_labels[i][1][j+1]:
microstate_orrurence_data[i][1][micro_labels[i][1][j]] += 1
# Calculate mean duration of each microstate
for j in range(n_maps):
microstate_mean_duration_data[i][0][j] = sum(micro_labels[i][0] == j)/microstate_orrurence_data[i][0][j]
microstate_mean_duration_data[i][1][j] = sum(micro_labels[i][1] == j)/microstate_orrurence_data[i][1][j]
temp_EC_T_hat = T_empirical(micro_labels[i][0], n_maps, gaps_idx[i][0])
temp_EO_T_hat = T_empirical(micro_labels[i][1], n_maps, gaps_idx[i][1])
"""
temp_EC_T_hat = T_empirical(micro_labels[i][0], n_maps)
temp_EO_T_hat = T_empirical(micro_labels[i][1], n_maps)
# Calculate Shannon entropy
temp_EC_h_hat = H_1(micro_labels[i][0], n_maps)
temp_EO_h_hat = H_1(micro_labels[i][1], n_maps)
# Save the data
microstate_time_data[i,0,:] = temp_EC_p_hat
microstate_time_data[i,1,:] = temp_EO_p_hat
microstate_transition_data[i,0,:,:] = temp_EC_T_hat
microstate_transition_data[i,1,:,:] = temp_EO_T_hat
microstate_entropy_data[i,0] = temp_EC_h_hat/max_entropy(n_maps) # ratio of max entropy
microstate_entropy_data[i,1] = temp_EO_h_hat/max_entropy(n_maps) # ratio of max entropy
# Save transition data
np.save(Feature_savepath+"microstate_transition_data.npy", microstate_transition_data)
# Convert transition data to dataframe for further processing with other features
# Transition matrix should be read as probability of row to column
microstate_transition_data_arr =\
microstate_transition_data.reshape((n_subjects,n_eye_status,n_maps*n_maps)) # flatten 5 x 5 matrix to 1D
transition_info = ["M1->M1", "M1->M2", "M1->M3", "M1->M4", "M1->M5",
"M2->M1", "M2->M2", "M2->M3", "M2->M4", "M2-M5",
"M3->M1", "M3->M2", "M3->M3", "M3->M4", "M3->M5",
"M4->M1", "M4->M2", "M4->M3", "M4->M4", "M4->M5",
"M5->M1", "M5->M2", "M5->M3", "M5->M4", "M5->M5"]
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
arr = np.column_stack(list(map(np.ravel, np.meshgrid(*map(np.arange, microstate_transition_data_arr.shape), indexing="ij"))) + [microstate_transition_data_arr.ravel()])
microstate_transition_data_df = pd.DataFrame(arr, columns = ["Subject_ID", "Eye_status", "Transition", "Value"])
# Change from numerical coding to actual values
eye_status = list(final_epochs[0].event_id.keys())
index_values = [Subject_id,eye_status,transition_info]
for col in range(len(index_values)):
col_name = microstate_transition_data_df.columns[col]
for shape in reversed(range(microstate_transition_data_arr.shape[col])): # notice this is the shape of original numpy array. Not shape of DF
microstate_transition_data_df.loc[microstate_transition_data_df.iloc[:,col] == shape,col_name]\
= index_values[col][shape]
# Add group status
Group_status = np.array(["CTRL"]*len(microstate_transition_data_df["Subject_ID"]))
Group_status[np.array([i in cases for i in microstate_transition_data_df["Subject_ID"]])] = "PTSD"
# Add to dataframe
microstate_transition_data_df.insert(2, "Group_status", Group_status)
# Save df
microstate_transition_data_df.to_pickle(os.path.join(Feature_savepath,"microstate_transition_data_df.pkl"))
# Convert time covered data to Pandas dataframe
# Convert orrurence data to Pandas dataframe
# Convert mean duration data to Pandas dataframe
# The dimensions will each be a column with numbers and the last column will be the actual values
arr = np.column_stack(list(map(np.ravel, np.meshgrid(*map(np.arange, microstate_time_data.shape), indexing="ij"))) + [microstate_time_data.ravel()])
arr_2 = np.column_stack(list(map(np.ravel, np.meshgrid(*map(np.arange, microstate_orrurence_data.shape), indexing="ij"))) + [microstate_orrurence_data.ravel()])
arr_3 = np.column_stack(list(map(np.ravel, np.meshgrid(*map(np.arange, microstate_mean_duration_data.shape), indexing="ij"))) + [microstate_mean_duration_data.ravel()])
microstate_time_df = pd.DataFrame(arr, columns = ["Subject_ID", "Eye_status", "Microstate", "Value"])
microstate_orrurence_df = pd.DataFrame(arr_2, columns = ["Subject_ID", "Eye_status", "Microstate", "Value"])
microstate_mean_duration_df = pd.DataFrame(arr_3, columns = ["Subject_ID", "Eye_status", "Microstate", "Value"])
# Change from numerical coding to actual values
eye_status = list(final_epochs[0].event_id.keys())
microstates = [1,2,3,4,5]
index_values = [Subject_id,eye_status,microstates]
for col in range(len(index_values)):
col_name = microstate_time_df.columns[col]
col_name_2 = microstate_orrurence_df.columns[col]
col_name_3 = microstate_mean_duration_df.columns[col]
for shape in reversed(range(microstate_time_data.shape[col])): # notice this is the shape of original numpy array. Not shape of DF
microstate_time_df.loc[microstate_time_df.iloc[:,col] == shape,col_name]\
= index_values[col][shape]
microstate_orrurence_df.loc[microstate_orrurence_df.iloc[:,col] == shape,col_name_2]\
= index_values[col][shape]
microstate_mean_duration_df.loc[microstate_mean_duration_df.iloc[:,col] == shape,col_name_3]\
= index_values[col][shape]
# Reversed in inner loop is used to avoid sequencial data being overwritten.
# E.g. if 0 is renamed to 1, then the next loop all 1's will be renamed to 2
# Add group status
Group_status = np.array(["CTRL"]*len(microstate_time_df["Subject_ID"]))
Group_status[np.array([i in cases for i in microstate_time_df["Subject_ID"]])] = "PTSD"
Group_status_2 = np.array(["CTRL"]*len(microstate_orrurence_df["Subject_ID"]))
Group_status_2[np.array([i in cases for i in microstate_orrurence_df["Subject_ID"]])] = "PTSD"
Group_status_3 = np.array(["CTRL"]*len(microstate_mean_duration_df["Subject_ID"]))
Group_status_3[np.array([i in cases for i in microstate_mean_duration_df["Subject_ID"]])] = "PTSD"
# Add to dataframe
microstate_time_df.insert(2, "Group_status", Group_status)
microstate_orrurence_df.insert(2, "Group_status", Group_status_2)
microstate_mean_duration_df.insert(2, "Group_status", Group_status_3)
# Save df
microstate_time_df.to_pickle(os.path.join(Feature_savepath,"microstate_time_df.pkl"))
microstate_orrurence_df.to_pickle(os.path.join(Feature_savepath,"microstate_orrurence_df.pkl"))
microstate_mean_duration_df.to_pickle(os.path.join(Feature_savepath,"microstate_mean_duration_df.pkl"))
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
# Transition data - mean
# Get index for groups
PTSD_idx = np.array([i in cases for i in Subject_id])
CTRL_idx = np.array([not i in cases for i in Subject_id])
n_groups = 2
microstate_transition_data_mean = np.zeros((n_groups,n_eye_status,n_maps,n_maps))
microstate_transition_data_mean[0,:,:,:] = np.mean(microstate_transition_data[PTSD_idx,:,:,:], axis=0)
microstate_transition_data_mean[1,:,:,:] = np.mean(microstate_transition_data[CTRL_idx,:,:,:], axis=0)
# Convert entropy data to Pandas dataframe
# The dimensions will each be a column with numbers and the last column will be the actual values
arr = np.column_stack(list(map(np.ravel, np.meshgrid(*map(np.arange, microstate_entropy_data.shape), indexing="ij"))) + [microstate_entropy_data.ravel()])
microstate_entropy_df = pd.DataFrame(arr, columns = ["Subject_ID", "Eye_status", "Value"])
# Change from numerical coding to actual values
eye_status = list(final_epochs[0].event_id.keys())
index_values = [Subject_id,eye_status]
for col in range(len(index_values)):
col_name = microstate_entropy_df.columns[col]
for shape in reversed(range(microstate_entropy_data.shape[col])): # notice this is the shape of original numpy array. Not shape of DF
microstate_entropy_df.loc[microstate_entropy_df.iloc[:,col] == shape,col_name]\
= index_values[col][shape]
# Reversed in inner loop is used to avoid sequencial data being overwritten.
# E.g. if 0 is renamed to 1, then the next loop all 1's will be renamed to 2
# Add group status
Group_status = np.array(["CTRL"]*len(microstate_entropy_df["Subject_ID"]))
Group_status[np.array([i in cases for i in microstate_entropy_df["Subject_ID"]])] = "PTSD"
# Add to dataframe
microstate_entropy_df.insert(2, "Group_status", Group_status)
# Add dummy variable for re-using plot code
dummy_variable = ["Entropy"]*len(Group_status)
microstate_entropy_df.insert(3, "Measurement", dummy_variable)
# Save df
microstate_entropy_df.to_pickle(os.path.join(Feature_savepath,"microstate_entropy_df.pkl"))
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
# # %% Long-range temporal correlations (LRTC)
# """
# See Hardstone et al, 2012
# Hurst exponent estimation steps:
# 1. Preprocess
# 2. Band-pass filter for frequency band of interest
# 3. Hilbert transform to obtain amplitude envelope
# 4. Perform DFA
# 4.1 Compute cumulative sum of time series to create signal profile
# 4.2 Define set of window sizes (see below)
# 4.3 Remove the linear trend using least-squares for each window
# 4.4 Calculate standard deviation for each window and take the mean
# 4.5 Plot fluctuation function (Standard deviation) as function
# for all window sizes, on double logarithmic scale
# 4.6 The DFA exponent alpha correspond to Hurst exponent
# f(L) = sd = L^alpha (with alpha as linear coefficient in log plot)
# If 0 < alpha < 0.5: The process exhibits anti-correlations
# If 0.5 < alpha < 1: The process exhibits positive correlations
# If alpha = 0.5: The process is indistinguishable from a random process
# If 1.0 < alpha < 2.0: The process is non-stationary. H = alpha - 1
# Window sizes should be equally spaced on a logarithmic scale
# Sizes should be at least 4 samples and up to 10% of total signal length
# Filters can influence neighboring samples, thus filters should be tested
# on white noise to estimate window sizes that are unaffected by filters
# filter_length=str(2*1/fmin)+"s" # cannot be used with default transition bandwidth
# """
# # From simulations with white noise I determined window size thresholds for the 5 frequency bands:
# thresholds = [7,7,7,6.5,6.5]
# # And their corresponding log step sizes
# with open("LRTC_log_win_sizes.pkl", "rb") as filehandle:
# log_win_sizes = pickle.load(filehandle)
# # Variables for the the different conditions
# # Sampling frequency
# sfreq = final_epochs[0].info["sfreq"]
# # Channels
# ch_names = final_epochs[0].info["ch_names"]
# n_channels = len(ch_names)
# # Frequency
# Freq_Bands = {"delta": [1.25, 4.0],
# "theta": [4.0, 8.0],
# "alpha": [8.0, 13.0],
# "beta": [13.0, 30.0],
# "gamma": [30.0, 49.0]}
# n_freq_bands = len(Freq_Bands)
# # Eye status
# eye_status = list(final_epochs[0].event_id.keys())
# n_eye_status = len(eye_status)
# ### Estimating Hurst exponent for the data
# # The data should be re-referenced to common average (Already done)
# # Data are transformed to numpy arrays
# # Then divided into EO and EC and further into each of the 5 trials
# # So DFA is estimated for each trial separately, which was concluded from simulations
# gaps_trials_idx = np.load("Gaps_trials_idx.npy") # re-used from microstate analysis
# n_trials = 5
# H_data = []
# for i in range(n_subjects):
# # Transform data to correct shape
# temp_arr = final_epochs[i].get_data() # get data
# arr_shape = temp_arr.shape # get shape
# temp_arr = temp_arr.swapaxes(1,2) # swap ch and time axis
# temp_arr = temp_arr.reshape(arr_shape[0]*arr_shape[2],arr_shape[1]) # reshape by combining epochs and times
# # Get indices for eyes open and closed
# EC_index = final_epochs[i].events[:,2] == 1
# EO_index = final_epochs[i].events[:,2] == 2
# # Repeat with 4s * sample frequency to correct for concatenation of times and epochs
# EC_index = np.repeat(EC_index,4*sfreq)
# EO_index = np.repeat(EO_index,4*sfreq)
# # Divide into eye status
# EC_data = temp_arr[EC_index]
# EO_data = temp_arr[EO_index]
# # Divide into trials
# EC_gap_idx = np.array([0]+list(gaps_trials_idx[i,0])+[len(EC_data)])
# EO_gap_idx = np.array([0]+list(gaps_trials_idx[i,1])+[len(EO_data)])
# EC_trial_data = []
# EO_trial_data = []
# for t in range(n_trials):
# EC_trial_data.append(EC_data[EC_gap_idx[t]:EC_gap_idx[t+1]])
# EO_trial_data.append(EO_data[EO_gap_idx[t]:EO_gap_idx[t+1]])
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
# # Save data
# H_data.append([EC_trial_data,EO_trial_data]) # output [subject][eye][trial][time,ch]
# # Calculate H for each subject, eye status, trial, freq and channel
# H_arr = np.zeros((n_subjects,n_eye_status,n_trials,n_channels,n_freq_bands))
# w_len = [len(ele) for ele in log_win_sizes]
# DFA_arr = np.empty((n_subjects,n_eye_status,n_trials,n_channels,n_freq_bands,2,np.max(w_len)))
# DFA_arr[:] = np.nan
# # Get current time
# c_time1 = time.localtime()
# c_time1 = time.strftime("%a %d %b %Y %H:%M:%S", c_time1)
# print("Started",c_time1)
# # Nolds are already using all cores so multiprocessing with make it slower
# # Warning occurs when R2 is estimated during detrending - but R2 is not used
# warnings.simplefilter("ignore")
# for i in range(n_subjects):
# # Pre-allocate memory
# DFA_temp = np.empty((n_eye_status,n_trials,n_channels,n_freq_bands,2,np.max(w_len)))
# DFA_temp[:] = np.nan
# H_temp = np.empty((n_eye_status,n_trials,n_channels,n_freq_bands))
# for e in range(n_eye_status):
# for trial in range(n_trials):
# for c in range(n_channels):
# # Get the data
# signal = H_data[i][e][trial][:,c]
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
# counter = 0 # prepare counter
# for fmin, fmax in Freq_Bands.values():
# # Filter for each freq band
# signal_filtered = mne.filter.filter_data(signal, sfreq=sfreq, verbose=0,
# l_freq=fmin, h_freq=fmax)
# # Hilbert transform
# analytic_signal = scipy.signal.hilbert(signal_filtered)
# # Get Amplitude envelope
# # np.abs is the same as np.linalg.norm, i.e. the length for complex input which is the amplitude
# ampltude_envelope = np.abs(analytic_signal)
# # Perform DFA using predefined window sizes from simulation
# a, dfa_data = nolds.dfa(ampltude_envelope,
# nvals=np.exp(log_win_sizes[counter]).astype("int"),
# debug_data=True)
# # Save DFA results
# DFA_temp[e,trial,c,counter,:,0:w_len[counter]] = dfa_data[0:2]
# H_temp[e,trial,c,counter] = a
# # Update counter
# counter += 1
# # Print run status
# print("Finished {} out of {}".format(i+1,n_subjects))
# # Save the results
# H_arr[i] = H_temp
# DFA_arr[i] = DFA_temp
# warnings.simplefilter("default")
# # Get current time
# c_time2 = time.localtime()
# c_time2 = time.strftime("%a %d %b %Y %H:%M:%S", c_time2)
# print("Started", c_time1, "\nCurrent Time",c_time2)
# # Save the DFA analysis data
# np.save(Feature_savepath+"DFA_arr.npy", DFA_arr)
# np.save(Feature_savepath+"H_arr.npy", H_arr)
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
# # Load
# DFA_arr = np.load(Feature_savepath+"DFA_arr.npy")
# H_arr = np.load(Feature_savepath+"H_arr.npy")
# # Average the Hurst Exponent across trials
# H_arr = np.mean(H_arr, axis=2)
# # Convert to Pandas dataframe (Hurst exponent)
# # The dimensions will each be a column with numbers and the last column will be the actual values
# arr = np.column_stack(list(map(np.ravel, np.meshgrid(*map(np.arange, H_arr.shape), indexing="ij"))) + [H_arr.ravel()])
# H_data_df = pd.DataFrame(arr, columns = ["Subject_ID", "Eye_status", "Channel", "Freq_band", "Value"])
# # Change from numerical coding to actual values
# eye_status = list(final_epochs[0].event_id.keys())
# ch_name = final_epochs[0].info["ch_names"]
# index_values = [Subject_id,eye_status,ch_name,list(Freq_Bands.keys())]
# for col in range(len(index_values)):
# col_name = H_data_df.columns[col]
# for shape in range(H_arr.shape[col]): # notice this is the shape of original numpy array. Not shape of DF
# H_data_df.loc[H_data_df.iloc[:,col] == shape,col_name]\
# = index_values[col][shape]
# # Add group status
# Group_status = np.array(["CTRL"]*len(H_data_df["Subject_ID"]))
# Group_status[np.array([i in cases for i in H_data_df["Subject_ID"]])] = "PTSD"
# # Add to dataframe
# H_data_df.insert(2, "Group_status", Group_status)
# # Fix Freq_band categorical order
# H_data_df["Freq_band"] = H_data_df["Freq_band"].astype("category").\
# cat.reorder_categories(list(Freq_Bands.keys()), ordered=True)
# # Global Hurst exponent
# H_data_df_global = H_data_df.groupby(["Subject_ID", "Eye_status", "Freq_band"]).mean().reset_index() # by default pandas mean skip nan
# # Add group status (cannot use group_by as each subject only have 1 group, not both)
# Group_status = np.array(["CTRL"]*len(H_data_df_global["Subject_ID"]))
# Group_status[np.array([i in cases for i in H_data_df_global["Subject_ID"]])] = "PTSD"
# # Add to dataframe
# H_data_df_global.insert(2, "Group_status", Group_status)
# # Add dummy variable for re-using plot code
# dummy_variable = ["Global Hurst Exponent"]*H_data_df_global.shape[0]
# H_data_df_global.insert(3, "Measurement", dummy_variable )
# # Save the data
# H_data_df.to_pickle(os.path.join(Feature_savepath,"H_data_df.pkl"))
# H_data_df_global.to_pickle(os.path.join(Feature_savepath,"H_data_global_df.pkl"))
# # %% Source localization of sensor data
# # Using non-interpolated channels
# # Even interpolated channels during preprocessing and visual inspection
# # are dropped
# # Prepare epochs for estimation of source connectivity
# source_epochs = [0]*n_subjects
# for i in range(n_subjects):
# source_epochs[i] = final_epochs[i].copy()
# ### Make forward solutions
# # A forward solution is first made for all individuals with no dropped channels
# # Afterwards individual forward solutions are made for subjects with bad
# # channels that were interpolated in preprocessing and these are dropped
# # First forward operator is computed using a template MRI for each dataset
# fs_dir = "/home/glia/MNE-fsaverage-data/fsaverage"
# subjects_dir = os.path.dirname(fs_dir)
# trans = "fsaverage"
# src = os.path.join(fs_dir, "bem", "fsaverage-ico-5-src.fif")
# bem = os.path.join(fs_dir, "bem", "fsaverage-5120-5120-5120-bem-sol.fif")
# # Read the template sourcespace
# sourcespace = mne.read_source_spaces(src)
# temp_idx = 0 # Index with subject that had no bad channels
# subject_eeg = source_epochs[temp_idx].copy()
# subject_eeg.set_eeg_reference(projection=True) # needed for inverse modelling
# # Make forward solution
# fwd = mne.make_forward_solution(subject_eeg.info, trans=trans, src=src,
# bem=bem, eeg=True, mindist=5.0, n_jobs=1)
# # Save forward operator
# fname_fwd = "./Source_fwd/fsaverage-fwd.fif"
# mne.write_forward_solution(fname_fwd, fwd, overwrite=True)
# # A specific forward solution is also made for each subject with bad channels
# with open("./Preprocessing/bad_ch.pkl", "rb") as file:
# bad_ch = pickle.load(file)
# All_bad_ch = bad_ch
# All_drop_epochs = dropped_epochs_df
# All_dropped_ch = []
# Bad_ch_idx = [idx for idx, item in enumerate(All_bad_ch) if item != 0]
# Bad_ch_subjects = All_drop_epochs["Subject_ID"][Bad_ch_idx]
# # For each subject with bad channels, drop the channels and make forward operator
# for n in range(len(Bad_ch_subjects)):
# Subject = Bad_ch_subjects.iloc[n]
# try:
# Subject_idx = Subject_id.index(Subject)
# # Get unique bad channels
# Bad_ch0 = All_bad_ch[Bad_ch_idx[n]]
# Bad_ch1 = []
# for i2 in range(len(Bad_ch0)):
# if type(Bad_ch0[i2]) == list:
# for i3 in range(len(Bad_ch0[i2])):
# Bad_ch1.append(Bad_ch0[i2][i3])
# elif type(Bad_ch0[i2]) == str:
# Bad_ch1.append(Bad_ch0[i2])
# Bad_ch1 = np.unique(Bad_ch1)
# # Drop the bad channels
# source_epochs[Subject_idx].drop_channels(Bad_ch1)
# # Save the overview of dropped channels
# All_dropped_ch.append([Subject,Subject_idx,Bad_ch1])
# # Make forward operator
# subject_eeg = source_epochs[Subject_idx].copy()
# subject_eeg.set_eeg_reference(projection=True) # needed for inverse modelling
# # Make forward solution
# fwd = mne.make_forward_solution(subject_eeg.info, trans=trans, src=src,
# bem=bem, eeg=True, mindist=5.0, n_jobs=1)
# # Save forward operator
# fname_fwd = "./Source_fwd/fsaverage_{}-fwd.fif".format(Subject)
# mne.write_forward_solution(fname_fwd, fwd, overwrite=True)
# except:
# print(Subject,"was already dropped")
# with open("./Preprocessing/All_datasets_bad_ch.pkl", "wb") as filehandle:
# pickle.dump(All_dropped_ch, filehandle)
# # %% Load forward operators
# # Re-use for all subjects without dropped channels
# fname_fwd = "./Source_fwd/fsaverage-fwd.fif"
# fwd = mne.read_forward_solution(fname_fwd)
# fwd_list = [fwd]*n_subjects
# # Use specific forward solutions for subjects with dropped channels
# with open("./Preprocessing/All_datasets_bad_ch.pkl", "rb") as file:
# All_dropped_ch = pickle.load(file)
# for i in range(len(All_dropped_ch)):
# Subject = All_dropped_ch[i][0]
# Subject_idx = All_dropped_ch[i][1]
# fname_fwd = "./Source_fwd/fsaverage_{}-fwd.fif".format(Subject)
# fwd = mne.read_forward_solution(fname_fwd)
# fwd_list[Subject_idx] = fwd
# # Check the correct number of channels are present in fwd
# random_point = int(np.random.randint(0,len(All_dropped_ch)-1,1))
# assert len(fwds[All_dropped_ch[random_point][1]].ch_names) == source_epochs[All_dropped_ch[random_point][1]].info["nchan"]
# # %% Make parcellation
# # After mapping to source space, I end up with 20484 vertices
# # but I wanted to map to fewer sources and not many more
# # Thus I need to perform parcellation
# # Get labels for FreeSurfer "aparc" cortical parcellation (example with 74 labels/hemi - Destriuex)
# labels_aparc = mne.read_labels_from_annot("fsaverage", parc="aparc.a2009s",
# subjects_dir=subjects_dir)
# labels_aparc = labels_aparc[:-2] # remove unknowns
# labels_aparc_names = [label.name for label in labels_aparc]
# # Manually adding the 31 ROIs (14-lh/rh + 3 in midline) from Toll et al, 2020
# # Making fuction to take subset of a label
# def label_subset(label, subset, name="ROI_name"):
# label_subset = mne.Label(label.vertices[subset], label.pos[subset,:],
# label.values[subset], label.hemi,
# name = "{}-{}".format(name,label.hemi),
# subject = label.subject, color = None)
# return label_subset
# ### Visual area 1 (V1 and somatosensory cortex BA1-3)
# label_filenames = ["lh.V1.label", "rh.V1.label",
# "lh.BA1.label", "rh.BA1.label",
# "lh.BA2.label", "rh.BA2.label",
# "lh.BA3a.label", "rh.BA3a.label",
# "lh.BA3b.label", "rh.BA3b.label"]
# labels0 = [0]*len(label_filenames)
# for i, filename in enumerate(label_filenames):
# labels0[i] = mne.read_label(os.path.join(fs_dir, "label", filename), subject="fsaverage")
# # Add V1 to final label variable
# labels = labels0[:2]
# # Rename to remove redundant hemi information
# labels[0].name = "V1-{}".format(labels[0].hemi)
# labels[1].name = "V1-{}".format(labels[1].hemi)
# # Assign a color
# labels[0].color = matplotlib.colors.to_rgba("salmon")
# labels[1].color = matplotlib.colors.to_rgba("salmon")
# # Combine Brodmann Areas for SMC. Only use vertices ones to avoid duplication error
# SMC_labels = labels0[2:]
# for hem in range(2):
# SMC_p1 = SMC_labels[hem]
# for i in range(1,len(SMC_labels)//2):
# SMC_p2 = SMC_labels[hem+2*i]
# p2_idx = np.isin(SMC_p2.vertices, SMC_p1.vertices, invert=True)
# SMC_p21 = label_subset(SMC_p2, p2_idx, "SMC")
# SMC_p1 = SMC_p1.__add__(SMC_p21)
# SMC_p1.name = SMC_p21.name
# # Assign a color
# SMC_p1.color = matplotlib.colors.to_rgba("orange")
# labels.append(SMC_p1)
# ### Inferior frontal junction
# # Located at junction between inferior frontal and inferior precentral sulcus
# label_aparc_names0 = ["S_front_inf","S_precentral-inf-part"]
# temp_labels = []
# for i in range(len(label_aparc_names0)):
# labels_aparc_idx = [labels_aparc_names.index(l) for l in labels_aparc_names if l.startswith(label_aparc_names0[i])]
# for i2 in range(len(labels_aparc_idx)):
# temp_labels.append(labels_aparc[labels_aparc_idx[i2]].copy())
# pos1 = temp_labels[0].pos
# pos2 = temp_labels[2].pos
# distm = scipy.spatial.distance.cdist(pos1,pos2)
# # Find the closest points between the 2 ROIs
# l1_idx = np.unique(np.where(distm<np.quantile(distm, 0.001))[0]) # q chosen to correspond to around 10% of ROI
# l2_idx = np.unique(np.where(distm<np.quantile(distm, 0.0005))[1]) # q chosen to correspond to around 10% of ROI
# IFJ_label_p1 = label_subset(temp_labels[0], l1_idx, "IFJ")
# IFJ_label_p2 = label_subset(temp_labels[2], l2_idx, "IFJ")
# # Combine the 2 parts
# IFJ_label = IFJ_label_p1.__add__(IFJ_label_p2)
# IFJ_label.name = IFJ_label_p1.name
# # Assign a color
# IFJ_label.color = matplotlib.colors.to_rgba("chartreuse")
# # Append to final list
# labels.append(IFJ_label)
# # Do the same for the right hemisphere
# pos1 = temp_labels[1].pos
# pos2 = temp_labels[3].pos
# distm = scipy.spatial.distance.cdist(pos1,pos2)
# # Find the closest points between the 2 ROIs
# l1_idx = np.unique(np.where(distm<np.quantile(distm, 0.00075))[0]) # q chosen to correspond to around 10% of ROI
# l2_idx = np.unique(np.where(distm<np.quantile(distm, 0.0005))[1]) # q chosen to correspond to around 10% of ROI
# IFJ_label_p1 = label_subset(temp_labels[1], l1_idx, "IFJ")
# IFJ_label_p2 = label_subset(temp_labels[3], l2_idx, "IFJ")
# # Combine the 2 parts
# IFJ_label = IFJ_label_p1.__add__(IFJ_label_p2)
# IFJ_label.name = IFJ_label_p1.name
# # Assign a color
# IFJ_label.color = matplotlib.colors.to_rgba("chartreuse")
# # Append to final list
# labels.append(IFJ_label)
# ### Intraparietal sulcus
# label_aparc_names0 = ["S_intrapariet_and_P_trans"]
# labels_aparc_idx = [labels_aparc_names.index(l) for l in labels_aparc_names if l.startswith(label_aparc_names0[0])]
# for i in range(len(labels_aparc_idx)):
# labels.append(labels_aparc[labels_aparc_idx[i]].copy())
# labels[-1].name = "IPS-{}".format(labels[-1].hemi)
# ### Frontal eye field as intersection between middle frontal gyrus and precentral gyrus
# label_aparc_names0 = ["G_front_middle","G_precentral"]
# temp_labels = []
# for i in range(len(label_aparc_names0)):
# labels_aparc_idx = [labels_aparc_names.index(l) for l in labels_aparc_names if l.startswith(label_aparc_names0[i])]
# for i2 in range(len(labels_aparc_idx)):
# temp_labels.append(labels_aparc[labels_aparc_idx[i2]].copy())
# # Take 10% of middle frontal gyrus closest to precentral gyrus (most posterior)
# temp_label0 = temp_labels[0]
# G_fm_y = temp_label0.pos[:,1]
# thres_G_fm_y = np.sort(G_fm_y)[len(G_fm_y)//10]
# idx_p1 = np.where(G_fm_y<thres_G_fm_y)[0]
# FEF_label_p1 = label_subset(temp_label0, idx_p1, "FEF")
# # Take 10% closest for precentral gyrus (most anterior)
# temp_label0 = temp_labels[2]
# # I cannot only use y (anterior/posterior) but also need to restrict z-position
# G_pre_cen_z = temp_label0.pos[:,2]
# thres_G_pre_cen_z = 0.04 # visually inspected threshold
# G_pre_cen_y = temp_label0.pos[:,1]
# thres_G_pre_cen_y = np.sort(G_pre_cen_y[G_pre_cen_z>thres_G_pre_cen_z])[-len(G_pre_cen_y)//10] # notice - for anterior
# idx_p2 = np.where((G_pre_cen_y>thres_G_pre_cen_y) & (G_pre_cen_z>thres_G_pre_cen_z))[0]
# FEF_label_p2 = label_subset(temp_label0, idx_p2, "FEF")
# # Combine the 2 parts
# FEF_label = FEF_label_p1.__add__(FEF_label_p2)
# FEF_label.name = FEF_label_p1.name
# # Assign a color
# FEF_label.color = matplotlib.colors.to_rgba("aqua")
# # Append to final list
# labels.append(FEF_label)
# # Do the same for the right hemisphere
# temp_label0 = temp_labels[1]
# G_fm_y = temp_label0.pos[:,1]
# thres_G_fm_y = np.sort(G_fm_y)[len(G_fm_y)//10]
# idx_p1 = np.where(G_fm_y<thres_G_fm_y)[0]
# FEF_label_p1 = label_subset(temp_label0, idx_p1, "FEF")
# temp_label0 = temp_labels[3]
# G_pre_cen_z = temp_label0.pos[:,2]
# thres_G_pre_cen_z = 0.04 # visually inspected threshold
# G_pre_cen_y = temp_label0.pos[:,1]
# thres_G_pre_cen_y = np.sort(G_pre_cen_y[G_pre_cen_z>thres_G_pre_cen_z])[-len(G_pre_cen_y)//10] # notice - for anterior
# idx_p2 = np.where((G_pre_cen_y>thres_G_pre_cen_y) & (G_pre_cen_z>thres_G_pre_cen_z))[0]
# FEF_label_p2 = label_subset(temp_label0, idx_p2, "FEF")
# # Combine the 2 parts
# FEF_label = FEF_label_p1.__add__(FEF_label_p2)
# FEF_label.name = FEF_label_p1.name
# # Assign a color
# FEF_label.color = matplotlib.colors.to_rgba("aqua")
# # Append to final list