Newer
Older
-- * Context
Context (..),
defaultContext,
-- * Helpers
prettyIdent,
) where
import Control.Applicative
import Control.Monad
import qualified Control.Monad.IRTree as IRTree
import qualified Data.Set as Set
import Data.Vector.Internal.Check (HasCallStack)
defaultReduceCWithKeywords :: (MonadReduce (String, C.Position) m) => [Keyword] -> C.CTranslUnit -> m C.CTranslUnit
defaultReduceCWithKeywords keywords a = reduceCTranslUnit a (defaultContext{keywords = Set.fromList keywords})
{-# SPECIALIZE defaultReduceCWithKeywords :: [Keyword] -> C.CTranslUnit -> IRTree.IRTree (String, C.Position) C.CTranslUnit #-}
defaultReduceC :: (MonadReduce (String, C.Position) m) => C.CTranslUnit -> m C.CTranslUnit
defaultReduceC a = reduceCTranslUnit a defaultContext
{-# SPECIALIZE defaultReduceC :: C.CTranslUnit -> IRTree.IRTree (String, C.Position) C.CTranslUnit #-}
reduceCTranslUnit
:: (MonadReduce Lab m)
=> C.CTranslationUnit C.NodeInfo
-> Context
-> m (C.CTranslationUnit C.NodeInfo)
reduceCTranslUnit (C.CTranslUnit es ni) ctx = do
let _functions = foldMap (findFunctions (: [])) es
let funmap :: [(C.Ident, Maybe Function)] =
List.sortOn (maybe 0 (negate . funSize) . snd)
. Map.toList
. Map.fromListWith const
. map (\f -> (funName f, Just f))
. List.sortOn funSize
$ _functions
let reduce funcs = forM funcs \(k, mf) ->
(k,) <$> runMaybeT do
f <- liftMaybe mf
let fstr = C.identToString (funName f)
when (C.identToString (funName f) /= "main" || LoseMain `isIn` ctx) do
exceptIf ("remove function " <> fstr <> " (" <> show (funSize f) <> ")", funPosition f)
isStatic <-
if funIsStatic f
then
split
("remove static from " <> fstr, funPosition f)
(pure False)
(pure True)
else pure False
pure f{funIsStatic = isStatic}
-- try remove static
functions2 <- do
funmap' <- reduce funmap
if ComputeFunctionFixpoint `isIn` ctx
then reduce funmap
else pure funmap'
functions3 <- forM functions2 \(k, mf) ->
(k,) <$> runMaybeT do
f <- liftMaybe mf
if C.identToString (funName f) /= "main" || LoseMain `isIn` ctx
then do
params <- case funParams f of
Just params -> do
Just <$> forM (zip [1 :: Int ..] params) \(i, p) ->
if p
then split ("remove parameter " <> show i <> " from " <> C.identToString (funName f), funPosition f) (pure False) (pure True)
else pure False
ow -> pure ow
pure f{funParams = params}
else do
pure f
let builtins =
[ ("fabsf", FunType (NonVoid TNum) (Params [Just TNum] False))
, ("fabs", FunType (NonVoid TNum) (Params [Just TNum] False))
]
[ ( funName
, Just $
Function
{ funIsStatic = False
, funPosition = C.posOf funName
, funSize = 0
, funParams = case funTypeParams funType of
VoidParams -> Nothing
Params _ True -> Nothing
Params fx False -> Just [isJust f | f <- fx]
, ..
}
)
| (C.builtinIdent -> funName, funType) <- builtins
]
<> functions3
let ctx' =
ctx
{ functions = functions'''
, inlineExprs =
inlineExprs ctx
<> Map.fromList
[(C.builtinIdent f, IEKeep (TFun ft)) | (f, ft) <- builtins]
}
res' <- evalStateT (mapM reduceCExternalDeclaration es) ctx'
pure $ C.CTranslUnit (catMaybes res') ni
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
{ sfKeepStatic :: Bool
}
keepAll :: SpecifierFilter
keepAll = SpecifierFilter{sfKeepStatic = True}
{- | Update the CDeclarationSpecifier's to match the context. Specifically, update
the typedefs and the structs. Alos return a base type.
-}
updateCDeclarationSpecifiers
:: ( MonadState Context m
, MonadPlus m
)
=> SpecifierFilter
-> [C.CDeclarationSpecifier C.NodeInfo]
-> m (Voidable, [C.CDeclarationSpecifier C.NodeInfo])
updateCDeclarationSpecifiers sf spec = do
ctx <- get
spec' <- concat <$> mapM (updateSpec ctx) spec
bt <- baseType ctx spec'
pure (bt, spec')
where
baseType
:: (MonadPlus m)
=> Context
-> [C.CDeclarationSpecifier C.NodeInfo]
-> m Voidable
. exactlyOne
. map \case
C.CVoidType _ -> Just Void
C.CSUType c _ -> NonVoid . TStruct <$> structId c
C.CCharType _ -> Just $ NonVoid TNum
C.CShortType _ -> Just $ NonVoid TNum
C.CIntType _ -> Just $ NonVoid TNum
C.CFloatType _ -> Just $ NonVoid TNum
C.CDoubleType _ -> Just $ NonVoid TNum
C.CSignedType _ -> Just $ NonVoid TNum
C.CUnsigType _ -> Just $ NonVoid TNum
C.CBoolType _ -> Just $ NonVoid TNum
C.CLongType _ -> Just $ NonVoid TNum
C.CInt128Type _ -> Just $ NonVoid TNum
C.CFloatNType{} -> Just $ NonVoid TNum
C.CEnumType (C.CEnum (Just ix) _ _ _) _ ->
NonVoid TNum
<$ guard (lookupEnum ctx ix == INKeep)
C.CEnumType (C.CEnum Nothing _ _ _) _ -> Just $ NonVoid TNum
C.CTypeDef idx _ ->
case Map.lookup idx (typeDefs ctx) of
a -> notSupportedYet (void a) a
. typeSpecs
where
typeSpecs = mapMaybe \case
C.CTypeSpec ts -> Just ts
_ow -> Nothing
exactlyOne =
maybe
(error "no type in type-specs")
( \case
(t, []) -> NonEmpty.head t
(t, rs) -> error ("more than one type in type-specs: " <> show (t : rs))
. List.uncons
. NonEmpty.group
structId (C.CStruct t mi md _ ni) =
case mi of
Just ix -> case lookupStruct ctx ix of
ISDelete -> Nothing
_ow -> Just $ Left ix
Nothing ->
let p' =
maybe
(error $ "invalid struct at" <> show (C.posOf ni))
(concatMap namesAndTypeOf)
md
-- structTypeOf (C.CStruct t mi md _ ni) =
-- case mi of
-- Just ix -> lookupStruct ctx ix
-- Nothing ->
-- let p' = maybe (error $ "invalid struct at" <> show (C.posOf ni)) (concatMap namesAndTypeOf) md
-- in Just $ StructType t mi (Just p')
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
namesAndTypeOf = \case
C.CDecl spec2 items ni ->
flip map items \case
C.CDeclarationItem decl@(C.CDeclr (Just ix) _ _ _ _) _ _ ->
(ix, nonVoid <$> typeOf spec2 decl)
a -> notSupportedYet (void a) ni
a -> notSupportedYet' a
typeOf spec2 decl = baseType ctx spec2 >>= extendTypeWith decl
extendTypeWith (C.CDeclr _ dd _ _ _) t =
foldr applyDD (Just t) dd
where
applyDD = \case
C.CPtrDeclr _ _ -> fmap (NonVoid . TPointer)
C.CArrDeclr{} -> fmap (NonVoid . TPointer)
C.CFunDeclr params _ ni -> \c ->
case params of
C.CFunParamsNew params' varadic -> do
c' <- c
Just $ NonVoid $ TFun (FunType c' (findParams varadic params'))
b -> notSupportedYet b ni
findParams varadic = \case
[C.CDecl [C.CTypeSpec (C.CVoidType _)] [] _] -> VoidParams
rst -> flip Params varadic $ flip map rst \case
C.CDecl spec' [] _ ->
nonVoid <$> baseType ctx spec'
C.CDecl spec' [C.CDeclarationItem decl _ _] _ ->
nonVoid <$> typeOf spec' decl
a -> notSupportedYet' a
updateSpec ctx a = case a of
C.CTypeSpec t -> case t of
C.CSUType (C.CStruct st (Just i) (Just declrs) attr x) b -> do
fields <- case lookupStruct ctx i of
ISDelete -> empty
ISDeclared _ -> empty
ISKeep s -> do
pure $ structTypeFields s
let declrs' :: [C.CDeclaration C.NodeInfo] = filterStruct ctx fields declrs
pure [C.CTypeSpec (C.CSUType (C.CStruct st (Just i) (Just declrs') attr x) b)]
C.CTypeDef idx _ -> do
case Map.lookup idx . typeDefs $ ctx of
Just (ITKeep _) -> pure [C.CTypeSpec t]
Just (ITInline _ res) -> pure res
Just ITDelete -> mzero
Nothing -> error ("could not find typedef: " <> show idx)
_ow -> pure [C.CTypeSpec t]
C.CStorageSpec (C.CStatic _) -> pure [a | sfKeepStatic sf]
C.CFunSpec (C.CInlineQual _) -> pure [a | sfKeepStatic sf]
_ow -> pure [a]
filterStruct ctx fields declrs =
flip evalState fields do
declrs' <- forM declrs $ \case
C.CDecl spec2 items l -> runMaybeT do
items' <- forM items $ \case
C.CDeclarationItem (C.CDeclr mid dd sl attr ni2) enit ni1 -> runMaybeT do
_ <- liftMaybe =<< state (\((_, t) : tps) -> (t, tps))
(_, dd') <- liftMaybe (evalStateT (updateCDerivedDeclarators Void (repeat True) dd) ctx)
pure (C.CDeclarationItem (C.CDeclr mid dd' sl attr ni2) enit ni1)
a' -> notSupportedYet a' l
(_, spec2') <- liftMaybe (evalStateT (updateCDeclarationSpecifiers keepAll spec2) ctx)
let items'' = catMaybes items'
guard $ not (List.null items'')
pure (C.CDecl spec2' items'' l)
a' -> notSupportedYet' a'
pure $ catMaybes declrs'
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
updateCDerivedDeclarators
:: forall m
. ( MonadState Context m
, MonadPlus m
)
=> Voidable
-> [Bool]
-> [C.CDerivedDeclarator C.NodeInfo]
-> m (Voidable, [C.CDerivedDeclarator C.NodeInfo])
updateCDerivedDeclarators bt ff dd = do
foldM applyDD (bt, []) (reverse dd)
where
applyDD
:: (r ~ (Voidable, [C.CDerivedDeclarator C.NodeInfo]))
=> r
-> C.CDerivedDeclarator C.NodeInfo
-> m r
applyDD (t, dd') d = case d of
C.CPtrDeclr _ _ -> do
pure (NonVoid . TPointer $ t, d : dd')
C.CArrDeclr{} ->
pure (NonVoid . TPointer $ t, d : dd')
C.CFunDeclr params arr ni -> do
case params of
C.CFunParamsNew params' varadic -> do
(tp, params'') <- state (runState (findParams varadic params'))
let t' = NonVoid $ TFun (FunType t tp)
pure (t', C.CFunDeclr (C.CFunParamsNew params'' varadic) arr ni : dd')
b -> notSupportedYet b ni
findParams
:: Bool
-> [C.CDeclaration C.NodeInfo]
-> State Context (Params, [C.CDeclaration C.NodeInfo])
findParams varadic decls = case decls of
[C.CDecl [C.CTypeSpec (C.CVoidType _)] [] _] ->
pure (VoidParams, decls)
_ow -> flip evalStateT ff do
result <-
forM decls $ \case
C.CDecl spec items ni -> do
keep <- state (\(t : tps) -> (t, tps))
lift . runMaybeT $ do
(bt', spec') <- updateCDeclarationSpecifiers keepAll spec
(t, items') <- case items of
[] -> do
guard keep
pure (nonVoid bt', [])
[C.CDeclarationItem (C.CDeclr mid dd2 Nothing [] ni3) Nothing ni2] -> do
(t, dd2') <- case mid of
Just ix -> do
(nonVoid -> t, dd2') <- updateCDerivedDeclarators bt' [] dd2
guard keep
modify' (addInlineExpr ix (IEKeep t))
pure (t, dd2')
Nothing -> do
(nonVoid -> t, dd2') <- updateCDerivedDeclarators bt' [] dd2
guard keep
pure (t, dd2')
pure (t, [C.CDeclarationItem (C.CDeclr mid dd2' Nothing [] ni3) Nothing ni2])
_ow -> notSupportedYet items ni
pure (t, C.CDecl spec' items' ni)
a -> notSupportedYet' a
let (ts, decls') = unzip $ flip map result \case
Just (t, d') -> (Just t, [d'])
Nothing -> (Nothing, [])
pure (Params ts varadic, concat decls')
-> StateT Context m (Maybe (C.CExternalDeclaration C.NodeInfo))
reduceCExternalDeclaration r = case r of
C.CFDefExt (C.CFunDef spec declr [] stmt ni) -> runMaybeT do
ctx <- get
let C.CDeclr mid dd Nothing [] ni2 = declr
Just <$> liftMaybe (lookupFunction ctx fid)
Nothing ->
pure Nothing
let keepStatic = maybe True funIsStatic mfun
-- TODO handle this edgecase (struct declared in function declaration)
_ <- reduceStructDeclaration spec
(bt, spec') <- updateCDeclarationSpecifiers keepAll{sfKeepStatic = keepStatic} spec
((nonVoid -> t@(TFun (FunType rt _)), dd'), ctx') <-
runStateT
(updateCDerivedDeclarators bt (fromMaybe (repeat True) (mfun >>= funParams)) dd)
ctx
case mfun of
Just fun -> do
modify' (addInlineExpr (funName fun) (IEKeep t))
Nothing -> do
exceptIf ("remove function", C.posOf r)
labs <- flip collect (labelsOf stmt) \l -> do
exceptIf ("remove label" <> show l, C.posOf l)
pure l
stmt' <-
reduceCStatementOrEmptyBlock stmt StmtContext{stmtLabels = labs, stmtInLoop = False} $
C.CFunDef spec' (C.CDeclr mid dd' Nothing [] ni2) [] stmt' ni
C.CDeclExt (C.CDecl (C.CStorageSpec (C.CTypedef nif) : rst) [item] ni) -> runMaybeT do
(ix, dd) <- case item of
C.CDeclarationItem (C.CDeclr (Just ix) dd Nothing _ _) Nothing Nothing ->
pure (ix, dd)
i -> notSupportedYet (void i) ni
keep <- reduceStructDeclaration rst
(bt, rst') <- updateCDeclarationSpecifiers keepAll rst
(t, _) <- updateCDerivedDeclarators bt (repeat True) dd
unless keep do
modify' (addTypeDef ix (ITInline t rst'))
exceptIf ("inline typedef " <> C.identToString ix, C.posOf ni)
modify' (addTypeDef ix (ITKeep t))
pure $ C.CDeclExt $ C.CDecl (C.CStorageSpec (C.CTypedef nif) : rst') [item] ni
-- The rest.
C.CDeclExt (C.CDecl spec items ni) -> runMaybeT do
ctx <- get
markDeleted items
-- TODO: Actually we should split it up here
let isStatic = flip any items \case
(C.CDeclarationItem (C.CDeclr (Just fid) (C.CFunDeclr{} : _) _ _ _) _ _) -> do
maybe True funIsStatic (lookupFunction ctx fid)
_ow -> True
(bt, spec') <- updateCDeclarationSpecifiers keepAll{sfKeepStatic = isStatic} spec
di@(C.CDeclarationItem (C.CDeclr mid dd Nothing [] ni2) einit size) -> do
case dd of
C.CFunDeclr{} : _ -> do
mfun <- case mid of
Just fid ->
Just <$> liftMaybe (lookupFunction ctx fid)
Nothing ->
pure Nothing
let ff = fromMaybe (repeat True) (mfun >>= funParams)
(nonVoid -> t, dd') <-
evalStateT (updateCDerivedDeclarators bt ff dd) ctx
case mid of
modify' (addInlineExpr fid IEDelete)
exceptIf ("remove function declaration", C.posOf ni2)
pure (C.CDeclarationItem (C.CDeclr mid dd' Nothing [] ni2) einit size)
_dd -> reduceCDeclarationItem bt di
-- Somtimes we just declare a struct or a typedef.
when (not keep && List.null items') do
wrapCCompound :: C.CStatement C.NodeInfo -> C.CStatement C.NodeInfo
wrapCCompound = \case
s@(C.CCompound{}) -> s
s -> C.CCompound [] [C.CBlockStmt s] C.undefNode
isStaticFromSpecs :: [C.CDeclarationSpecifier C.NodeInfo] -> Bool
isStaticFromSpecs = any \case
(C.CStorageSpec (C.CStatic _)) -> True
_ow -> False
{- | This checks the current declaration and reduces any new struct found here.
Returns true if the specifier is requried.
-}
reduceStructDeclaration
:: ( MonadReduce Lab m
, MonadState Context m
, MonadPlus m
)
C.CTypeSpec (C.CEnumType (C.CEnum mid mf _ _) ni) -> do
case mid of
Just eid -> do
case mf of
Just times -> forM_ times \(C.CEnumVar ix _) -> do
modify' (addInlineExpr ix IEDelete)
Nothing -> pure ()
modify' (addEnum eid INDelete)
exceptIf ("delete enum " <> C.identToString eid, C.posOf ni)
modify' (addEnum eid INKeep)
case mf of
Just times -> forM_ times \(C.CEnumVar ix _) -> do
modify' (addInlineExpr ix (IEKeep TNum))
Nothing -> pure ()
pure True
Nothing -> do
pure False
C.CTypeSpec (C.CSUType (C.CStruct tag mid mfields _ _) ni) -> case mid of
Just sid -> do
struct <- gets (Map.lookup sid . structs)
let reduce fields = do
exceptIf ("remove struct " <> C.identToString sid, C.posOf ni)
modify' (addStruct sid (ISDeclared tag))
(ft, _) <- mapAndUnzipM (structField sid) fields
modify' (addStruct sid (ISKeep (StructType tag (Just sid) (concat ft))))
pure True
Just (ISDeclared _) ->
case mfields of
Just fields -> reduce fields
Nothing -> pure False
Just (ISKeep _) -> do
Just fields -> reduce fields
Nothing -> pure True
Nothing -> do
modify' (addStruct sid ISDelete)
case mfields of
Just fields -> reduce fields
exceptIf ("remove struct declaration " <> C.identToString sid, C.posOf ni)
modify' (addStruct sid (ISDeclared tag))
res <- runMaybeT $ updateCDeclarationSpecifiers keepAll spec
case res of
Just (bt, spec') -> do
(fields, items') <- flip mapAndUnzipM items \case
(C.CDeclarationItem (C.CDeclr mid dd Nothing [] ni3) ini ni2) -> do
let fid = fromMaybe (error "all struct fields should be named") mid
res' <- runMaybeT $ do
(nonVoid -> t, dd') <- updateCDerivedDeclarators bt (repeat True) dd
exceptIf ("remove field " <> C.identToString sid <> "." <> C.identToString fid, C.posOf ni)
pure (t, dd')
case res' of
Nothing -> pure ((fid, Nothing), Nothing)
Just (t, dd') -> pure ((fid, Just t), Just $ C.CDeclarationItem (C.CDeclr mid dd' Nothing [] ni3) ini ni2)
a -> notSupportedYet a ni
case catMaybes items' of
[] -> pure (fields, Nothing)
items'' -> pure (fields, Just (C.CDecl spec' items'' ni))
Nothing ->
pure
( map (\i -> (fromMaybe (error "all struct fields should be named") (name i), Nothing)) items
, Nothing
)
a@(C.CStaticAssert{}) -> notSupportedYet' a
reduceCDeclarationItem
:: ( MonadReduce Lab m
, MonadState Context m
, MonadPlus m
)
=> Voidable
-> C.CDeclarationItem C.NodeInfo
-> m (C.CDeclarationItem C.NodeInfo)
reduceCDeclarationItem bt = \case
di@(C.CDeclarationItem (C.CDeclr mid dd Nothing [] ni) einit Nothing) -> do
ctx <- get
case mid of
Just vid -> do
(nonVoid -> t, dd') <- evalStateT (updateCDerivedDeclarators bt (repeat True) dd) ctx
Just einit2 -> do
(einit', inlinable) <- reduceCInitializer t einit2 ctx
case inlinable of
Just e' -> do
modify' (addInlineExpr vid (IEInline e'))
exceptIf ("inline variable " <> C.identToString vid, C.posOf ni)
Nothing -> do
exceptIf ("delete variable", C.posOf ni)
pure (Just einit')
exceptIf ("delete uninitilized variable", C.posOf ni)
whenSplit
(t == TNum)
("initilize variable", C.posOf ni)
(pure . Just $ C.CInitExpr zeroExpr C.undefNode)
(pure Nothing)
modify' (addInlineExpr vid (IEKeep t))
let decl' = C.CDeclr mid dd' Nothing [] ni
pure (C.CDeclarationItem decl' einit' Nothing)
Nothing -> do
exceptIf ("remove unnamed declaration item", C.posOf ni)
pure di
a -> notSupportedYet a C.undefNode
reduceCInitializer
:: (MonadReduce Lab m)
=> Type
-> C.CInitializer C.NodeInfo
-> Context
-> m (C.CInitializer C.NodeInfo, Maybe C.CExpr)
reduceCInitializer t einit ctx = case einit of
C.CInitExpr e ni2 -> do
e' <- fromMaybe (pure zeroExpr) $ reduceCExpr e (exactly t) ctx
pure
( C.CInitExpr e' ni2
, case e' of
C.CConst _ -> Just e'
C.CVar _ _ -> Just e'
_ow -> Nothing
)
C.CInitList (C.CInitializerList items) ni2 -> do
items' <- case t of
TStruct stct -> do
let fields = fieldsOfStruct ctx stct
let i'' = catMaybes $ zipWith (\(_, t') i -> (i,) <$> t') fields items
forM i'' \((p, r), t') -> do
(r', _) <- reduceCInitializer t' r ctx
pure (p, r')
TPointer (NonVoid t') -> do
forM items \(p, r) -> do
(r', _) <- reduceCInitializer t' r ctx
pure (p, r')
_ow ->
-- "Unexpected type of init list: " <> show t <> " at " <> show (C.posOf ni2)
pure items
pure (C.CInitList (C.CInitializerList items') ni2, Nothing)
-> C.CCompoundBlockItem C.NodeInfo
-> StateT Context m [C.CCompoundBlockItem C.NodeInfo]
reduceCCompoundBlockItem lab r = do
ctx <- get
msmt <- runMaybeT $ reduceCStatement smt lab ctx
case msmt of
Just smt' -> do
("expand compound statment", C.posOf r)
(pure ss)
(pure [C.CBlockStmt smt'])
_ow -> pure [C.CBlockStmt smt']
Nothing -> pure []
C.CBlockDecl (C.CDecl spec items ni) -> fmap (fromMaybe []) . runMaybeT $ do
keep <- reduceStructDeclaration spec
(bt, spec') <- updateCDeclarationSpecifiers keepAll spec
items' <- collect (reduceCDeclarationItem bt) items
-- Somtimes we just declare a struct or a typedef.
when (not keep && List.null items') do
markDeleted :: (MonadState Context m) => [C.CDeclarationItem C.NodeInfo] -> m ()
markDeleted = mapM_ \case
C.CDeclarationItem (name -> Just ix) _ _ -> do
modify' (addInlineExpr ix IEDelete)
_a -> pure ()
fromMaybe emptyBlock
<$> runMaybeT
( wrapCCompound <$> reduceCStatement stmt ids ctx
)
reduceCStatementOrEmptyExpr
:: (MonadReduce Lab m, HasCallStack)
=> C.CStatement C.NodeInfo
-> StmtContext
-> Context
-> m (C.CStatement C.NodeInfo)
reduceCStatementOrEmptyExpr stmt ids ctx = do
fromMaybe (C.CExpr Nothing C.undefNode)
<$> runMaybeT (reduceCStatement stmt ids ctx)
emptyBlock :: C.CStatement C.NodeInfo
emptyBlock = C.CCompound [] [] C.undefNode
data StmtContext = StmtContext
{ stmtLabels :: ![C.Ident]
, stmtInLoop :: !Bool
}
deriving (Show, Eq)
etAny :: EType
etAny = EType ETAny False
etNum :: EType
etNum = EType (ETExactly TNum) False
exactly :: Type -> EType
exactly c = EType (ETExactly c) False
-- | Reduce given a list of required labels reduce a c statement, possibly into nothingness.
:: forall m
. (MonadReduce Lab m, HasCallStack)
-> MaybeT m (C.CStatement C.NodeInfo)
reduceCStatement smt labs ctx = case smt of
C.CCompound is cbi ni -> do
cbi' <- lift $ evalStateT (mapM (reduceCCompoundBlockItem labs) cbi) ctx
pure (C.CCompound is (concat cbi') ni)
C.CWhile e s dow ni -> split
("remove while loop", C.posOf ni)
do
reduceCStatement s labs ctx
do
s' <- reduceCStatement s labs{stmtInLoop = True} ctx
e' <- fromMaybe (pure zeroExpr) (reduceCExpr e etNum ctx)
C.CExpr me ni -> do
case me of
Just e -> do
if DoNoops `isIn` ctx
e' <-
maybeSplit ("change to noop", C.posOf smt) $
reduceCExpr e etAny ctx
re' <- liftMaybe $ reduceCExpr e etAny ctx
exceptIf ("remove expr statement", C.posOf smt)
e' <- re'
pure $ C.CExpr (Just e') ni
case returnType ctx of
NonVoid rt -> do
res :: (m C.CExpr) <- liftMaybe (reduceCExpr e (exactly rt) ctx)
pure (Just <$> res)
Void -> pure (pure Nothing)
Nothing -> pure (pure Nothing)
exceptIf ("remove return statement", C.posOf smt)
e <- lift re
pure $ C.CReturn e ni
e' <- maybeSplit ("remove condition", C.posOf e) $ reduceCExpr e etNum ctx
ms' <- lift . runMaybeT $ do
exceptIf ("remove if branch", C.posOf e)
reduceCStatement s labs ctx
(Just e'', Just s', Nothing) -> pure $ C.CIf e'' s' Nothing ni
(Nothing, Just s', Just x) -> pure $ C.CIf zeroExpr s' (Just x) ni
(Just e'', Just s', Just x) -> pure $ C.CIf e'' s' (Just x) ni
(Just e'', Nothing, Nothing) -> pure $ C.CExpr (Just e'') C.undefNode
(Nothing, Nothing, Just x) -> pure x
(Just e'', Nothing, Just x) -> pure $ C.CIf e'' emptyBlock (Just x) ni
(Nothing, Just s', Nothing) -> pure s'
C.CFor e1 e2 e3 s ni -> case e1 of
C.CForDecl d@(C.CDecl spec items ni') -> split
("remove the for loop", C.posOf ni)
(reduceCStatement (C.CCompound [] [C.CBlockDecl d, C.CBlockStmt s] C.undefNode) labs ctx)
do
(bt, spec') <- evalStateT (updateCDeclarationSpecifiers keepAll spec) ctx
(items', ctx') <- flip runStateT ctx do
markDeleted items
collect (reduceCDeclarationItem bt) items
re2' <- liftMaybe (reduceCExpr e2' etAny ctx')
exceptIf ("remove check", C.posOf e2')
re2'
e3' <- runMaybeT do
e3' <- liftMaybe e3
re3' <- liftMaybe (reduceCExpr e3' etAny ctx')
exceptIf ("remove iterator", C.posOf e3')
re3'
let e2'' =
if AllowInfiniteForLoops `isIn` ctx || isNothing e2
then e2'
else e2' <|> Just zeroExpr
s' <- reduceCStatementOrEmptyExpr s labs{stmtInLoop = True} ctx'
pure $ C.CFor (C.CForDecl (C.CDecl spec' items' ni')) e2'' e3' s' ni
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
C.CForInitializing e -> split
("remove the for loop", C.posOf ni)
( reduceCStatement
( C.CCompound
[]
[C.CBlockStmt (C.CExpr e C.undefNode), C.CBlockStmt s]
C.undefNode
)
labs
ctx
)
do
e' <-
maybeSplit ("remove initializer", C.posOf ni) $
e >>= \e' ->
reduceCExpr e' etAny ctx
e2' <- runMaybeT do
e2' <- liftMaybe e2
re2' <- liftMaybe (reduceCExpr e2' etNum ctx)
exceptIf ("remove check", C.posOf e2')
re2'
e3' <- runMaybeT do
e3' <- liftMaybe e3
re3' <- liftMaybe (reduceCExpr e3' etAny ctx)
exceptIf ("remove iterator", C.posOf e3')
re3'
let e2'' =
if AllowInfiniteForLoops `isIn` ctx || isNothing e2
then e2'
else e2' <|> Just zeroExpr
s' <- reduceCStatementOrEmptyExpr s labs{stmtInLoop = True} ctx
pure $ C.CFor (C.CForInitializing e') e2'' e3' s' ni
d -> notSupportedYet d ni
pure $ C.CLabel i s' [] ni
else do
empty
C.CGoto i ni ->
if i `List.elem` stmtLabels labs
then do
exceptIf ("remove goto", C.posOf smt)
pure $ C.CGoto i ni
else empty
C.CBreak n ->
if stmtInLoop labs
then do
exceptIf ("remove break", C.posOf smt)
pure $ C.CBreak n
else empty
C.CCont n ->
if stmtInLoop labs
then do
exceptIf ("remove continue", C.posOf smt)
pure $ C.CCont n
-- | If the condition is statisfied try to reduce to the a.
whenSplit :: (MonadReduce Lab m) => Bool -> Lab -> m a -> m a -> m a
whenSplit cn lab a b
| cn = split lab a b
| otherwise = b
maybeSplit :: (MonadReduce Lab m) => Lab -> Maybe (m a) -> m (Maybe a)
maybeSplit lab = \case
Just r -> do
split lab (pure Nothing) (Just <$> r)
Nothing -> do
pure Nothing
zeroExpr :: C.CExpression C.NodeInfo
zeroExpr = C.CConst (C.CIntConst (C.cInteger 0) C.undefNode)
-- | The expected type
data EType = EType
{ etSet :: !ETSet
, etAssignable :: !Bool
}
deriving (Show, Eq)
data ETSet
= ETExactly !Type
| ETStructWithField !C.Ident !ETSet
| ETPointer !ETSet
| ETAny
deriving (Show, Eq)
checkExpectedType :: (MonadPlus m) => Context -> Voidable -> EType -> m ()
checkExpectedType ctx (NonVoid t) et = guard $ isExpectedType ctx t et
checkExpectedType _ Void _ = pure ()
match :: Type -> Type -> Bool
match = curry \case
(TPointer Void, TPointer _) -> True
(TPointer _, TPointer Void) -> True
(TPointer (NonVoid a), TPointer (NonVoid b)) -> a `match` b
(t1, t2) -> t1 == t2
isExpectedType :: Context -> Type -> EType -> Bool
isExpectedType ctx = \c et ->
-- pTraceWith (\a -> "check " <> show a <> " " <> show c <> " " <> show et) $
go c (etSet et)
where
go c = \case
ETAny -> True
ETStructWithField ix et -> case c of
TStruct s -> fromMaybe False do
(_, mt) <- liftMaybe $ List.find (\(a, _) -> ix == a) fields
t' <- liftMaybe mt
pure $ go t' et
_ow -> False
ETPointer t' ->
case c of
TPointer Void -> True
TPointer (NonVoid c') -> go c' t'
_ow -> False
fieldsOfStruct :: (HasCallStack) => Context -> Either C.Ident StructType -> [(C.Ident, Maybe Type)]
fieldsOfStruct ctx (Left ix) =
case lookupStruct ctx ix of
ISKeep a -> structTypeFields a
_ow -> error ("Something bad happend")
fieldsOfStruct _ (Right a) = structTypeFields a
etUnPointer :: EType -> Maybe EType
etUnPointer t =
-- pTraceWith (\t' -> "unpoint " <> show t <> " " <> show t') $
case etSet t of
ETPointer t' -> Just t{etSet = t'}
ETExactly (TPointer Void) -> Just t{etSet = ETAny}
ETExactly (TPointer (NonVoid t')) -> Just t{etSet = ETExactly t'}
_ow -> Nothing
checkNotAssignable :: (MonadPlus m) => EType -> m ()
checkNotAssignable = guard . not . etAssignable
msplit :: (MonadReduce Lab m) => Lab -> Maybe (m a) -> Maybe (m a) -> Maybe (m a)
msplit l m1 m2 = do
case m1 of
Just a -> Just $ case m2 of
Just b -> split l a b
Nothing -> a
Nothing -> m2
inferType :: Context -> C.CExpr -> Maybe Voidable
inferType ctx = \case
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
case lookupVariable ctx i of
IEInline e -> inferType ctx e
IEKeep t -> pure (NonVoid t)
IEDelete -> Nothing
C.CUnary i e _ -> do
t <- inferType ctx e
case i of
C.CIndOp -> case t of
NonVoid (TPointer t') -> pure t'
Void -> pure Void
_ow -> Nothing
C.CAdrOp -> pure (NonVoid (TPointer t))
_ow -> pure t
C.CConst x -> pure . NonVoid $ case x of
(C.CStrConst _ _) ->
TPointer (NonVoid TNum)
_ow ->
TNum
C.CIndex a x _ -> do
t1 <- inferType ctx a
t2 <- inferType ctx x
case (t1, t2) of
(NonVoid (TPointer x'), NonVoid TNum) -> pure x'
_ow -> error (show ("index", t1, t2))
C.CMember a l t _ -> do
t1 <- inferType ctx a
s' <- case (t1, t) of
(NonVoid (TPointer (NonVoid (TStruct s))), True) -> pure s
(NonVoid (TStruct s), False) -> pure s
_ow -> error (show ("member", a, l))
let fields = fieldsOfStruct ctx s'
NonVoid <$> (join . List.lookup l $ fields)
C.CBinary o lhs _ _ -> do
if o `elem` [C.CNeqOp, C.CEqOp, C.CGeqOp, C.CLeqOp, C.CGrOp, C.CLeOp]
then pure (NonVoid TNum)
else inferType ctx lhs
C.CCast decl@(C.CDecl spec items _) _ _ -> do
-- todo is this a good handling of this?
(bt, _) <- evalStateT (updateCDeclarationSpecifiers keepAll spec) ctx
case items of
[C.CDeclarationItem (C.CDeclr Nothing dd Nothing [] _) _ _] -> do
(t, _) <- evalStateT (updateCDerivedDeclarators bt (repeat True) dd) ctx
pure t
[] ->
pure bt
_ow -> notSupportedYet' decl
C.CCall f _ ni -> do
ft <- inferType ctx f
case ft of
NonVoid (TFun (FunType rt _)) -> pure rt
a -> do
C.CAssign _ lhs _ _ -> do
inferType ctx lhs
-- inferType ctx rhs
-- if t1 == t2 then pure t1 else error (show ("assign", o, t1, t2))
C.CComma items _ -> do
inferType ctx (List.last items)
a -> notSupportedYet' a
reduceCExpr
:: forall m
. (MonadReduce Lab m, HasCallStack)
=> C.CExpr
-> EType
-> Context
-> Maybe (m C.CExpr)
reduceCExpr expr t ctx = case expr of
msplit ("reduce to left", C.posOf elhs) (reduceCExpr elhs t ctx) do
msplit ("reduce to right", C.posOf erhs) (reduceCExpr erhs t ctx) do
checkNotAssignable t
when (o `elem` [C.CNeqOp, C.CEqOp, C.CGeqOp, C.CLeqOp, C.CGrOp, C.CLeOp]) do
c <- inferType ctx elhs
let t' = fromVoid etAny exactly c
rl <- reduceCExpr elhs t' ctx
rr <- reduceCExpr erhs t' ctx
Just do
let r'' = case o of
C.CDivOp -> case r' of
C.CConst (C.CIntConst i _)
| i == C.cInteger 0 ->
C.CConst (C.CIntConst (C.cInteger 1) C.undefNode)
C.CUnary o' (C.CConst (C.CIntConst i _)) _
| i == C.cInteger 0 ->
C.CUnary o' (C.CConst (C.CIntConst (C.cInteger 1) C.undefNode)) C.undefNode
_ow -> r'
_ow -> r'
pure $ C.CBinary o l' r'' ni
msplit ("reduce to left", C.posOf elhs) (reduceCExpr elhs t ctx) do
msplit ("reduce to right", C.posOf erhs) (reduceCExpr erhs t ctx) do
-- in this case we change type, so we need to keep the operation
rl <- reduceCExpr elhs t'{etAssignable = True} ctx
rr <- reduceCExpr erhs t' ctx
Just do
l' <- rl
r' <- rr
pure $ C.CAssign o l' r' ni
case lookupVariable ctx i of
IEKeep c -> do
Just (pure expr)
IEInline mx' -> do
guard (not $ DisallowVariableInlining `isIn` ctx)
reduceCExpr mx' t ctx
IEDelete ->
Nothing
C.CConst x -> do
case x of
C.CStrConst _ _ -> do
checkNotAssignable t
-- guard ( `match` etSet t)
Just (pure expr)
C.CIntConst (C.getCInteger -> 0) _ -> do
checkNotAssignable t
checkExpectedType ctx (NonVoid (TPointer Void)) t
<|> checkExpectedType ctx (NonVoid TNum) t
Just (pure expr)
_ow -> do
checkNotAssignable t
Just (pure expr)
C.CUnary o eopr ni -> do
msplit ("reduce to operant", C.posOf eopr) (reduceCExpr eopr t ctx) do
case o of
C.CIndOp -> do
ropr <- reduceCExpr eopr (t{etSet = ETPointer (etSet t), etAssignable = True}) ctx
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
Just do
eopr' <- ropr
pure $ C.CUnary o eopr' ni
C.CAdrOp -> do
t' <- etUnPointer t
-- pTraceShowM (t', void eopr)
ropr <- reduceCExpr eopr (t'{etAssignable = True}) ctx
Just do
eopr' <- ropr
pure $ C.CUnary o eopr' ni
e
| e `List.elem` [C.CPreIncOp, C.CPreDecOp, C.CPostIncOp, C.CPostDecOp] -> do
reduceCExpr eopr t{etAssignable = True} ctx <&> \ropr -> do
eopr' <- ropr
pure $ C.CUnary o eopr' ni
| otherwise -> do
reduceCExpr eopr t ctx <&> \ropr -> do
eopr' <- ropr
pure $ C.CUnary o eopr' ni
C.CCall ef args ni -> do
(\fn a -> foldr fn a args)
(\e -> msplit ("reduce to expression", C.posOf e) (reduceCExpr e t ctx))
do
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
ref <- reduceCExpr ef (exactly ft) ctx
let targs = case fargs of
Params targs' v ->
let cons = if v then repeat (Just ETAny) else []
in map (fmap ETExactly) targs' <> cons
VoidParams -> repeat (Just ETAny)
let pargs = mapMaybe (\(ta, a) -> (,a) <$> ta) (zip targs args)
rargs <- forM pargs \(ta, a) ->
reduceCExpr a (EType ta False) ctx
Just do
ef' <- ref
args' <- sequence rargs
pure $ C.CCall ef' args' ni
ow -> do
error $
"Original c code does not type-check: exepected function, got "
<> show ow
<> " at "
<> show (C.posOf ef)
C.CCond et (Just ec) ef ni -> do
msplit ("reduce to true branch", C.posOf et) (reduceCExpr et t ctx) do
msplit ("reduce to false branch", C.posOf ef) (reduceCExpr ef t ctx) do
msplit ("reduce to condtion", C.posOf ef) (reduceCExpr ec t ctx) do
checkNotAssignable t
ret <- reduceCExpr et t ctx
ref <- reduceCExpr ef t ctx
rec <- reduceCExpr ec etAny ctx
et' <- ret
ef' <- ref
ec' <- rec
pure $ C.CCond et' (Just ec') ef' ni
msplit ("do not cast", C.posOf ni) (reduceCExpr e t ctx) do
(bt, spec') <- evalStateT (updateCDeclarationSpecifiers keepAll spec) ctx
(items', re) <- case items of
[C.CDeclarationItem (C.CDeclr Nothing dd Nothing [] a) b c] -> do
(_, dd') <- evalStateT (updateCDerivedDeclarators bt (repeat True) dd) ctx
([C.CDeclarationItem (C.CDeclr Nothing dd' Nothing [] a) b c],) <$> do
[] ->
([],) <$> case bt of
Void ->
reduceCExpr e etAny ctx
NonVoid _ -> do
-- checkExpectedType ct' t
reduceCExpr e etAny ctx
msplit ("reduce to indexee", C.posOf e1) (reduceCExpr e1 t ctx) do
msplit ("reduce to index", C.posOf e2) (reduceCExpr e2 t ctx) do
re1 <- reduceCExpr e1 t{etSet = ETPointer (etSet t), etAssignable = True} ctx
Just do
e1' <- re1
e2' <-
fromMaybe (pure zeroExpr) $
reduceCExpr e2 etNum ctx
pure $ C.CIndex e1' e2' ni
(x, rst) <- List.uncons (reverse items)
(\fn a -> foldr fn a (reverse items))
(\e -> msplit ("reduce to expression", C.posOf e) (reduceCExpr e t ctx))
do
rx <- reduceCExpr x t ctx
Just do
rst' <- flip collect rst \e -> do
re <- liftMaybe (reduceCExpr e (EType ETAny False) ctx)
e' <- re
exceptIf ("remove expression", C.posOf e)
pure (e' :: C.CExpr)
x' <- rx
pure $ C.CComma (reverse (x' : rst')) ni
re <- reduceCExpr e t{etSet = ETStructWithField i (etSet t)} ctx
Just do
e' <- re
pure (C.CMember e' i l ni)
lookupFunction :: (HasCallStack) => Context -> C.Ident -> Maybe Function
lookupFunction ctx k =
fromMaybe (error ("could not find function " <> C.identToString k)) $
functions ctx Map.!? k
lookupVariable :: (HasCallStack) => Context -> C.Ident -> InlineExpr
lookupVariable ctx k =
fromMaybe (error ("could not find variable " <> C.identToString k)) $
inlineExprs ctx Map.!? k
lookupStruct :: (HasCallStack) => Context -> C.Ident -> InlineStruct
fromMaybe (error ("could not find struct " <> C.identToString k)) $
lookupEnum :: (HasCallStack) => Context -> C.Ident -> InlineEnum
lookupEnum ctx k =
fromMaybe (error ("could not find enum " <> C.identToString k)) $
enums ctx Map.!? k
labelsOf :: C.CStatement C.NodeInfo -> [C.Ident]
labelsOf = \case
C.CLabel i s [] _ -> i : labelsOf s
C.CWhile _ s _ _ -> labelsOf s
C.CCase _ s _ -> labelsOf s
C.CDefault s _ -> labelsOf s
C.CCompound _ ss _ ->
ss & concatMap \case
C.CBlockStmt s -> labelsOf s
_ow -> []
C.CCases _ _ s _ -> labelsOf s
C.CIf _ l r _ -> labelsOf l <> maybe [] labelsOf r
C.CSwitch _ s _ -> labelsOf s
C.CFor _ _ _ s _ -> labelsOf s
_ow -> []
, structs :: !(Map.Map C.Ident InlineStruct)
, enums :: !(Map.Map C.Ident InlineEnum)
= ITKeep !Voidable
| ITInline !Voidable ![C.CDeclarationSpecifier C.NodeInfo]
data InlineStruct
= ISKeep !StructType
| ISDeclared !C.CStructTag
| ISDelete
deriving (Show, Eq)
data InlineEnum
= INKeep
| INDelete
deriving (Show, Eq)
deriving (Show, Eq)
data Keyword
= LoseMain
| DoNoops
| InlineTypeDefs
| NoSemantics
| AllowEmptyDeclarations
| DisallowVariableInlining
| AllowInfiniteForLoops
deriving (Show, Read, Enum, Eq, Ord)
type Lab = (String, C.Position)
addTypeDef :: C.Ident -> InlineType -> Context -> Context
addTypeDef i cs ctx = ctx{typeDefs = Map.insert i cs $ typeDefs ctx}
addInlineExpr :: C.Ident -> InlineExpr -> Context -> Context
addInlineExpr i e Context{..} =
Context{inlineExprs = Map.insert i e inlineExprs, ..}
addStruct :: C.Identifier C.NodeInfo -> InlineStruct -> Context -> Context
addStruct i cs ctx = ctx{structs = Map.insert i cs $ structs ctx}
addEnum :: C.Identifier C.NodeInfo -> InlineEnum -> Context -> Context
addEnum i cs ctx = ctx{enums = Map.insert i cs $ enums ctx}
defaultContext :: Context
defaultContext =
Context
{ keywords = Set.fromList []
, typeDefs = Map.fromList [(C.builtinIdent "__builtin_va_list", ITKeep (NonVoid (TPointer Void)))]
[ (C.builtinIdent "__PRETTY_FUNCTION__", IEKeep (TPointer (NonVoid TNum)))
, (C.builtinIdent "__FUNCTION__", IEKeep (TPointer (NonVoid TNum)))
}
isIn :: Keyword -> Context -> Bool
isIn k = Set.member k . keywords
prettyIdent :: C.Identifier C.NodeInfo -> [Char]
prettyIdent (C.Ident s _ a) = s ++ " at " ++ show (C.posOfNode a)
data Struct = Struct
{ structName :: !C.Ident
, structPosition :: !C.Position
}
deriving (Show, Eq)
data Function = Function
{ funName :: !C.Ident
, funIsStatic :: !Bool
, funSize :: !Int
, funPosition :: !C.Position
}
deriving (Show, Eq)
findFunctions
:: (Monoid m)
=> (Function -> m)
-> C.CExternalDeclaration C.NodeInfo
-> m
C.CFDefExt (C.CFunDef spec declr [] _ ni) ->
findFunctionsInDeclarator ni spec declr
-- # for now let's not anlyse function declarations.
C.CFDefExt def@(C.CFunDef{}) ->
notSupportedYet (void def) def
C.CDeclExt (C.CDecl spec items ni) -> flip foldMap items \case
C.CDeclarationItem declr Nothing Nothing ->
findFunctionsInDeclarator ni spec declr
_ow -> mempty
C.CDeclExt a@(C.CStaticAssert{}) ->
notSupportedYet (void a) a
C.CAsmExt _ _ -> mempty
where
findFunctionsInDeclarator ni spec = \case
case mid of
Just funName -> inject Function{..}
where
funIsStatic = isStaticFromSpecs spec
funSize = fromMaybe 0 (C.lengthOfNode ni)
funPosition = C.posOf ni
funParams = case param of
C.CFunParamsNew declr var ->
case declr of
| var -> Nothing
| otherwise -> Just [True | _ <- declr]
a -> notSupportedYet (void a) ni
Nothing -> mempty
_ow -> mempty
class Named f where
name :: f a -> Maybe (C.Identifier a)
instance Named C.CDeclarator where
name (C.CDeclr idx _ _ _ _) = idx
instance Named C.CDeclarationItem where
name = \case
C.CDeclarationItem decl _ _ -> name decl
C.CDeclarationExpr _ -> Nothing
data Params
= VoidParams
| Params ![Maybe Type] !Bool
deriving (Show, Eq)
data FunType = FunType
{ funTypeReturn :: !Voidable
, funTypeParams :: !Params
}
deriving (Show, Eq)
data StructType = StructType
{ structTypeTag :: !C.CStructTag
, structTypeName :: !(Maybe C.Ident)
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
}
deriving (Show, Eq)
data Type
= TNum
| TStruct !(Either C.Ident StructType)
| TPointer !Voidable
| TFun !FunType
deriving (Show, Eq)
data Voidable
= Void
| NonVoid !Type
deriving (Show, Eq)
fromVoid :: a -> (Type -> a) -> Voidable -> a
fromVoid a fn = \case
Void -> a
NonVoid t -> fn t
{-# INLINE fromVoid #-}
nonVoid :: (HasCallStack) => Voidable -> Type
nonVoid = fromVoid (error "expected non void type") id
{-# INLINE nonVoid #-}
notSupportedYet :: (HasCallStack, Show a, C.Pos n) => a -> n -> b
notSupportedYet a ni = error (show a <> " at " <> show (C.posOf ni))
notSupportedYet' :: (HasCallStack, Show (a ()), Functor a, C.Pos (a C.NodeInfo)) => a C.NodeInfo -> b
notSupportedYet' a = notSupportedYet (void a) a