Newer
Older
-- * Context
Context (..),
defaultContext,
-- * Helpers
prettyIdent,
) where
import Control.Applicative
import Control.Monad
import qualified Control.Monad.IRTree as IRTree
import qualified Data.Set as Set
import Data.Vector.Internal.Check (HasCallStack)
defaultReduceCWithKeywords :: (MonadReduce (String, C.Position) m) => [Keyword] -> C.CTranslUnit -> m C.CTranslUnit
defaultReduceCWithKeywords keywords a = reduceCTranslUnit a (defaultContext{keywords = Set.fromList keywords})
{-# SPECIALIZE defaultReduceCWithKeywords :: [Keyword] -> C.CTranslUnit -> IRTree.IRTree (String, C.Position) C.CTranslUnit #-}
defaultReduceC :: (MonadReduce (String, C.Position) m) => C.CTranslUnit -> m C.CTranslUnit
defaultReduceC a = reduceCTranslUnit a defaultContext
{-# SPECIALIZE defaultReduceC :: C.CTranslUnit -> IRTree.IRTree (String, C.Position) C.CTranslUnit #-}
reduceCTranslUnit
:: (MonadReduce Lab m)
=> C.CTranslationUnit C.NodeInfo
-> Context
-> m (C.CTranslationUnit C.NodeInfo)
reduceCTranslUnit (C.CTranslUnit es ni) ctx = do
let _functions = foldMap (findFunctions (: [])) es
let funmap :: [(C.Ident, Maybe Function)] =
List.sortOn (maybe 0 (negate . funSize) . snd)
. Map.toList
. Map.fromListWith const
. map (\f -> (funName f, Just f))
. List.sortOn funSize
$ _functions
let reduce funcs = forM funcs \(k, mf) ->
(k,) <$> runMaybeT do
f <- liftMaybe mf
let fstr = C.identToString (funName f)
when (C.identToString (funName f) /= "main" || LoseMain `isIn` ctx) do
exceptIf ("remove function " <> fstr <> " (" <> show (funSize f) <> ")", funPosition f)
isStatic <-
if funIsStatic f
then
split
("remove static from " <> fstr, funPosition f)
(pure False)
(pure True)
else pure False
pure f{funIsStatic = isStatic}
-- try remove static
functions2 <- do
funmap' <- reduce funmap
if ComputeFunctionFixpoint `isIn` ctx
then reduce funmap
else pure funmap'
functions3 <- forM functions2 \(k, mf) ->
(k,) <$> runMaybeT do
f <- liftMaybe mf
params <- case funParams f of
Just params -> do
Just <$> forM params \p ->
if p
then split ("remove parameter", funPosition f) (pure False) (pure True)
else pure False
pure f{funParams = params}
let builtins =
[ ("fabsf", FunType (NonVoid TNum) (Params [Just TNum] False))
, ("fabs", FunType (NonVoid TNum) (Params [Just TNum] False))
]
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
[ ( funName
, Just $
Function
{ funIsStatic = False
, funPosition = C.posOf funName
, funSize = 0
, funParams = case funTypeParams funType of
VoidParams -> Nothing
Params _ True -> Nothing
Params fx False -> Just [isJust f | f <- fx]
, ..
}
)
| (C.builtinIdent -> funName, funType) <- builtins
]
<> functions3
-- let _structs = foldMap (findStructs (: [])) es
-- structs' <- flip execStateT (structs ctx) do
-- forM_ _structs \s -> do
-- let sstr = C.identToString (structName s)
-- ms <- runMaybeT do
-- exceptIf ("remove struct " <> show sstr, structPosition s)
-- let st = structType s
-- fields <- forM (structTypeFields st) \(i, m) -> do
-- (i,) <$> runMaybeT do
-- m' <- liftMaybe m
-- exceptIf ("remove field " <> sstr <> "." <> C.identToString i, structPosition s)
-- pure m'
-- pure s{structType = st{structTypeFields = fields}}
-- modify' (Map.insert (structName s) (structType s, ms))
let ctx' =
ctx
{ functions = functions'''
, inlineExprs =
inlineExprs ctx
<> Map.fromList
[(C.builtinIdent f, IEKeep (TFun ft)) | (f, ft) <- builtins]
}
res' <- evalStateT (mapM reduceCExternalDeclaration es) ctx'
pure $ C.CTranslUnit (catMaybes res') ni
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
data SpecifierFilter = SpecifierFilter
{ sfKeepStatic :: Bool
}
keepAll :: SpecifierFilter
keepAll = SpecifierFilter{sfKeepStatic = True}
{- | Update the CDeclarationSpecifier's to match the context. Specifically, update
the typedefs and the structs. Alos return a base type.
-}
updateCDeclarationSpecifiers
:: ( MonadState Context m
, MonadPlus m
)
=> SpecifierFilter
-> [C.CDeclarationSpecifier C.NodeInfo]
-> m (Voidable, [C.CDeclarationSpecifier C.NodeInfo])
updateCDeclarationSpecifiers sf spec = do
ctx <- get
spec' <- concat <$> mapM (updateSpec ctx) spec
bt <- baseType ctx spec'
pure (bt, spec')
where
baseType
:: (MonadPlus m)
=> Context
-> [C.CDeclarationSpecifier C.NodeInfo]
-> m Voidable
baseType ctx = do
liftMaybe
. baseTypeOf
(lookupStruct ctx)
( \t -> case Map.lookup t (typeDefs ctx) of
Just (ITKeep t') -> Just t'
Just ITDelete -> Nothing
Just (ITInline t' _) -> Just t'
Nothing -> error "error"
)
updateSpec ctx a = case a of
C.CTypeSpec t -> case t of
C.CSUType (C.CStruct st (Just i) (Just declrs) attr x) b -> do
fields <- liftMaybe $ structTypeFields <$> lookupStruct ctx i
let declrs' :: [C.CDeclaration C.NodeInfo] = filterStruct ctx fields declrs
pure [C.CTypeSpec (C.CSUType (C.CStruct st (Just i) (Just declrs') attr x) b)]
C.CTypeDef idx _ -> do
case Map.lookup idx . typeDefs $ ctx of
Just (ITKeep _) -> pure [C.CTypeSpec t]
Just (ITInline _ res) -> pure res
Just ITDelete -> mzero
Nothing -> error ("could not find typedef: " <> show idx)
_ow -> pure [C.CTypeSpec t]
C.CStorageSpec (C.CStatic _) -> pure [a | sfKeepStatic sf]
C.CFunSpec (C.CInlineQual _) -> pure [a | sfKeepStatic sf]
_ow -> pure [a]
filterStruct ctx fields declrs = flip evalState fields do
fmap concat . forM declrs $ \case
decl@(C.CDecl def items l) -> do
items' <- fmap catMaybes . forM items $ \item -> do
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
case t' of
Just _ -> do
-- TODO check for bad struct name here declaration
pure (Just item)
_ow -> do
pure Nothing
pure [C.CDecl def items' l | not (List.null items')]
a' -> notSupportedYet' a'
updateCDerivedDeclarators
:: forall m
. ( MonadState Context m
, MonadPlus m
)
=> Voidable
-> [Bool]
-> [C.CDerivedDeclarator C.NodeInfo]
-> m (Voidable, [C.CDerivedDeclarator C.NodeInfo])
updateCDerivedDeclarators bt ff dd = do
foldM applyDD (bt, []) (reverse dd)
where
applyDD
:: (r ~ (Voidable, [C.CDerivedDeclarator C.NodeInfo]))
=> r
-> C.CDerivedDeclarator C.NodeInfo
-> m r
applyDD (t, dd') d = case d of
C.CPtrDeclr _ _ -> do
pure (NonVoid . TPointer $ t, d : dd')
C.CArrDeclr{} ->
pure (NonVoid . TPointer $ t, d : dd')
C.CFunDeclr params arr ni -> do
case params of
C.CFunParamsNew params' varadic -> do
(tp, params'') <- state (runState (findParams varadic params'))
let t' = NonVoid $ TFun (FunType t tp)
pure (t', C.CFunDeclr (C.CFunParamsNew params'' varadic) arr ni : dd')
b -> notSupportedYet b ni
findParams
:: Bool
-> [C.CDeclaration C.NodeInfo]
-> State Context (Params, [C.CDeclaration C.NodeInfo])
findParams varadic decls = case decls of
[C.CDecl [C.CTypeSpec (C.CVoidType _)] [] _] ->
pure (VoidParams, decls)
_ow -> flip evalStateT ff do
result <-
forM decls $ \case
C.CDecl spec items ni -> do
keep <- state (\(t : tps) -> (t, tps))
lift . runMaybeT $ do
(bt', spec') <- updateCDeclarationSpecifiers keepAll spec
(t, items') <- case items of
[] -> do
guard keep
pure (nonVoid bt', [])
[C.CDeclarationItem (C.CDeclr mid dd2 Nothing [] ni3) Nothing ni2] -> do
(t, dd2') <- case mid of
Just ix -> do
modify' (addInlineExpr ix IEDelete)
(nonVoid -> t, dd2') <- updateCDerivedDeclarators bt' [] dd2
guard keep
modify' (addInlineExpr ix (IEKeep t))
pure (t, dd2')
Nothing -> do
(nonVoid -> t, dd2') <- updateCDerivedDeclarators bt' [] dd2
guard keep
pure (t, dd2')
pure (t, [C.CDeclarationItem (C.CDeclr mid dd2' Nothing [] ni3) Nothing ni2])
_ow -> notSupportedYet items ni
pure (t, C.CDecl spec' items' ni)
a -> notSupportedYet' a
let (t, decls') = unzip $ catMaybes result
pure (Params (map Just t) varadic, decls')
-- filterParams
-- :: Context
-- -> [Maybe Type]
-- -> [C.CDeclaration C.NodeInfo]
-- -> ([C.CDeclaration C.NodeInfo], [(C.Ident, InlineExpr)])
-- filterParams ctx typefilter params = flip evalState typefilter do
-- (params', mapping) <- flip mapAndUnzipM params \case
-- decl@(C.CDecl def items l) -> do
-- t' <- state (\(t : tps) -> (t, tps))
-- case t' of
-- Just t
-- | not (shouldDeleteDeclaration ctx decl) -> do
-- let defs = [(idx', IEKeep t) | i <- items, idx' <- maybeToList (name i)]
-- pure ([C.CDecl def items l], defs)
-- _ow -> do
-- let defs = [(idx', IEDelete) | i <- items, idx' <- maybeToList (name i)]
-- pure ([], defs)
-- a' -> notSupportedYet' a'
-- pure (concat params', concat mapping)
-- inlineTypeDefsCDeclaration :: C.CDeclaration C.NodeInfo -> Context -> C.CDeclaration C.NodeInfo
-- inlineTypeDefsCDeclaration decl ctx =
-- case decl of
-- C.CDecl items decli ni ->
-- C.CDecl (inlineTypeDefsSpecs items ctx) (map (`inlineTypeDefsCDI` ctx) decli) ni
-- a -> notSupportedYet' a
--
-- inlineTypeDefsCDeclarator
-- :: C.CDeclarator C.NodeInfo
-- -> Context
-- -> C.CDeclarator C.NodeInfo
-- inlineTypeDefsCDeclarator (C.CDeclr idn derivedd st atr ni) ctx =
-- C.CDeclr idn (map (inlineTypeDefsX ctx) derivedd) st atr ni
--
-- inlineTypeDefsX :: Context -> C.CDerivedDeclarator C.NodeInfo -> C.CDerivedDeclarator C.NodeInfo
-- inlineTypeDefsX ctx = \case
-- C.CFunDeclr (C.CFunParamsNew x y) b c ->
-- C.CFunDeclr (C.CFunParamsNew (map (`inlineTypeDefsCDeclaration` ctx) x) y) b c
-- C.CArrDeclr a b c -> C.CArrDeclr a b c
-- C.CPtrDeclr a b -> C.CPtrDeclr a b
-- a -> notSupportedYet' a
--
-- inlineTypeDefsCDI :: C.CDeclarationItem C.NodeInfo -> Context -> C.CDeclarationItem C.NodeInfo
-- inlineTypeDefsCDI di ctx = case di of
-- C.CDeclarationItem a b ni -> C.CDeclarationItem (inlineTypeDefsCDeclarator a ctx) b ni
-- a -> notSupportedYet a C.undefNode
-> StateT Context m (Maybe (C.CExternalDeclaration C.NodeInfo))
reduceCExternalDeclaration r = case r of
C.CFDefExt (C.CFunDef spec declr [] stmt ni) -> runMaybeT do
ctx <- get
let C.CDeclr mid dd Nothing [] ni2 = declr
-- TODO handle this edgecase (struct declared in function declaration)
(_, spec2) <- reduceStructDeclaration spec
mfun <- case mid of
Just <$> liftMaybe (lookupFunction ctx fid)
Nothing ->
pure Nothing
let keepStatic = maybe True funIsStatic mfun
(bt, spec') <- updateCDeclarationSpecifiers keepAll{sfKeepStatic = keepStatic} spec2
((nonVoid -> t@(TFun (FunType rt _)), dd'), ctx') <-
runStateT
(updateCDerivedDeclarators bt (fromMaybe (repeat True) (mfun >>= funParams)) dd)
ctx
case mfun of
Just fun -> do
modify' (addInlineExpr (funName fun) (IEKeep t))
Nothing -> do
exceptIf ("remove function", C.posOf r)
labs <- flip collect (labelsOf stmt) \l -> do
exceptIf ("remove label" <> show l, C.posOf l)
pure l
stmt' <-
reduceCStatementOrEmptyBlock stmt StmtContext{stmtLabels = labs, stmtInLoop = False} $
C.CFunDef spec' (C.CDeclr mid dd' Nothing [] ni2) [] stmt' ni
C.CDeclExt (C.CDecl (C.CStorageSpec (C.CTypedef nif) : rst) [item] ni) -> runMaybeT do
let C.CDeclarationItem (C.CDeclr (Just ix) [] Nothing [] _) Nothing Nothing = item
modify' (addTypeDef ix ITDelete)
(keep, rst2) <- reduceStructDeclaration rst
(NonVoid t, rst') <- updateCDeclarationSpecifiers keepAll rst2
unless keep do
modify' (addTypeDef ix (ITInline t rst'))
exceptIf ("inline typedef " <> C.identToString ix, C.posOf ni)
modify' (addTypeDef ix (ITKeep t))
pure $ C.CDeclExt $ C.CDecl (C.CStorageSpec (C.CTypedef nif) : rst') [item] ni
-- The rest.
C.CDeclExt (C.CDecl spec items ni) -> runMaybeT do
ctx <- get
markDeleted items
-- TODO: Actually we should split it up here
let isStatic = flip any items \case
(C.CDeclarationItem (C.CDeclr (Just fid) (C.CFunDeclr{} : _) _ _ _) _ _) -> do
maybe True funIsStatic (lookupFunction ctx fid)
_ow -> True
(bt, spec') <- updateCDeclarationSpecifiers keepAll{sfKeepStatic = isStatic} spec2
di@(C.CDeclarationItem (C.CDeclr mid dd Nothing [] ni2) einit size) -> do
case dd of
C.CFunDeclr{} : _ -> do
mfun <- case mid of
Just fid ->
Just <$> liftMaybe (lookupFunction ctx fid)
Nothing ->
pure Nothing
let ff = fromMaybe (repeat True) (mfun >>= funParams)
(nonVoid -> t, dd') <-
evalStateT (updateCDerivedDeclarators bt ff dd) ctx
case mid of
pure (C.CDeclarationItem (C.CDeclr mid dd' Nothing [] ni2) einit size)
_dd -> reduceCDeclarationItem bt di
-- Somtimes we just declare a struct or a typedef.
when (not keep && List.null items') do
guard (AllowEmptyDeclarations `isIn` ctx)
exceptIf ("remove declaration", C.posOf ni)
wrapCCompound :: C.CStatement C.NodeInfo -> C.CStatement C.NodeInfo
wrapCCompound = \case
s@(C.CCompound{}) -> s
s -> C.CCompound [] [C.CBlockStmt s] C.undefNode
isStaticFromSpecs :: [C.CDeclarationSpecifier C.NodeInfo] -> Bool
isStaticFromSpecs = any \case
(C.CStorageSpec (C.CStatic _)) -> True
_ow -> False
{- | This checks the current declaration and reduces any new struct found here.
Returns true if the specifier is requried.
-}
reduceStructDeclaration
:: ( MonadReduce Lab m
, MonadState Context m
, MonadPlus m
)
-> m (Bool, [C.CDeclarationSpecifier C.NodeInfo])
reduceStructDeclaration =
fmap (first or) . mapAndUnzipM \case
x@(C.CTypeSpec (C.CSUType (C.CStruct tag mid (Just fields) attr ni2) ni)) -> case mid of
Just sid -> do
struct <- gets (Map.lookup sid . structs)
case struct of
-- Already declared do nothing.
Just _ ->
pure (False, x)
-- Not declared do somthing
Nothing -> do
split
("remove struct " <> C.identToString sid, C.posOf ni)
do
modify' (addStruct sid Nothing)
mzero
do
(ft, catMaybes -> fields') <- mapAndUnzipM (structField sid) fields
modify'
( addStruct
sid
( Just
StructType
{ structTypeTag = tag
, structTypeName = Just sid
, structTypeFields = concat ft
}
)
)
pure (True, C.CTypeSpec (C.CSUType (C.CStruct tag mid (Just fields') attr ni2) ni))
Nothing -> pure (False, x)
x -> pure (False, x)
where
C.CDecl spec items ni -> do
-- TODO: Currently deletes all struct fields if one of them are deleted.
res <- runMaybeT $ updateCDeclarationSpecifiers keepAll spec
case res of
Just (bt, spec') -> do
(fields, items') <- flip mapAndUnzipM items \case
(C.CDeclarationItem (C.CDeclr mid dd Nothing [] ni3) ini ni2) -> do
let fid = fromMaybe (error "all struct fields should be named") mid
res' <- runMaybeT $ do
(nonVoid -> t, dd') <- updateCDerivedDeclarators bt (repeat True) dd
exceptIf ("remove field " <> C.identToString sid <> "." <> C.identToString fid, C.posOf ni)
pure (t, dd')
case res' of
Nothing -> pure ((fid, Nothing), Nothing)
Just (t, dd') -> pure ((fid, Just t), Just $ C.CDeclarationItem (C.CDeclr mid dd' Nothing [] ni3) ini ni2)
a -> notSupportedYet a ni
case catMaybes items' of
[] -> pure (fields, Nothing)
items'' -> pure (fields, Just (C.CDecl spec' items'' ni))
Nothing ->
pure
( map (\i -> (fromMaybe (error "all struct fields should be named") (name i), Nothing)) items
, Nothing
)
a@(C.CStaticAssert{}) -> notSupportedYet' a
reduceCDeclarationItem
:: ( MonadReduce Lab m
, MonadState Context m
, MonadPlus m
)
=> Voidable
-> C.CDeclarationItem C.NodeInfo
-> m (C.CDeclarationItem C.NodeInfo)
reduceCDeclarationItem bt = \case
di@(C.CDeclarationItem (C.CDeclr mid dd Nothing [] ni) einit Nothing) -> do
ctx <- get
case mid of
Just vid -> do
(nonVoid -> t, dd') <- evalStateT (updateCDerivedDeclarators bt (repeat True) dd) ctx
Just einit2 -> do
(einit', inlinable) <- reduceCInitializer t einit2 ctx
case inlinable of
Just e' -> do
modify' (addInlineExpr vid (IEInline e'))
exceptIf ("inline variable " <> C.identToString vid, C.posOf ni)
Nothing -> do
exceptIf ("delete variable", C.posOf ni)
pure (Just einit')
exceptIf ("delete uninitilized variable", C.posOf ni)
modify' (addInlineExpr vid (IEKeep t))
let decl' = C.CDeclr mid dd' Nothing [] ni
pure (C.CDeclarationItem decl' einit' Nothing)
Nothing -> do
exceptIf ("remove unnamed declaration item", C.posOf ni)
pure di
a -> notSupportedYet a C.undefNode
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
reduceCInitializer
:: (MonadReduce Lab m)
=> Type
-> C.CInitializer C.NodeInfo
-> Context
-> m (C.CInitializer C.NodeInfo, Maybe C.CExpr)
reduceCInitializer t einit ctx = case einit of
C.CInitExpr e ni2 -> do
e' <- fromMaybe (pure zeroExpr) $ reduceCExpr e (exactly t) ctx
pure
( C.CInitExpr e' ni2
, case e' of
C.CConst _ -> Just e'
C.CVar _ _ -> Just e'
_ow -> Nothing
)
C.CInitList (C.CInitializerList items) ni2 -> do
items' <- case t of
TStruct stct -> do
let i'' = catMaybes $ zipWith (\(_, t') i -> (i,) <$> t') (structTypeFields stct) items
forM i'' \((p, r), t') -> do
(r', _) <- reduceCInitializer t' r ctx
pure (p, r')
TPointer (NonVoid t') -> do
forM items \(p, r) -> do
(r', _) <- reduceCInitializer t' r ctx
pure (p, r')
_ow -> error $ "Unexpected type of init list" <> show t
pure (C.CInitList (C.CInitializerList items') ni2, Nothing)
-> C.CCompoundBlockItem C.NodeInfo
-> StateT Context m [C.CCompoundBlockItem C.NodeInfo]
reduceCCompoundBlockItem lab r = do
ctx <- get
msmt <- runMaybeT $ reduceCStatement smt lab ctx
case msmt of
Just smt' -> do
("expand compound statment", C.posOf r)
(pure ss)
(pure [C.CBlockStmt smt'])
_ow -> pure [C.CBlockStmt smt']
Nothing -> pure []
C.CBlockDecl (C.CDecl spec items ni) -> fmap (fromMaybe []) . runMaybeT $ do
markDeleted items
(keep, spec2) <- reduceStructDeclaration spec
(bt, spec') <- updateCDeclarationSpecifiers keepAll spec2
items' <- collect (reduceCDeclarationItem bt) items
-- Somtimes we just declare a struct or a typedef.
when (not keep && List.null items') do
guard (AllowEmptyDeclarations `isIn` ctx)
exceptIf ("remove declaration", C.posOf ni)
markDeleted :: (MonadState Context m) => [C.CDeclarationItem C.NodeInfo] -> m ()
markDeleted = mapM_ \case
C.CDeclarationItem (name -> Just ix) _ _ -> do
modify' (addInlineExpr ix IEDelete)
_a -> pure ()
fromMaybe emptyBlock
<$> runMaybeT
( wrapCCompound <$> reduceCStatement stmt ids ctx
)
reduceCStatementOrEmptyExpr
:: (MonadReduce Lab m, HasCallStack)
=> C.CStatement C.NodeInfo
-> StmtContext
-> Context
-> m (C.CStatement C.NodeInfo)
reduceCStatementOrEmptyExpr stmt ids ctx = do
fromMaybe (C.CExpr Nothing C.undefNode)
<$> runMaybeT (reduceCStatement stmt ids ctx)
emptyBlock :: C.CStatement C.NodeInfo
emptyBlock = C.CCompound [] [] C.undefNode
data StmtContext = StmtContext
{ stmtLabels :: ![C.Ident]
, stmtInLoop :: !Bool
}
deriving (Show, Eq)
etAny :: EType
etAny = EType ETAny False
etNum :: EType
etNum = EType (ETExactly TNum) False
exactly :: Type -> EType
exactly c = EType (ETExactly c) False
-- | Reduce given a list of required labels reduce a c statement, possibly into nothingness.
:: forall m
. (MonadReduce Lab m, HasCallStack)
-> MaybeT m (C.CStatement C.NodeInfo)
reduceCStatement smt labs ctx = case smt of
C.CCompound is cbi ni -> do
cbi' <- lift $ evalStateT (mapM (reduceCCompoundBlockItem labs) cbi) ctx
pure (C.CCompound is (concat cbi') ni)
C.CWhile e s dow ni -> split
("remove while loop", C.posOf ni)
do
reduceCStatement s labs ctx
do
s' <- reduceCStatement s labs{stmtInLoop = True} ctx
e' <- fromMaybe (pure zeroExpr) (reduceCExpr e etNum ctx)
C.CExpr me ni -> do
case me of
Just e -> do
if DoNoops `isIn` ctx
e' <-
maybeSplit ("change to noop", C.posOf smt) $
reduceCExpr e etAny ctx
re' <- liftMaybe $ reduceCExpr e etAny ctx
exceptIf ("remove expr statement", C.posOf smt)
e' <- re'
pure $ C.CExpr (Just e') ni
case returnType ctx of
NonVoid rt -> do
res :: (m C.CExpr) <- liftMaybe (reduceCExpr e (exactly rt) ctx)
pure (Just <$> res)
Void -> pure (pure Nothing)
Nothing -> pure (pure Nothing)
exceptIf ("remove return statement", C.posOf smt)
e <- lift re
pure $ C.CReturn e ni
e' <- maybeSplit ("remove condition", C.posOf e) $ reduceCExpr e etNum ctx
els' <- lift . runMaybeT $ do
els' <- liftMaybe els
reduceCStatement els' labs ctx
ms' <- lift . runMaybeT $ reduceCStatement s labs ctx
case (e', ms', els') of
(Nothing, Nothing, Nothing) -> pure emptyBlock
(Just e'', Just s', Nothing) -> pure $ C.CIf e'' s' Nothing ni
(Nothing, Just s', Just x) -> pure $ C.CIf zeroExpr s' (Just x) ni
(Just e'', Just s', Just x) -> pure $ C.CIf e'' s' (Just x) ni
(Just e'', Nothing, Nothing) -> pure $ C.CExpr (Just e'') C.undefNode
(Nothing, Nothing, Just x) -> pure x
(Just e'', Nothing, Just x) -> pure $ C.CIf e'' emptyBlock (Just x) ni
(Nothing, Just s', Nothing) -> pure s'
(bt, spec') <- evalStateT (updateCDeclarationSpecifiers keepAll spec) ctx
(items', ctx') <- runStateT (collect (reduceCDeclarationItem bt) items) ctx
re2' <- liftMaybe (reduceCExpr e2' etAny ctx')
exceptIf ("remove check", C.posOf e2')
re2'
e3' <- runMaybeT do
e3' <- liftMaybe e3
re3' <- liftMaybe (reduceCExpr e3' etAny ctx')
exceptIf ("remove iterator", C.posOf e3')
re3'
let e2'' =
if AllowInfiniteForLoops `isIn` ctx || isNothing e2
then e2'
else e2' <|> Just zeroExpr
s' <- reduceCStatementOrEmptyExpr s labs{stmtInLoop = True} ctx'
-- Todo allow removal of these loops as well
pure $ C.CFor (C.CForDecl (C.CDecl spec' items' ni')) e2'' e3' s' ni
("remove the for loop", C.posOf ni)
do
reduceCStatement s labs ctx
do
e' <- maybeSplit ("remove initializer", C.posOf ni) (e >>= \e' -> reduceCExpr e' etAny ctx)
re2' <- liftMaybe (reduceCExpr e2' etNum ctx)
exceptIf ("remove check", C.posOf e2')
re2'
e3' <- runMaybeT do
e3' <- liftMaybe e3
re3' <- liftMaybe (reduceCExpr e3' etAny ctx)
exceptIf ("remove iterator", C.posOf e3')
re3'
let e2'' =
if AllowInfiniteForLoops `isIn` ctx || isNothing e2
then e2'
else e2' <|> Just zeroExpr
s' <- reduceCStatementOrEmptyExpr s labs{stmtInLoop = True} ctx
pure $ C.CFor (C.CForInitializing e') e2'' e3' s' ni
pure $ C.CLabel i s' [] ni
else do
empty
C.CGoto i ni ->
if i `List.elem` stmtLabels labs
then do
exceptIf ("remove goto", C.posOf smt)
pure $ C.CGoto i ni
else empty
C.CBreak n ->
if stmtInLoop labs
then do
exceptIf ("remove break", C.posOf smt)
pure $ C.CBreak n
else empty
C.CCont n ->
if stmtInLoop labs
then do
exceptIf ("remove continue", C.posOf smt)
pure $ C.CCont n
-- | If the condition is statisfied try to reduce to the a.
whenSplit :: (MonadReduce Lab m) => Bool -> Lab -> m a -> m a -> m a
whenSplit cn lab a b
| cn = split lab a b
| otherwise = b
maybeSplit :: (MonadReduce Lab m) => Lab -> Maybe (m a) -> m (Maybe a)
maybeSplit lab = \case
Just r -> do
split lab (pure Nothing) (Just <$> r)
Nothing -> do
pure Nothing
zeroExpr :: C.CExpression C.NodeInfo
zeroExpr = C.CConst (C.CIntConst (C.cInteger 0) C.undefNode)
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
-- reduceCExprOrZero :: (MonadReduce Lab m, HasCallStack) => C.CExpr -> Context -> m C.CExpr
-- reduceCExprOrZero expr ctx = do
-- case reduceCExpr expr ctx of
-- Just ex -> do
-- r <- ex
-- if r == zeroExpr
-- then pure r
-- else split ("replace by zero", C.posOf expr) (pure zeroExpr) (pure r)
-- Nothing -> do
-- pure zeroExpr
-- {-# INLINE reduceCExprOrZero #-}
-- | The expected type
data EType = EType
{ etSet :: !ETSet
, etAssignable :: !Bool
}
deriving (Show, Eq)
data ETSet
= ETExactly !Type
| ETStructWithField !C.Ident !ETSet
| ETComparable
| ETCastable !Type
| ETPointer !ETSet
| ETAny
deriving (Show, Eq)
checkExpectedType :: (MonadPlus m) => Voidable -> EType -> m ()
checkExpectedType (NonVoid t) et = guard $ isExpectedType t et
checkExpectedType Void _ = pure ()
match :: Type -> Type -> Bool
match = curry \case
(TPointer Void, TPointer _) -> True
(TPointer _, TPointer Void) -> True
(TPointer (NonVoid a), TPointer (NonVoid b)) -> a `match` b
(t1, t2) -> t1 == t2
isExpectedType :: Type -> EType -> Bool
isExpectedType = \c et ->
-- pTraceWith (\a -> "check " <> show a <> " " <> show c <> " " <> show et) $
go c (etSet et)
where
go c = \case
ETAny -> True
ETStructWithField ix et -> case c of
TStruct s -> fromMaybe False do
let fields = structTypeFields s
(_, mt) <- liftMaybe $ List.find (\(a, _) -> ix == a) fields
t' <- liftMaybe mt
pure $ go t' et
_ow -> False
ETComparable ->
isNum c || isPointer c
ETPointer t' ->
case c of
TPointer Void -> True
TPointer (NonVoid c') -> go c' t'
_ow -> False
ETCastable TNum -> True
a -> error (show a)
etUnPointer :: EType -> Maybe EType
etUnPointer t =
-- pTraceWith (\t' -> "unpoint " <> show t <> " " <> show t') $
case etSet t of
ETPointer t' -> Just t{etSet = t'}
ETExactly (TPointer Void) -> Just t{etSet = ETAny}
ETExactly (TPointer (NonVoid t')) -> Just t{etSet = ETExactly t'}
_ow -> Nothing
checkNotAssignable :: (MonadPlus m) => EType -> m ()
checkNotAssignable = guard . not . etAssignable
msplit :: (MonadReduce Lab m) => Lab -> Maybe (m a) -> Maybe (m a) -> Maybe (m a)
msplit l m1 m2 = do
case m1 of
Just a -> Just $ case m2 of
Just b -> split l a b
Nothing -> a
Nothing -> m2
inferType :: Context -> C.CExpr -> Maybe Voidable
inferType ctx = \case
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
case lookupVariable ctx i of
IEInline e -> inferType ctx e
IEKeep t -> pure (NonVoid t)
IEDelete -> Nothing
C.CUnary i e _ -> do
t <- inferType ctx e
case i of
C.CIndOp -> case t of
NonVoid (TPointer t') -> pure t'
Void -> pure Void
_ow -> Nothing
C.CAdrOp -> pure (NonVoid (TPointer t))
_ow -> pure t
C.CConst x -> pure . NonVoid $ case x of
(C.CStrConst _ _) ->
TPointer (NonVoid TNum)
_ow ->
TNum
C.CIndex a x _ -> do
t1 <- inferType ctx a
t2 <- inferType ctx x
case (t1, t2) of
(NonVoid (TPointer x'), NonVoid TNum) -> pure x'
_ow -> error (show ("index", t1, t2))
C.CMember a l t _ -> do
t1 <- inferType ctx a
s' <- case (t1, t) of
(NonVoid (TPointer (NonVoid (TStruct s))), True) -> pure s
(NonVoid (TStruct s), False) -> pure s
_ow -> error (show ("member", a, l))
NonVoid <$> fieldLookup l s'
C.CBinary o lhs _ _ -> do
if o `elem` [C.CNeqOp, C.CEqOp, C.CGeqOp, C.CLeqOp, C.CGrOp, C.CLeOp]
then pure (NonVoid TNum)
else inferType ctx lhs
C.CCast decl@(C.CDecl spec items _) _ _ -> do
-- todo is this a good handling of this?
(bt, _) <- evalStateT (updateCDeclarationSpecifiers keepAll spec) ctx
case items of
[C.CDeclarationItem (C.CDeclr Nothing dd Nothing [] _) _ _] -> do
(t, _) <- evalStateT (updateCDerivedDeclarators bt (repeat True) dd) ctx
pure t
[] ->
pure bt
_ow -> notSupportedYet' decl
C.CCall f _ ni -> do
ft <- inferType ctx f
case ft of
NonVoid (TFun (FunType rt _)) -> pure rt
a -> do
error (show ("call", a, ni, pTraceWith show f))
C.CAssign _ lhs _ _ -> do
inferType ctx lhs
-- inferType ctx rhs
-- if t1 == t2 then pure t1 else error (show ("assign", o, t1, t2))
C.CComma items _ -> do
inferType ctx (List.last items)
a -> notSupportedYet' a
reduceCExpr
:: forall m
. (MonadReduce Lab m, HasCallStack)
=> C.CExpr
-> EType
-> Context
-> Maybe (m C.CExpr)
reduceCExpr expr t ctx = case expr of
msplit ("reduce to left", C.posOf elhs) (reduceCExpr elhs t ctx) do
msplit ("reduce to right", C.posOf erhs) (reduceCExpr erhs t ctx) do
checkNotAssignable t
when (o `elem` [C.CNeqOp, C.CEqOp, C.CGeqOp, C.CLeqOp, C.CGrOp, C.CLeOp]) do
checkExpectedType (NonVoid TNum) t
c <- inferType ctx elhs
let t' = fromVoid etAny exactly c
-- if
-- then EType ETComparable False
-- else exactly TNum